
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2010)
M. Alexa and E. Do (Editors)

Modeling-in-Context: User Design of Complementary
Objects with a Single Photo

Manfred Lau1, Greg Saul1, Jun Mitani1,2, and Takeo Igarashi1,3

1JST ERATO Igarashi Design Interface Project, Tokyo Japan
2University of Tsukuba 3The University of Tokyo

Abstract
The products that we use everyday are typically designed and produced for mass consumption. However, it is
difficult for such products to satisfy the needs of individual users. We present a framework that allows the end-user
to participate in the entire process of designing their own objects, from the initial concept stage to the production
of a new real-world object that fits well with the existing complementary objects. We advocate using a single
photo as a rough guide for the user to sketch a new customized object that does not exist in the photo. Our system
provides a 2D interface for sketching the outline of the new object and annotating certain geometric properties
of it directly on the photo. We introduce a Modified Lipson optimization method for generating the 3D shape. We
design a variety of real-world everyday objects that are complementary to the existing objects and environment in
the photo. We show that novice users can learn and create new objects with our system within minutes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Modeling Packages; I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction Techniques

1. Introduction

The products that we use everyday are typically designed
and produced for mass consumption. While this approach
works well from an economical point of view, it is diffi-
cult to customize such products to fit each user’s prefer-
ence [Gro07, Lan09]. For example, a user may want to cre-
ate a new and personalized lid to fit an existing cup. In this
paper, we present a framework that allows the end-user to
participate in the entire process of designing their own cus-
tomized objects: from the initial concept stage of thinking
about the new object and taking a photo of any existing com-
plementary objects, to sketching the new object, to adjusting
and viewing it virtually before production, and finally to pro-
duction of the real-world object that fits well with the exist-
ing ones.

The PhotoModeler software [Eos07] is closely related to
our work. Their method is vision-based and requires an ini-
tial camera calibration step that takes user-marked lines or
points from a realistic photo as input. In particular, their
method cannot take any user 2D drawing as input. Further-
more, for the case of a single photo, many photos cannot

Figure 1: (a) Photo and 2D user sketch of a new and per-
sonalized desktop organizer. (b) 3D virtual model visualized
and adjusted before production of actual object. (c) New
real-world object fits well with other existing objects.

be used with their software [Eos07]. In general, PhotoMod-
eler and other vision-based methods ask the user to trace
over existing objects in photos to recover their 3D shapes.
On the other hand, our system is user-based and we advo-
cate the use of a single photo for providing some “context”
for sketching a new customized object that does not exist.
Since the new object does not exist in the photo (or the real-
world), we cannot apply vision-based techniques. As an ex-
ample, a possible photo may include a desk with some books
and stationery on it to provide the context for drawing a new
and personalized desktop organizer. The new object is com-
plementary to the other existing objects and should fit well

c© The Eurographics Association 2010.

DOI: 10.2312/SBM/SBM10/017-024

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SBM/SBM10/017-024


M. Lau et al. / Modeling-in-Context

with them. The photo acts as a reference for the user and is
not used in our algorithm, again in contrast to vision-based
methods. The advantages of having the photo are that it pro-
vide hints about the perspective for drawing the 2D outlines,
and the relative dimensions of the new object can be easily
assessed by the user.

Given the photo, the user sketches the 2D outline of the
new object and certain annotations about the geometric prop-
erties of its 3D structure (Figure 1a). Since the 2D sketch is
user-drawn and may be inaccurate, the annotations are im-
portant and necessary for producing the 3D shape. The idea
of using annotations is inspired by Gingold et al. [GIZ09].
To make it easy for novices, our input interface is entirely in
2D. This is in contrast to common CAD modeling programs
and SketchUp [Ske09] which require manipulations in 3D
that are known to be difficult for beginning users [SSB08].
In addition, although Lipson’s method [LS96] tries to auto-
matically recognize certain annotations from the user input,
it is not necessarily robust as it depends on the camera per-
spective and complexity of the shape. We thereby leverage
human ability to annotate the 2D sketch.

We take the user input, extract a 2D graph along with the
corresponding annotations, and “expand” this 2D input into
a 3D structure. We found that a direct application of Lip-
son’s approach [LS96] for performing this expansion does
not robustly produce precise 3D shapes and does not pro-
vide interactive results. Hence we introduce a Modified Lip-
son method that improves upon Lipson’s algorithm [LS96]
in two main ways. First, we use a two-step optimization pro-
cess, in contrast to Lipson’s method which takes a complete
2D sketch as input and performs one optimization step. Our
initial optimization finds a depth value for each vertex while
trying to satisfy the annotated geometric constraints. It pro-
vides an estimate of the solution. The full optimization then
finds a 3D position for each vertex, while trying to satisfy
the geometric and projection constraints (Figure 1b). Sec-
ond, we optimize in a reduced dimensional space, as many
CAD models have a regular structure and we need not opti-
mize with three dimensions for every vertex. Our algorithm
does not perform camera calibration with the information
in the photo, but the projection constraint also finds a set of
camera parameters such that the projection of the 3D vertices
onto the 2D screen matches with the original 2D sketch as
much as possible. Our system provides support for virtually
displaying and adjusting the dimensions and thickness of the
3D shape before production of the actual object. We convert
the 3D shape to either a polygonal mesh for 3D printing or a
set of coplanar profiles for laser cutting (Figure 1c).

We show a variety of new real-world objects made with
our system. We can sketch each of these objects in between
two and ten minutes. Our results demonstrate the concept
of modeling-in-context with new objects that fit well with
existing ones. Our system supports the creation of user-

customizable objects, as shown by the different types of
desktop organizers that we made.

Our contributions are: (1) We introduce a Modified Lip-
son method to create precise 3D shapes interactively; (2) We
advocate the use of a single photo as a reference for the user
(instead of the algorithm) to sketch a new customized object
that does not exist. The photo provides references about the
perspective and relative dimensions of the new object; and
(3) The end-user participates in the entire process from the
initial concept stage to the final production of the new com-
plementary real-world object.

2. Related Work

Modeling-in-context. The majority of commercial model-
ing software provides an empty space for the user to begin
from, with the exception of a 2D grid that can be used as
a reference in the 3D space. It is typical for modelers and
artists to take photos of the objects to be modeled and use
them as a reference. For example, Tsang et al. [TBSR04]
placed images of objects in 3D space to guide the model-
ing process. Thormahlen and Seidel [TS08] demonstrated
the use of a set of ortho-images for 3D modeling. These pre-
vious methods ask the user to trace over existing objects on
the photo, while the user of our system sketches a new object
that does not exist. Furthermore, previous methods require
that the images be in the canonical (front/side/top) views,
while our method accepts one photo in an oblique view.

Sketch-based modeling. Sketch-based methods [ZHH96,
IMT99, NISA07] and 3D sketching systems [DXS∗07,
BBS08, SKSK09] provide simple interfaces for the user to
create 3D models or curves. These methods require fre-
quent camera rotation, which makes them difficult to use
for novices. The frequent rotation also makes it hard to ap-
ply them to work with a single photo. The Smartpaper sys-
tem [SC04] extends Lipson’s method [LS96] to create 3D
shapes from 2D sketches interactively. However, they pro-
duce rough 3D shapes. These sketch-based systems are for
coarse or approximate shapes, and they do not satisfy the
constraints necessary for building precise real-world objects.

Image-based modeling. Image-based methods use multiple
photos as input for modeling architecture [DTM96,SSS∗08],
plants [QTZ∗06], trees [TZW∗07], and facades [XFT∗08].
Their goal is to reconstruct the 3D shape of objects al-
ready in the photos, while our method displays one photo
to the user as a reference. Many single image-based meth-
ods ask the user to carefully trace over existing objects,
while other methods semi-automatically reconstruct the ex-
isting 3D scene in a photo [HAA97, OCDD01]. In contrast,
our system allows the user to draw inaccurate sketches of
new objects that do not exist in the photo. Recent meth-
ods [TFX∗08, JTC09] successfully build 3D models of trees
and architectures by allowing the user to sketch on one
photo. These methods make assumptions about the proper-
ties of trees and symmetric architectures, and exploit these

c© The Eurographics Association 2010.

18



M. Lau et al. / Modeling-in-Context

Figure 2: A screenshot of our system.

assumptions to reconstruct the 3D shape. Our system is user-
oriented, and it is the user-specified information that we ex-
ploit to create the 3D shape.

Some single image-based methods [ZDPSS01, WTBS07]
ask the user to annotate constraints such as normals to re-
cover depth information. Gingold et al. [GIZ09] ask the user
to annotate a single image to build rough 3D character mod-
els. Our system is different in that our target is to build pre-
cise CAD-like models. Other image-based methods use tem-
plates of specific object types [YSvdP05], a shape grammar
of architectural primitives [MZWVG07], or templates of ba-
sic 3D shapes [Eos07] to help in creating the 3D model.
While our system can additionally have such templates to
make it easier to sketch specific shapes, we have decided to
keep our interface more general as our Lines primitive to-
gether with the appropriate annotations can create many ba-
sic shapes.

3. User Interface

Our system (Figure 2) includes a left window where the user
can directly sketch in 2D on top of a photo, and a right win-
dow where the generated 3D shape is displayed. The user
starts by loading a photo consisting of objects that are com-
plementary to the new object to be created. For example, if
the user wants to create a new personalized lid for a teapot,
the photo can show the teapot without any lid. If the user
wants to create a desktop organizer, the photo can show
a desk with the books, stationery, and other objects to be
placed in the organizer. The objects in the photo provide
a sense of what the size of the new object should be and
the perspective that it can be drawn in. They are intended
for providing clues to novice users. The user sketches the
2D outline (Section 3.1) of the new object, and annotations
(Section 3.2) specifying some geometric properties of the
3D shape to be generated.

3.1. Primitives

Lines. This tool is for drawing 2D straight line segments of
various lengths. The user can draw the lines and edit them

afterwards by moving their endpoints. We find that users
are capable of drawing both visible and hidden lines, and
we do not distinguish between them. If needed, the user can
annotate symmetric planes (Section 3.2) so that the system
can automatically generate some of the hidden vertices and
edges from the visible ones.

Rectangles and Squares. The user draws a rectangular
shape by clicking and dragging on the 2D screen to spec-
ify (but without drawing) one of the diagonals of the rect-
angle. The Rectangles tool automatically creates four con-
nected straight line segments, and annotates the four angles
to be right angles. The Squares tool additionally annotates
the four sides to be of the same length. The user can then
adjust the positions of any of the four vertices by dragging.

Circles. When 3D circles are projected onto the 2D screen,
they become 2D ellipses in general. Hence we ask the user
to draw ellipses in 2D. The user sketches a rectangular shape
with one click-and-drag stroke and the corresponding ellipse
that is bounded by the rectangle is drawn. After the initial
sketch, the user can edit an ellipse by adjusting any of the
four points on its major and minor axes. We assume that the
3D circles are horizontal since this is common to most cases.
Our examples show the use of this tool as part of the Surface
of Revolution primitive (Figure 3).

Figure 3: We draw three circles and a set of lines for the
“side” with the Surface of Revolution tool.

Surface of Revolution. We use this primitive to create
shapes consisting of a symmetric rotational axis with con-
centric circles along the axis. Figure 3 shows an example of
drawing a teapot lid. The user draws three 2D ellipses (or cir-
cles in 3D): one to identify the ground or table in this case,
one to represent the bottom of the lid, and one to represent
the top of the lid. As the third ellipse is drawn, the display
shows a line to represent the rotational axis. The user then
draws the “side” of the object by sketching a series of con-
nected line segments. These segments join the top and bot-
tom circles. Each vertex of this set of lines represents a con-
centric 3D circle in the new object. The sketching of the line
segments uses the same implementation as the Lines tool.

3.2. Annotations

There can be many 3D shapes that can match the 2D outline.
In addition, we cannot expect users to draw perfectly. The
user-drawn 2D outline may not be accurate compared to the
intended 3D shape’s projection onto the screen. The annota-
tions are important for resolving these inconsistencies.

Right Angles. We find that this geometric relationship is

c© The Eurographics Association 2010.

19



M. Lau et al. / Modeling-in-Context

most useful for recovering the 3D shape. We provide two
ways to specify right angles. First, the user can simply click
an angle (Figure 4 left), and our system will show that angle
as being annotated with the usual right angle symbol (Fig-
ure 4 right). Second, the user can specify all the angles of a
quadrilateral with one mouse click (Figure 4 middle).

Figure 4: Two different ways for specifying right angles. It
takes 15 mouse clicks to annotate 36 angles (last image).

Same Length Lines, and Parallel Lines. A mouse click
near a line or edge allows the user to select it (Figure 5 left).
The user can select groups of any number of each type of
lines, by clicking a “done” button after selecting each group.
Selected edges are displayed with corresponding geometric
symbols (Figure 5 middle).

Figure 5: Left: Selecting edges with the mouse cursor. Mid-
dle: Three groups (each with different color) of two anno-
tated lines. Green dash symbols are for same length lines
and red arrows are for parallel lines. Right: Green high-
lighted vertices are ground vertices. Each vertex is labeled
with the number of dimensions used in the full optimization.
The total number of dimensions is reduced from 36 to 18.

Ground Vertices. The user can click on and select 2D ver-
tices (Figure 5 right) that lie on the ground (in 3D). We trans-
late and rotate the current 3D shape so that the selected ver-
tices lie on the ground plane. If there are more than three
vertices, we project the remaining ones to the ground.

Symmetric Planes. If the occluded or hidden lines are dif-
ficult to draw, we can specify symmetric planes and gener-
ate them automatically from the visible ones (Figure 6). The
user can select symmetric planes with the mouse cursor with
just one click. A symmetric plane is represented by three or
more midpoints of the user-drawn 2D lines. If the slopes of
a set of 2D lines are similar and the mouse cursor is near
one of these midpoints, our system highlights all these mid-
points to “suggest” the corresponding symmetric plane. If

the perspective of the drawn object makes it difficult to au-
tomatically suggest these planes, the user can also select any
three or more midpoints directly.

Figure 6: Left: Symmetric plane (green dotted line) selected
with one mouse click. Right: 3D result with visible (black)
and occluded (red) edges.

Dimensions, and Thickness. These tools allow the user to
visualize the 3D model before production of the actual ob-
ject. For annotating dimensions, the user selects an edge and
a dialog box is provided for entering its length. The lengths
of the other edges are automatically generated, and can be
displayed in the right window. The thicknesses of all the
polygons have a default value. The user can select a 2D poly-
gon by placing the mouse cursor near the mean position of
the polygon, and a dialog box is provided for entering a new
thickness. The user can also select polygons that should not
be included in the final 3D model (ie. top of a box should be
open).

4. Implementation

Given the user-drawn 2D outline and annotations, we parse
this input into a 2D graph. We introduce a Modified Lip-
son method to “inflate” the 2D structure into a 3D shape. An
initial optimization that finds a depth value for each vertex
generates an approximate shape, which is then used as the
starting point for the full optimization to compute 3D po-
sitions. We describe two simple methods for finding camera
parameters used in the optimization. Finally, we generate the
real-world object from the virtual 3D shape with a 3D printer
or laser cutter.

4.1. Parse to 2D Graph

As the user sketches the outline of the object and annotates
it, we parse the user-drawn lines into a set of 2D vertices
and edges. Let p be a vector containing the positions of
the 2D vertices. The set of edges is the set of user-drawn
lines, and is the same in 2D and 3D. We also compute and
store additional information used during the annotation pro-
cess, such as explicitly maintaining a list of polygons for
efficient detection. For 2D ellipses, we store the two antipo-
dal points (a1,a2) on the major axis and the two antipodal
points (b1,b2) on the minor axis. In our implementation, we
only allow these points of the ellipses to connect to the user-
drawn lines.

c© The Eurographics Association 2010.

20



M. Lau et al. / Modeling-in-Context

Figure 7: Our Modified Lipson method “inflates” the original 2D shape in (a) to the desired 3D shape in (c). The geometric
constraints here are the annotated right angles shown in Figure 4 (right). (b) is after the initial optimization. (c) is after the full
optimization. The camera viewpoint is a result of the optimization.

4.2. Modified Lipson Optimization

Lipson’s original method [LS96] takes a complete sketch as
input, and performs one optimization with three dimensions
per vertex. We found that a direct application of Lipson’s
approach generates rough 3D shapes and requires a long
runtime. We thereby introduce a Modified Lipson method
that performs a two-step optimization, and optimizes in a re-
duced dimensional space (if possible). For the user-drawn
lines, let v be a vector containing the positions of each 3D
vertex. For 3D circles, we assume that they are horizontal
and we represent a circle by its center and radius (x,y,z,r).

Initial Optimization. The initial step finds only the depth of
each 3D vertex, and there is no dimension reduction in this
step. The other two components take the 2D values from the
user-drawn sketch and remain constant. We initialize depth
values to 0. This first step generates an approximate 3D
shape (Figure 7a to b).

The function that we want to minimize uses the anno-
tated geometric relationships, and we call the following en-
ergy terms the geometric constraints. The energy term for
right angles is ∑i(anglei−90o)2, where i indexes the angles
that are annotated as right angles. The energy term for same
length lines is ∑s ∑

ns−2
i=0 (len(veci)− len(veci+1))

2, where
the number of sets of annotated lines is s. For each set, the
number of lines is ns. For each line, veci is the vector com-
puted by subtracting one endpoint of the line from the other.
len() returns the length of the vector. The energy term for
parallel lines is ∑s ∑

ns−2
i=0

1
(angle(veci,veci+1)−90o)2 , where the

notation is the same as for same length lines and angle()
returns the angle between two vectors. The overall function
to minimize is a weighted sum of the above energy terms.
The weights are 0.5, 10, and 10, respectively. The result of
the initial step is stored in v. We use the GSL Scientific Li-
brary and its multidimensional minimization routines. The
optimization method uses the Nelder-Mead Simplex algo-
rithm. The algorithm is not globally optimal, and sometimes
may not return the desired shape. Hence we first perform
the initial optimization once. Given this solution, we iterate
through each vertex and randomly re-initialize its depth, and
perform an initial optimization for each case. We choose the
best result among all cases.

Full Optimization. For the full optimization, each vertex
can have three dimensions in general. However, we can rep-
resent each vertex with a smaller number of dimensions if
we have additional knowledge about the overall shape. Fig-
ure 5(right) shows an example. Each annotated ground ver-
tex has two dimensions. For each quadrilateral annotated as
having all right angles, we can compute one of the vertex po-
sitions given the other three. This is why some of the vertices
have zero dimensions as they are not directly optimized but
computed with the other vertices. We store in advance the or-
der of quadrilaterals used in this computation. The vertices
with zero dimensions are generated from the other vertices
before computing the geometric constraints. We run the full
optimization with both geometric and projection constraints,
using the solution from the initial optimization as the start-
ing point (Figure 7b to c). For circles, we use the 2D position
of the circle center from the user sketch, a depth of 0 and a
small default radius as the starting point.

The projection constraint projects the 3D shape to the
screen, and compares between the projected 2D shape and
the original user-drawn 2D sketch. The motivation is to use
the 2D sketch to help in generating a 3D shape that is closer
in dimensions and overall shape to what the user intended.
Let v′ be the result of the full optimization. We can project
each vertex in v′ to the screen to obtain a 2D point. Let p′

be a vector consisting of these 2D points. The energy term
for the projection constraint is ‖p− p′‖2. For each 3D cir-
cle, we compute the antipodal points (c1,c2,d1,d2) on the
major and minor axes from (x,y,z,r) during the optimiza-
tion. The projection constraint energy term for each circle
is the least squares difference between (a1,a2,b1,b2) and
(c1,c2,d1,d2). For a surface of revolution, we assume that
the first circle is on the ground plane and the three circles
are on top of each other. The projection term solves for
(xg,yg,rg), (zb,rb) and (zt ,rt) where the subscripts corre-
spond to the ground, bottom and top circles. The overall
function is a weighted sum of the projection term and the
geometric terms. We use a weight of 0.1 to 0.8 for the pro-
jection constraint. In practice, we found that running the
full optimization multiple times with the previous solution
as the starting point and gradually lowering the weight on
the projection constraint works well. For example, we start

c© The Eurographics Association 2010.

21



M. Lau et al. / Modeling-in-Context

with a weight of 0.4 and lower this by 0.1 each time un-
til we reach 0. This works well because the projection con-
straint depends on the 2D user sketch of a non-existing ob-
ject, and is therefore at least somewhat inconsistent with any
3D shape. Hence we put more emphasis on the geometric
constraints to produce a precise 3D shape.

4.3. Camera Parameters

Our camera model includes its position, orientation and fo-
cal length. We have two methods for computing camera pa-
rameters which are needed for the projection constraint. For
the first method, we take the photo with a special marker
(Figure 11 cup saucer example). The marker’s dimensions
are known, and we can find the grid’s location on the 2D
screen. We use this information to compute the camera pa-
rameters [FP02]. The second method is more general and we
do not use a marker. Instead, the full optimization optimizes
for the camera parameters in addition to the 3D shape. The
camera is thus “calibrated” with the 2D user sketch and not
the photo. Since the user sketch can be inconsistent with any
3D shape, there is no “correct” camera, but the optimization
finds a reasonable solution.

4.4. 3D Printer and Laser Cutter

We produce the real-world objects with a 3D printer or laser
cutter. We expect the prices of these technologies to reduce
in the future, allowing the end-user to create customized ob-
jects in their own home. We use the 3D printer for objects
that are composed of non-planar shapes (Figure 11 teapot
lid). We triangulate the 3D shape to form a surface mesh. To
create a polygonal mesh, we add a thickness to the surface
by automatically generating a slightly smaller (or larger)
copy inside (or outside) the original shape. For the teapot
lid, the user naturally draws the outside part and our algo-
rithm generates a smaller inside copy. However, for the scis-
sors cover, the user naturally draws the inside part. The user
has the option to specify the thickness and to select which
copy to generate. For a surface of revolution, the user-drawn
side is revolved around the rotational axis to form other cir-
cles. We connect and triangulate the circles to form a mesh.
We use the laser cutter for objects that are composed of pla-
nar shapes (Figure 11 bookshelf). Our system automatically
converts the 3D shape into 2D coplanar profiles, and adds the
appropriate finger joints based on the profiles’ thicknesses.
We generate the real-world pieces with the laser cutter, and
assemble the pieces to form the real-world object.

5. Results

We demonstrate our approach with a number of real-world
objects (Figures 1 and 11) made with our system. All new
objects fit well or exactly with the existing objects. In partic-
ular, everyone who saw the real teapot lid was satisfied with
the way it fits perfectly with the teapot. For all examples,

Figure 8: Top row shows results from Lipson’s method. Bot-
tom row shows results from our Modified Lipson method.
Each column shows a different example. In each column, the
same inputs were used to generate the two results.

Figure 9: (a) Inaccurate 2D sketch. (b) Precise 3D shape.
(c) 2D sketch of table (annotations not shown). (d) 3D result.

the runtimes are interactive (less than one second). Figure 8
demonstrates that our Modified Lipson method is more ro-
bust than Lipson’s method. For each example in the top row,
we ran the optimization for more than ten seconds, and the
result reached a local minimum. Figure 9(a,b) shows that
our algorithm can handle cases where the 2D user sketch
is inconsistent with any 3D shape. We created an example
(Figure 9(c,d)) with over fifty vertices, and the optimization
steps took less than one second.

We performed a user study with four novice users to
demonstrate the capabilities of our system. We gave each
user a 5-10 minute tutorial of how to draw a cube. Each user
first sketches without any photo to create a bookshelf, and
then sketches with the photo to create another bookshelf.
Figure 10(a,b) shows one user’s result. Without the photo,
the user intuitively draws the bookshelf’s shape in 2D and
then “adds a depth” to it. Having the photo provides a rough
guide of the perspective for the user to draw the new ob-
ject in. The average time taken to create a bookshelf with
the photo was 4 minutes 43 seconds. We next gave each user
a 5 minute tutorial of sketching a simple teapot lid. Each
user then created their own lid. The average time taken was
3 minutes 15 seconds. We show an interesting result (Figure
10c,d) of a customized lid created by one user.

We next describe the relative dimensions of the user-
created bookshelves. As a basis for comparison, we mea-
sured the dimensions of the books in the photo, and the
height to length ratio is 1.35 while the height to width ratio

c© The Eurographics Association 2010.

22



M. Lau et al. / Modeling-in-Context

Figure 10: (a) 2D user sketch without photo. (b) 2D user
sketch with photo. (c) 2D user sketch of teapot lid. (d) 3D
result.

is 3.6. Without the photo, the range of the height/length ratio
of the user-created bookshelves is 0.93 to 2.27, and the range
of the height/width ratio is 1.77 to 2.91. With the photo, the
range of the height/length is 1.24 to 1.40, and the range of
the height/width ratio is 2.89 to 3.98. Therefore, having just
one photo allows the user to more accurately draw the ob-
ject’s relative dimensions.

6. Discussion, Limitations, and Future Work

We have presented a system in which a single photo guides
the user in sketching a new object, in contrast to vision-based
methods that use photos to recover the shape of an existing
object. Our algorithm does not explicitly use the informa-
tion in the photo. For future work, it is possible to use com-
puter vision methods to pre-process the information in the
photo. We can then use the information to assist the users or
make suggestions to them while they sketch on the photo, as
in [TBSR04].

We do not compare our system with SketchUp [Ske09] as
it requires manipulations in 3D, while our interface is in 2D.
In addition, our system is designed for the user sketch of a
new object with a photo as a guide, while existing methods
such as SketchUp ask the user to trace over existing objects.

One limitation of our work is that the current system does
not handle some types of objects that users might want to de-
sign. For example, non-rigid objects such as tents and cloth-
ing cannot be built with our system. Handling them may re-
quire a model for non-rigid objects, and different user in-
terfaces and algorithms for manipulating them. Another ex-
ample is objects with moving parts. We currently build only
static objects, but there are objects with dynamic functional
parts such as a closet door or a foldable chair. For future
work, there are many issues that can be explored in terms
of the interfaces and methods needed for handling these ob-
jects.

Another limitation of our method is that we do not con-
sider the structural or aesthetic design of the actual objects.
Even though a 3D model can be physically built, it does not
mean that the object will be structurally stable. Future work
includes building systems for visualizing and evaluating var-
ious designs virtually before production of the actual object.
The asethetic design of products is also important. A future

system that considers the user’s preferences and perceptions
of aesthetics would be useful. There is still much work to
be done towards achieving the goal of enabling the average
person design his or her own products, and we hope that our
system will inspire future work towards this goal.

References

[BBS08] BAE S.-H., BALAKRISHNAN R., SINGH K.: Iloves-
ketch: As-natural-as-possible sketching system for creating 3d
curve models. ACM Symposium on User Interface Software and
Technology (UIST) (2008), 151–160. 2

[DTM96] DEBEVEC P., TAYLOR C., MALIK J.: Modeling and
rendering architecture from photographs: A hybrid geometry and
image-based approach. ACM SIGGRAPH (1996), 11–20. 2

[DXS∗07] DORSEY J., XU S., SMEDRESMAN G., RUSHMEIER
H., MCMILLAN L.: The mental canvas: A tool for conceptual ar-
chitectural design and analysis. In Proceedings of Pacific Graph-
ics (2007), pp. 201–210. 2

[Eos07] EOSSYSTEMS: Photomodeler, 2007. 1, 3

[FP02] FORSYTH D. A., PONCE J.: Computer Vision: A Modern
Approach. Prentice Hall, 2002. 6

[GIZ09] GINGOLD Y., IGARASHI T., ZORIN D.: Structured an-
notations for 2D-to-3D modeling. ACM Transactions on Graph-
ics 28, 5 (2009), 148. 2, 3

[Gro07] GROSS M.: Now more than ever: computational thinking
and a science of design. Japan Society for the Science of Design
16, 2 (2007), 50–54. 1

[HAA97] HORRY Y., ANJYO K.-I., ARAI K.: Tour into the pic-
ture: using a spidery mesh interface to make animation from a
single image. In ACM SIGGRAPH (1997), pp. 225–232. 2

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: a
sketching interface for 3d freeform design. In ACM SIGGRAPH
(1999), pp. 409–416. 2

[JTC09] JIANG N., TAN P., CHEONG L. F.: Symmetric architec-
ture modeling with a single image. ACM Transactions on Graph-
ics 28, 5 (2009), 113. 2

[Lan09] LANDAY J.: Design tools for the rest of us. Communica-
tions of the ACM 52, 12 (2009), 80. 1

[LS96] LIPSON H., SHPITALNI M.: Optimization-based recon-
struction of a 3d object from a single freehand line drawing.
Computer-Aided Design 28, 8 (1996), 651–663. 2, 5

[MZWVG07] MÜLLER P., ZENG G., WONKA P., VAN GOOL
L.: Image-based procedural modeling of facades. ACM Transac-
tions on Graphics 26, 3 (2007), 85. 3

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.:
Fibermesh: designing freeform surfaces with 3d curves. ACM
Transactions on Graphics 26, 3 (2007), 41. 2

[OCDD01] OH B. M., CHEN M., DORSEY J., DURAND F.:
Image-based modeling and photo editing. ACM Transactions on
Graphics (2001), 433–442. 2

[QTZ∗06] QUAN L., TAN P., ZENG G., YUAN L., WANG J.,
KANG S. B.: Image-based plant modeling. ACM Transactions
on Graphics 25, 3 (2006), 599–604. 2

[SC04] SHESH A., CHEN B.: Smartpaper: An interactive and
user friendly sketching system. Computer Graphics Forum (Eu-
rographics) 23, 3 (2004), 301–310. 2

[Ske09] SKETCHUP: Google, 2009. 2, 7

c© The Eurographics Association 2010.

23



M. Lau et al. / Modeling-in-Context

Figure 11: Each row shows the original photo, the photo with 2D sketch, the resulting 3D virtual model (middle two), and the
new real-world object (right two) fitting well or exactly with the existing objects. The objects are (from top to bottom): bookshelf
(wood), desktop organizer (plastic), teapot lid, cup saucer, cover for scissors, and storage box (cardboard) for chair.

[SKSK09] SCHMIDT R., KHAN A., SINGH K., KURTENBACH
G.: Analytic drawing of 3d scaffolds. ACM Transactions on
Graphics 28, 5 (2009), 149. 2

[SSB08] SCHMIDT R., SINGH K., BALAKRISHNAN R.: Sketch-
ing and composing widgets for 3d manipulation. Computer
Graphics Forum 27, 2 (2008), 301–310. 2

[SSS∗08] SINHA S., STEEDLY D., SZELISKI R., AGRAWALA
M., POLLEFEYS M.: Interactive 3d architectural modeling from
unordered photo collections. ACM Transactions on Graphics 27,
5 (2008), 159. 2

[TBSR04] TSANG S., BALAKRISHNAN R., SINGH K., RANJAN
A.: A suggestive interface for image guided 3d sketching. In
Proceedings of ACM SIGCHI (2004), pp. 591–598. 2, 7

[TFX∗08] TAN P., FANG T., XIAO J., ZHAO P., QUAN L.: Sin-
gle image tree modeling. ACM Transactions on Graphics 27, 5
(2008), 108. 2

[TS08] THORMAHLEN T., SEIDEL H.-P.: 3d-modeling by ortho-
image generation from image sequences. ACM Transactions on
Graphics 27, 3 (2008), 86. 2

[TZW∗07] TAN P., ZENG G., WANG J., KANG S. B., QUAN L.:
Image-based tree modeling. ACM Transactions on Graphics 26,
3 (2007), 87. 2

[WTBS07] WU T.-P., TANG C.-K., BROWN M., SHUM H.-Y.:
Shapepalettes: Interactive normal transfer via sketching. ACM
Transactions on Graphics 26, 3 (2007), 44. 3

[XFT∗08] XIAO J., FANG T., TAN P., ZHAO P., OFEK E., QUAN
L.: Image-based façade modeling. ACM Transactions on Graph-
ics 27, 5 (2008), 161. 2

[YSvdP05] YANG C., SHARON D., VAN DE PANNE M.: Sketch-
based modeling of parameterized objects. Eurographics Work-
shop on Sketch-Based Interfaces and Modeling (2005), 1–10. 3

[ZDPSS01] ZHANG L., DUGAS-PHOCION G., SAMSON J.-S.,
SEITZ S.: Single view modeling of free-form scenes. IEEE
CVPR (2001), 990–997. 3

[ZHH96] ZELEZNIK R., HERNDON K., HUGHES J.: Sketch: An
interface for sketching 3d scenes. ACM SIGGRAPH (1996), 163–
170. 2

c© The Eurographics Association 2010.

24


