Joint Virtual Reality Conference of EGVE - EuroVR (2013)
B. Mohler, B. Raffin, H. Saito, and O. Staadt (Editors)

Ray-Traced Collision Detection : Interpenetration Control

and Multi-GPU Performance

Francois LehericeyT Valérie Gouranton® Bruno Arnaldi®
INSA de Rennes, IRISA, Inria

Campus de Beaulieu, 35042 Rennes cedex, France

Figure 1: 512 concave mesh objects fall on a planar ground, up to 7300 pairs of objects are tested in the narrow phase.

Abstract

We proposed in [LGA13] an iterative ray-traced collision detection algorithm (IRTCD) that exploits spatial and
temporal coherency and proved to be computationally efficient but at the price of some geometrical approximations
that allow more interpenetration than needed. In this paper, we present two methods to efficiently control and
reduce the interpenetration without noticeable computation overhead. The first method predicts the next potentially
colliding vertices. These predictions are used to make our IRTCD algorithm more robust to the above-mentioned
approximations, therefore reducing the errors up to 91%. We also present a ray re-projection algorithm that
improves the physical response of ray-traced collision detection algorithm. This algorithm also reduces, up to 52%,
the interpenetration between objects in a virtual environment. Our last contribution shows that our algorithm,
when implemented on multi-GPUs architectures, is far faster.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based

modeling

1. Introduction

In virtual reality (VR) and others applications of 3D environ-
ments, collision detection (CD) is an essential task. Given a
set of objects, those which might collide have to be known.
Although this formulation is simple, collision detection is
currently one of the main bottlenecks of VR application be-

1 francois.lehericey @irisa.fr
¥ valerie.gouranton @irisa.fr

§ bruno.arnaldi @irisa.fr

(© The Eurographics Association 2013.

DOI: 10.2312/EGVE.JVRC13.033-040

cause of the real-time constraint imposed by the direct inter-
action of the user and the natural complexity (O(nz)) of the
naive algorithms. Recently, new approaches using GPGPU
(General-Purpose computing on Graphic Processing Unit)
have emerged while taking advantage of the GPU compu-
tational performances [AGA11].

In [LGA13] we presented an iterative ray-tracing algo-
rithm for collision detection that uses spatial and tempo-
ral coherency to improve performance. The main idea is to
update when possible the result of the previous time step
rather than computing new collisions from scratch. When

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGVE.JVRC13.033-040

34 Frangois Lehericey & Valérie Gouranton & Bruno Arnaldi / Interpenetration Control in Ray-Traced Collision Detection

compared to non-iterative algorithms, the speedup obtained
with this algorithm is up to 33 times. Nevertheless, the main
drawbacks of this method are: (1) it makes approximations
when updating the collision and (2) the overall technique
makes approximations on the direction of the physical re-
action. These approximations may let the objects enter in
further collision, increasing the total amount of interpene-
tration in the virtual scenes.

In order to make this algorithm usable and efficient, we
propose to control the interpenetration without loss of per-
formances. This is performed using two methods that correct
the approximations. The first one is a novel collision predic-
tion method that predicts future collisions to reduce the er-
rors when updating the previous result. The second one is
a ray re-projection algorithm aiming at correcting the direc-
tion of the physical reaction.

We also propose to use multi-GPU architectures to exploit
further the parallelization potential of the iterative and the
predictive algorithm.

The paper is organized as follows: Section 2 presents the
related work. After a brief introduction of our previous al-
gorithm [LGA13], Section 3 explains how we can reduce
the amount of interpenetration in the physics simulation
with our predictive collision detection and re-projection al-
gorithms. Section 4 shows how we can use several GPUs to
improve the performances. Section 5 describes performance
improvements in our test scenes. Section 6 concludes this
paper and gives future work.

2. Related Work

In this section we focus on the literature of collision detec-
tion that is the most relevant to our work. For a deeper in-
troduction we suggest the reader to refer to surveys on the
topic [TKH*05, KHI*07]. Collision detection has to deal
with a large variety of objects and properties of these ob-
jects. All these parameters can change the method used, and
thus have created a lot of different solutions. Objects can
be concave or convex, with or without holes. Objects can
be solid, deformable, liquid and topology may change (they
can split or merge). Objects can be represented with polyhe-
drons (generally with triangular faces), CSG (Constructive
Solid Geometry) or parametric functions.

Hubbard [Hub93] proposed to decompose collision detec-
tion in two phases, the broad-phase and the narrow-phase.
The broad-phase plays the role of a filter by performing a
cheap non-collision test to quickly remove non-colliding ob-
jects. The narrow-phase works with the pairs of objects ob-
tained from the broad-phase. These pairs are in potential col-
lision and the goal of the narrow-phase is to perform an exact
collision test to give contact or interpenetration information
so the physical response can be computed.

The broad-phase takes a set of objects as inputs and out-
puts a set of potentially colliding pairs. Nowadays this phase

is less critical than the narrow-phase for performance. Aside
brute force, broad-phase algorithms can be classified in three
categories: spatial partitioning, kinematic and topology.

The narrow-phase takes the pairs produced by the broad-
phase and performs an accurate collision test. It outputs a
set of colliding objects and information about the contacts
between objects for the physical response. Narrow-phase al-
gorithms can be classified in four categories: feature-based,
simplex-based, bounding volume hierarchy and image-
based.

Nowadays GPUs (Graphics Processing Units) are broadly
used to improve the performance of collision detection.
[LHLK10] perform a massively parallel version of sweep-
and-prune algorithm on GPU for the broad-phase. [PKS10]
execute both broad and narrow phases on GPU and multi-
GPU architectures with spacial subdivision.

2.1. Ray-Traced Collision Detection

Ray-Tracing Collision Detection Algorithms belong to the
image-based category of narrow-phase algorithms. Several
algorithms have been proposed in the literature. Wang and
al. [WFP12] launch rays from an irregular grid to com-
pute a layered depth image, the density of rays is higher
around small objects to avoid missing them. Cinder algo-
rithm [KnoO3] casts rays from the edges of an object and
counts how many object faces the ray passes through. If the
result is odd then there is collision otherwise not. These rays
are cast toward a regular grid.

Hermann and al. [HFR*08] proposed to detect collision
by casting rays from the vertices of the objects. The algo-
rithm is placed on the narrow-phase of the collision detec-
tion pipeline and thus works on pair of potentially colliding
objects. Rays are cast from each vertex of each object in the
opposite direction of their normal. If a ray hits inside the
other object before leaving the source object then a collision
is detected. Figure 2 shows an example. The plain arrows are
three rays that spot collision, the dotted arrow is a rejected
ray because it hits the other object from outside.

=

%

Figure 2: Hermann and al. algorithm in 2D.

The main advantage of this algorithm is the information
given for physical response. For other narrow-phase algo-
rithms, when a collision is spotted additional computation is
needed to compute the physical response. Hermann and al.
algorithm gives for each penetrating vertex a direction and a

(© The Eurographics Association 2013.

Frangois Lehericey & Valérie Gouranton & Bruno Arnaldi / Interpenetration Control in Ray-Traced Collision Detection 35

distance to separate the two objects (as can be seen in Fig-
ure 2). The problem is, using the rays as is for the collision
response in the physical simulation gives incorrect behavior
because the rays are not always correctly oriented to give a
realistic physical response.

When using repulsion forces, Hermann and al. proposed
an algorithm to weight the forces in order to reduce the
tangential forces, but they are not suppressed. When using
constraint-based response, weighting cannot be used as con-
straint cannot be weighted. Furthermore to reduce the cost of
constraint solver, contact-points reduction is applied on each
colliding pair. After the reduction, the selected subset may
contain only incorrectly oriented constraint. This will cause
an incorrect physical response that can lead to accept further
interpenetration by letting the objects sliding into each other.

3. Minimum Penetration Control

Based on Hermann et al. algorithm, we introduced in
[LGA13] IRTCD: a new Iterative Ray-Traced Collision De-
tection algorithm that is used to update the collision in a
pair of objects when their relative displacement is inferior
to a threshold displacementT hreshold. At each time step if
the displacement exceeds the threshold we compute the rays
with a standard algorithm (and reset the displacement to 0)
otherwise we update the ray of the previous step with the
iterative algorithm. The iterative algorithm relaunches the
ray on the previously colliding triangles and iterates over the
neighboring triangles until the new colliding ones are found.

In this section we present how we reduce the total amount
of interpenetration by making the detection and the physical
response better. Section 3.1 explains how we strengthen the
iterative algorithm with predictions. Section 3.2 shows how
we improve the physical response.

3.1. Predictive Collision Detection

The main drawback of the iterative algorithm is it only works
with previously detected rays. When new vertices enter in
collision they will be taken into account only in the next
standard step. This may postpone the collision detection of
a pair of objects for several time steps, this will lead to ac-
cept further interpenetration. The first row of Figure 3 shows
an example of this situation. At t = 0 a standard algorithm
is executed and no collision is detected. At r = 1 the previ-
ous rays are updated, as the two objects were not colliding
at t = 0 there are no rays to update. In this case the iterative
algorithm fails to detect the collision. At ¢ = 2 a standard
algorithm is executed and the collision is detected. In this
example the detection is postponed for only one step, but in
practical cases it can be more.

We propose to solve this problem by performing a predic-
tive ray/triangle intersection. When a ray does not detect any
collision (and thus the corresponding vertex is not in colli-
sion), we cast a predictive ray from the same vertex but in the

(© The Eurographics Association 2013.

standard Iterative standard

Non-predictive

Predictive

Figure 3: Comparison of predictive and non-predictive col-
lision detection, with predictive rays the collision is detected
earlier resulting in less interpenetration.

opposite direction. If this predictive ray hits a triangle and if
the distance is short, the corresponding vertex may hit that
triangle (or the neighboring ones) in a near future. Equation
1 gives the distance from which we can cull the predictive
rays because the distance is too big. cullingDist depends on
displacementT hreshold and a confidence level of at least 1.

cullingDist = confidence x displacementT hreshold (1)

The predictive rays are injected in the iterative algo-
rithm as candidates for the next steps. Algorithm 1 gives
the ray/triangle-mesh intersection algorithm that can han-
dle prediction. The modification from the original algorithm
[LGA13] is the addition of line 6 and 7. If the ray does not
hit the current triangle, before looking at the neighboring tri-
angle, we check if the current triangle is behind the ray. In
such case the corresponding vertex is not in collision and the
current triangle is kept as a candidate for the next step.

The second row of Figure 3 shows how these predictive
rays prevent delayed collision detection. At = 0 a standard
algorithm is executed and no collision is detected, predictive
rays are cast outside the objects and three predictive rays
kept. At t = 1 the predictive rays are updated and collision
is successfully detected, at r = 2 a physical response can be
applied to prevent further interpenetration.

We cast rays from the vertices that are inside the intersec-
tion of the bounding volumes, this is an optimization pro-
posed by [HFR*08] to reduce the number of rays. In the
context of predictive rays this optimization may discard pre-
dictive rays and delay the collision detection. To avoid this
problem we extend the intersection of the bounding vol-
umes by a distance of distanceExtension in all the directions

36 Frangois Lehericey & Valérie Gouranton & Bruno Arnaldi / Interpenetration Control in Ray-Traced Collision Detection

Algorithm 1 Iterative ray/triangle-mesh intersection with
prediction handling

1: function ITRAYTRIINTERSEC(Ray ray, Triangle tri)

2: for i = 1 — maxIt do

3 intersection <— cast ray on tri

4 if ray hits tri then

5: return intersection

6: else if opposite(ray) hits rri then
7 return keepAsPrediction(tri)
8 else

9 edge + closestEdge(tri,ray)
10: tri < ad jacentTriangle(tri,edge)
11: end if
12: end for
13: return intertsectionN ot Found

14: end function

which corresponds to a confidence zone. distanceExtension
must be greater that displacementT hreshold, this ensures
that we do not discard predictions that are essential for the
iterative algorithm. The value of distanceExtension must be
minimized for better performances because higher values in-
crease the number of ray cast thus increasing computation.

In term of performance, casting a second ray in the oppo-
site direction theoretically doubles the cost of the standard
ray-tracing algorithm. In practical case we use two proper-
ties to reduce the cost of the predictive rays. First the rays
share several parameters in common, they have the same
starting point and follow the same line (in the opposing di-
rection). These shared parameters allow to factorize a por-
tion of the two rays depending on the ray-tracing algorithm
used. The second property is that we do not need to follow
the predictive ray beyond the distance distanceExtension as
it is exiting the confidence zone. This allows to shorten the
ray traversal thus making it less expensive.

The evaluation of this predictive algorithm is given in Sec-
tions 5.2 and 5.3.

3.2. Ray Re-projection

With Hermann et al. algorithm, the orientation of the rays
does not give the optimal direction for the physical response.
Figure 4.a shows an example, the rays correctly detect the
collision but their directions do not correspond to the needs
of the physical response (normal and tangential information)
shown in Figure 4.b.

When executing the ray-tracing from the vertices, we
record for each ray the normal of the impacted surface. Then
we propose to post-process the rays by re-projecting them
on the normal of the surface they collide. This re-projection
minimizes the length of the rays. In physical simulation it
corresponds to the Minimum Translational Distance (MTD)
[CC86], which is considered as a good heuristic for a phys-

ical collision response. An example of a ray re-projection is
shown in Figure 4.b .

(b)

7 proj(r,m

(a)

Figure 4: Collision between the box and the ground. In (a)
the rays do not give the optimal separating direction. In (b)
the rays have been re-projected on the normal of the surface
they hit, these rays give the optimal collision response.

Projecting a ray on a vector can be done quickly with
Equation 2, where 7 is the ray (the vector from the ray ori-
gin to the impacted point) and 7 is the unitary normal of the
impacted surface.

proj(F,ii) =7 x (F-ii) 2

Collision response uses contact points to represent colli-
sion. A contact point is generally represented by one colli-
sion point P with its penetration depth pd and its separat-
ing direction d (an example can be found in Figure 5). With
this representation we can avoid to compute explicitly the
re-projection of the ray with P = colliding vertex, pd =7 -7
andd =17i.

This method makes no assumption on the physical re-
sponse used and thus can be used with any physical response
algorithms.

P

Figure 5: A contact point is composed of a point P, a sepa-
rating direction d and a penetration distance pd.

4. Adaptation for Multi-GPU Architectures

In [LGA13] we proposed to execute the iterative and stan-
dard ray tracing algorithms on GPU to improve perfor-
mance. GPU works with highly parallelized execution, we
have to send to the GPU the work as an array of threads
of several indices. We proposed to work with two indices.

(© The Eurographics Association 2013.

Frangois Lehericey & Valérie Gouranton & Bruno Arnaldi / Interpenetration Control in Ray-Traced Collision Detection 37

The first index iterates through the pairs of objects from the
broad-phase and each pair appears two times in opposite or-
der. The second index iterates through the vertices of the first
object of the pair, in each thread we cast the ray from the
current vertex of the first object of the pair on the second
object. This division on the work allows to parallelize the
ray-tracing by executing one ray cast per thread. Figure 6
shows an example of such distribution.

pairs x,y

i"hvertex of x

Figure 6: Work distribution on one GPU. Each column cor-
responds to a pair of objects, each row corresponds to a ver-
tex of the first object of the pair. Filled squares are ray cast
from the i™ vertex of x, white square are padding as each
object may have a different number of vertices.

We propose to exploit several GPUs to increase perfor-
mance. To divide the work between the GPUs we break the
first iteration into several blocks and execute these blocks on
different GPUs. Figure 7 gives an example with three GPUs.
The iterative algorithm uses at each step the result of the pre-
vious step, this previous result is held in the memory of the
GPU that proceed it. Memory transfers between two GPUs
are expensive. To avoid transferring the previous result to
another GPU we add a constraint: when a pair of objects is
proceeded on one GPU, it must be processed on the same
GPU until the pair is removed from de broad-phase.

o|u|s|wn]|-

Figure 7: Work distribution on several GPUs (three in this
case). The iteration over the pairs is divided into several
blocks that are assigned on different GPUs.

5. Performance Comparison

This section presents our experimental scenes and the result
of our tests.

Section 5.1 presents our experimental scenes. Sections 5.2

(© The Eurographics Association 2013.

and 5.3 give the performances in term of detection and com-
putation time when our predictive algorithm is used. Sec-
tion 5.4 compares the physical response when our ray re-
projection algorithm is used. Section 5.5 gives the perfor-
mance improvements when using several GPUs.

5.1. Experimental Setup

We have tested our iterative ray-tracing collision detection
algorithm with two different scenes. The first experimental
scene is an avalanche of 512 concave meshes on a planar
ground (see Figure 1), each mesh is composed of 453 ver-
tices and 902 triangles. When the objects hit the ground,
approximately 7300 pairs of objects are sent to the narrow-
phase. The simulation is set to work at 60 Hz for 10 sec-
onds. In the second experimental scene (see Figure 8), ob-
jects are continually added in the scene at 10 Hz from a
moving source that follows a circle. Four different concave
meshes are used in equal quantity composed respectively of
902, 2130, 3456 and 3458 triangles. The simulation works at
60 Hz for 50 seconds. At the end 500 objects are present in
the scene making a total count of approximately 1.2 million
triangles in the scene and around 10,000 pairs of objects are
sent to the narrow-phase in the last steps.

Figure 8: Second experimental scene, up to 10,000 pairs of
objects are tested in the narrow-phase.

The experimental scenes were developed using Bullet
Physics (http://bulletphysics.org/). The broad-
phase and the physical response are executed on the CPU.
Our narrow-phase algorithm was developed with OpenCL
(http://www.khronos.org/opencl/) and can be
executed on one or several GPUs. This setup generates mem-
ory transfers between the CPU and the GPU as our algorithm
is located in the middle of the physical simulation pipeline.
In a real situation, the whole physical simulation pipeline
would be implemented on GPU thus removing the memory
transfers.

http://bulletphysics.org/
http://www.khronos.org/opencl/

38 Frangois Lehericey & Valérie Gouranton & Bruno Arnaldi / Interpenetration Control in Ray-Traced Collision Detection

The iterative ray-tracing algorithm needs a standard ray-
tracing algorithm as a starting point, we have implemented
two algorithms:

Basic traversal: This algorithm does not use any acceler-
ation structure, for each ray we iterate through each triangle.
This method has a high complexity but is simple.

Stackless BVH traversal: This algorithm uses a bound-
ing volume hierarchy (BVH) as an accelerative structure
[WBSO07] with a stackless traversal for GPUs [PGSS07].
This algorithm is more computationally efficient but has in-
creased memory usage due to auxiliary data structures.

5.2. Predictive Detection Performances

To evaluate the importance of predictive rays, we run our
two sample scenes with and without the predictive rays.
Throughout the simulation we compare the results of the it-
erative and iterative + predictive algorithms with a standard
ray-tracing algorithm used as a reference. Figures 9 and 10
give the percentage of incorrect rays (i.e. when the result be-
tween the standard and our algorithm is different). Results
show a reduction up to 91% of the percentage of incorrect
ray with the collision prediction algorithm.

0.12 T T

T T
Iterative = = = --

Iterative + Predictive =" =7
. o1rf =7 B
o) ”
)

g et
£ -
€ 008 , i
L ’
g X
g 0.06 , g
£ .
=
o 004 e’ J
c
<] 1
o
£ 1

0.02 1 -

1
0 Il Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8 9 10

Time in simulation (s)

Figure 9: Percentage of erroneous ray in the first scene.

To evaluate the impact of the predictive rays on the
physics simulation we measure the cumulative length of all
rays with a standard algorithm along the simulation, this
value measures the amount of interpenetration in the whole
scene. In the first scene the cumulative length of rays de-
creases by 45% when using predictive rays. In the second
scene we get a 56% decrease. This mean that the predictive
rays effectively reduce the total amount of interpenetration.

5.3. Predictive Time Performances

To measure the impact on the computation time of predictive
rays, we measure the time taken by the ray-tracing with and
without the predictive ray with both ray-tracing algorithms.

0.12 . . —
Iterative = = =
Ite‘l;ative + Predictive

0.1 ! AN PN
— 1, Ny A\ X
) \ AN ’ap s s ’
] .

[Y Y N

£ oo08f n Ny Y . 4
o o1’
= '~
o oy
< 1
o 0.06 » B
> 1
=) u
g o0o0ar g "7 -
£
i
£ \

0.02 i

0 L L L L L L L L L

0 5 10 15 20 25 30 35 40 45 50
Time in simulation (s)

Figure 10: Percentage of erroneous ray in the second scene.

Figures 11 and 12 show the time spent on ray-tracing along
the simulation for each scene on a Nvidia GTX 660.

When the iterative algorithm is used (e.g., part C of Fig-
ure 11), the usage of predictive rays has a small impact on
the computation time. This is because the casting of the pre-
dictive ray in the iterative algorithm can be factorized with
the casting of the standard ray, resulting in a low overhead.

When there is less spatial and temporal coherency and the
standard ray-tracing algorithm is intensely used (e.g., B of
Figure 11), the impact on the computation time of the pre-
dictive rays depends on the ray-tracing algorithm used.

With the basic traversal we can completely factorize the
casting of the predictive with the standard ray to avoid
traversing the object twice. This makes the cost of the pre-
dictive ray negligible. In parallel the usage of predictive rays
reduces the amount of interpenetration in the scene which re-
duces the number of collision and consequently reduces the
number of rays to compute. Finally the cost of casting the
predictive rays is lower the gain we have by decreasing the
number of rays to compute. This result can be seen in part B
of Figure 11 where we have an average 1.27 speedup.

With the stackless BVH traversal we cannot factorize the
traversing of the predictive ray with the standard ray. But we
can limit the traversal of the BVH by limiting the ray length
to a maximum of cullingDist as explained in Section 3.1
to avoid doubling the cost of the standard algorithm. In our
experimental scenes, the worst speedup we have by adding
predictive ray to the stackless is an average of 0.78 in part B
of Figure 11.

These results show that the computational cost of using
the re-projection algorithm is low, in the worst case we have
a 0.78 speedup and in the best case we have a 1.27 speedup.

5.4. Ray Re-projection Performances

As a test we can consider the case of an object in collision
with the ground, in such case the reaction should be orthog-

(© The Eurographics Association 2013.

Frangois Lehericey & Valérie Gouranton & Bruno Arnaldi / Interpenetration Control in Ray-Traced Collision Detection 39

70 T T T T T T
‘ iterative basic traversal = = =
iterative basic traversal + predictive
iterative stackless BVH traversal 7
iterative stackless BVH traversal + predictive —=--—-

I
1
1
1
1
50 - 1
I
I

1
1
1
1
1
\
1
40 \

30 - B

Computation time (ms)

10 -

0 1 2 3 4 5 6 7 8 9 10
Time in simulation (s)

Figure 11: Time spent executing ray-tracing with and with-
out predictive rays in the first scene.

140 T T T T

— — = iterative basic traversal

iterative basic traversal + predictive

120 - iterative stackless BVH traversal

=== iterative stackless BVH traversal.lif- predictive
0

100 |- 1 non *

80 -

60

Computation time (ms)

20 -

AT L S T
0 oo I I I I I I

50 100 150 200 250 300 350 400 450 500
Number of objects in the scene

P D te

Figure 12: Time spent executing ray-tracing with and with-
out predictive rays in the second scene.

onal to the ground. This test has been proposed by Hermann
etal. [HFR*08] for evaluating their weighting algorithm. We
have tested three objects: a discretized sphere and two irreg-
ular shapes. Each object has been tested with 400 different
orientations and 20 different interpenetration depths (as il-
lustrated in Figure 13). Table 1 gives the average deviation
defined as the ratio of the tangential and normal forces, in
theory this deviation should be zero.

Figure 13: To test the average deviation of the reaction of

an object and the ground, we perform the collision detection
with several interpenetration distance and orientations.

(© The Eurographics Association 2013.

Technique sphere | bunny | pig

Number of vertices 70 453 1085
Standard 3.97 22.0 27.0
Weighting [HFR*08] | 2.66 16.5 | 20.6
Re-projection 0.00 0.00 0.00

Table 1: Average deviation of penalty forces in percent for
three meshes against the ground.

The deviation of the forces with the sphere is low. This
can be explained by the regularity of the shape. Due to the
symmetry, the forces balance with each other. With irregu-
lar objects forces do not balance as well and deviation is not
negligible. The weighting technique proposed by Hermann
et al. reduces the tangential forces, but it only reduces the de-
viation by about 25% for irregular shapes. Our re-projection
technique guarantees a 0% deviation as the forces are reori-
ented toward the optimal direction.

We have tested our re-projection algorithm with our
two experimental scenes, the collision response is managed
with a sequential impulse solvers with contact-points reduc-
tion. We perform the simulation with and without ray re-
projection and measure the total length of the rays along the
simulation as a global interpenetration measurement. Table
2 gives the cumulative length of all rays for both scenes with
and without ray re-projection and the decrease percentage.
Results shows that our solution effectively reduces the total
interpenetration, up to 59%.

Standard | Re-projection | Decrease
Scene 1 16 115 10 793 59%
Scene2 | 66094 38398 42%

Table 2: Comparison of the cumulative length of all rays
along the simulation with and without ray re-projection.

5.5. Multi-GPU Performances

‘We run our experimental scene with the iterative ray-tracing
algorithms on one Nvidia GTX 580 and on multi-GPU setup
of two Nvidia GTX 580. Figures 14 and 15 show the time
spent on ray-tracing on the GPU at each simulation step for
each scene. With two GPUs, we get an average speedup of
1.77 and 1.66 for respectively the first and second scene.

6. Conclusion and Future Work

In the context of iterative ray-tracing for collision detection,
our collision prediction algorithm avoids to miss new col-
lision when the iterative ray-tracing algorithm is used. Re-
sults show a reduction of the total interpenetration in our test
scenes up to 56% with our collision prediction algorithm. We
also presented a ray-reprojection algorithm to improve the

40 Frangois Lehericey & Valérie Gouranton & Bruno Arnaldi / Interpenetration Control in Ray-Traced Collision Detection

One GPU ——
8+ Two GPU = = = |
~ 7r
£
E 6l
[
£
S st
c
2
B AT
3
£ 3
S
2 b
Sl A
1r '"““"Mﬂ#ﬂﬂ‘m'n’lﬁ',".“"r"l“"ﬂﬂu.;
ol ==m =7 | | | | | | |

0 1 2 3 4 5 6 7 8 9 10
Time in simulation (s)

Figure 14: Time spent executing ray-tracing on one and two
Nvidia GTX 580 in the first scene.

T T
One GPU ——

Two GPU = = =

Computation time (ms)

50 100 150 200 250 300 350 400 450 500
Number of objects in the scene

Figure 15: Time spent executing ray-tracing on one and two
Nvidia GTX 580 in the second scene.

collision response. Total interpenetration in our test scenes
has been reduced up to 52%. We have presented an adapta-
tion for multi-GPU architectures that gives a speedup up to
1.77 with two GPUs.

In our methods we have three constants along the simula-
tion: maxlt and displacementT hreshold that comes from the
iterative ray-tracing algorithm, and distanceExtension that
come from the collision prediction algorithm. Their values
depend on the object sizes and velocities in the scene. In fu-
ture work it would be interesting to study more deeply the
impact of the choice of these values on the simulation and
to try to use dynamics values instead of constants in order to
optimize these values along the simulation.

We also want to study the multi-GPU scalability of our al-
gorithm when using many GPUs to be able to simulate more
complex scenes.

It also would be interesting to extend our algorithm to de-
formable bodies. With rigid bodies we can use accelerative
ray-tracing structure with a high construction cost. In the

case of deformable bodies the ray-tracing accelerative struc-
ture needs to be updated at each time step making complex
ray-tracing techniques more expensive. In addition self colli-
sion has to be detected. We believe that our iterative, predic-
tive and re-projection algorithms are suitable for deformable
bodies and should improve the performance of ray-tracing
collision detection algorithms for deformable bodies.

References

[AGA11] AVRIL Q., GOURANTON V., ARNALDI B.: Dynamic
adaptation of broad phase collision detection algorithms. In
VR Innovation (ISVRI), 2011 IEEE International Symposium on
(2011), IEEE, pp. 41-47. 1

[CC86] CAMERON S., CULLEY R.: Determining the minimum
translational distance between two convex polyhedra. In Robotics
and Automation. Proceedings. 1986 IEEE International Confer-
ence on (1986), vol. 3, IEEE, pp. 591-596. 4

[HFR*08] HERMANN E., FAURE F., RAFFIN B., ET AL.: Ray-
traced collision detection for deformable bodies. In 3rd Interna-
tional Conference on Computer Graphics Theory and Applica-
tions, GRAPP 2008 (2008). 2, 3,7

[Hub93] HUBBARD P.: Interactive collision detection. In Virtual
Reality, 1993. Proceedings., IEEE 1993 Symposium on Research
Frontiers in (1993), IEEE, pp. 24-31. 2

[KHI*07] KOCKARA S., HALIC T., IQBAL K., BAYRAK C.,
ROWE R.: Collision detection: A survey. In Systems, Man
and Cybernetics, 2007. ISIC. IEEE International Conference on
(2007), IEEE, pp. 4046-4051. 2

[Kno03] KNOTT D.: Cinder: Collision and interference detection
in real-time using graphics hardware. 2

[LGA13] LEHERICEY F., GOURANTON V., ARNALDI B.: New
iterative ray-traced collision detection algorithm for gpu archi-
tectures. In Proceedings of the 19th ACM Symposium on Virtual
Reality Software and Technology (2013), ACM, pp. 215-218. 1,
2,3,4

[LHLK10] Li1Uu F., HARADA T., LEE Y., KIM Y. J.: Real-time
collision culling of a million bodies on graphics processing units.
In ACM Transactions on Graphics (TOG) (2010), vol. 29, ACM,
p. 154. 2

[PGSS07] Poprov S., GUNTHER J., SEIDEL H.-P., SLUSALLEK
P.: Stackless kd-tree traversal for high performance gpu ray trac-
ing. In Computer Graphics Forum (2007), vol. 26, Wiley Online
Library, pp. 415-424. 6

[PKS10] PABST S., KOCH A., STRASSER W.: Fast and scalable
cpu/gpu collision detection for rigid and deformable surfaces. In
Computer Graphics Forum (2010), vol. 29, Wiley Online Library,
pp- 1605-1612. 2

[TKH*05] TESCHNER M., KIMMERLE S., HEIDELBERGER B.,
ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI
M., FAURE F., MAGNENAT-THALMANN N., STRASSER W.,
ET AL.: Collision detection for deformable objects. In Computer
Graphics Forum (2005), vol. 24, Wiley Online Library, pp. 61—
81.2

[WBS07] WALD I., BouLOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics (TOG) 26, 1 (2007), 6. 6

[WFP12] WANG B., FAURE F., PAI D.: Adaptive image-based
intersection volume. ACM Transactions on Graphics (TOG) 31,
4(2012),97. 2

(© The Eurographics Association 2013.

