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A Massively Parallel Approach 
for the Design of a 
Raytracing Oriented Architecture * 

1. Muntean, and Ph. Waille 

Introduction 
Solving time critical problems requires a computing power of an order of magnitude 
greater than todays available conventional computers. The use of massively parallel 
architectures appears to be an attractive and effective way towards the required 
performances. The ray tracing technique is known as the best synthesis method for the 
construction of realistic images but also as the most time consuming. Computation time of 
several hours per image on a conventional mainframe is usual. Fortunately, this technique 
exhibits a huge amount of potential parallelism and therefore massively parallel 
architectures fit well and straightforwardly. This paper presents an efficient 
implementation of the ray tracing algorithm on a dedicated network of transputers. The 
INMOS's transputers are a family of monochip processors specially designed for parallel, 
asynchronous architectures without shared memory. The main features of the floating 
point transputer T800 are: 
• a scalar processor providing IOMips and a floating point unit at 1.5 Mflops 
• 4 Kbytes of fast static memory 
• 4 bidirectional serial links communicating in parallel at 1.7 Mbyte/s each 
• up to 4 Gbytes of external memory 
• a hardwired process scheduler and communication controller 
• a RISe style instruction set with support of the OecAMt programming model. 

* This work has been partially funded under a CCETT (a division of the french telecoms) contract. 

t OCCAM is a trade mark of lNMOS Group of Compagnies. 

http://www.eg.org
http://diglib.eg.org
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The first part of the paper presents an overview of the ray-tracing technique, the second 
part deals with the implementation of some of our novel solutions. They are actually 
related to data base distribution and load balancing. 

Principle of Ray Tracing 

The ray casting based rendering algorithm consists in a (reverse) reconstruction of the 
path traversed by the light from its sources to the observer. Through each pixel a so called 
primary ray starting from the observer is cast. 

Each time an object is intersected by a ray, the direct illumination of the object at the 
intersection point is computed and a new ray is sent back in the direction of each light 
source. The colour found for the intersection point is the colour that will be attached to 
the pixel. When the object intersected by a ray is reflexive or transparent, a new ray is 
recursively sent in the appropriate direction and the corresponding contribution is added 
to the illumination of the object. This technique is usually referred to as ray tracing. For 
an introduction to ray-tracing see [1-5]. 

Observer 

Figure 1; Ray tracing technique reconstructs the light path from the sources to the observer. 

Working in a non-projective manner, the ray-tracing method exhibits three important 
characteristics: 
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• 	 the method deals with any object specification for which an intersection algorithm is 
known, allowing an exact (mathematical, procedural) modelling, not restricted to 
polygons 

• 	 it is an elegant and natural method which can take into account complex light effects 
such as reflection and refraction 

• 	 the computational complexity is high: a simple scene described by constructive solid 
gcometry may contain an order of 102 primitives and a common resolution will be 
103 X 103 pixels (i.e. at least 106 rays when just the minimum one ray per pixel is 
considered). 

Ray tracing requires a test of intersection between each ray and each primitive (object). It 
results an order of 108 intersection tests, and therefore a great amount of computation. 

Computer-synthesized images often exhibit annoying defects such as jagged edges and 
distortions of very small objects due to the discrete pixel sampling. Removing these 
defects is known as antialiasing. Antialiasing usually involves oversampling (computing 
"sub-pixels" at a higher resolution level), each pixel being a composite value of the sub­
pixel samples. Stochastic sampling has been investigated in order to reduce the number of 
samples to compute. 

Sequential Optimizations 

For the ray-trace algorithm. most of the computing power is needed for intersection tests. 
Several optimizations have been proposed in order to reduce their number or their 
complexity, among which the following: 

Bounding volumes 

Each (complex) object is surrounded by a simple bounding volume. No intersection test is 
performed for the rays which do not intersect the bounding volume. Bounding volumes 
are particularly efficient when dealing with complex objects (e.g. bicubic patches), or 
scenes combining a lot of primitives ([ 10-12]). 

Spatial coherency and subdivision 

Obviously some rays cannot possibly intersect some objects due to their relative spatial 
positions: in other words, some spatial coherency may be exploited in order to reduce the 
number of useless tests. For example, Figure 2 shows that the ray can only intersect the 
objects a, b, c and d. The test with the other objects is a waste of time. 

By dividing the scene into three-dimensional regions, and restricting traversal of the tree 
describing the scene only to the objects situated inside regions visited by the ray, a great 
amount of intersection computation will be avoided. As the intersection tests are 
performed in order of increasing distance from the starting point of a ray, their number 
tends to relate only to visible objects instead of all the objects of a scene. 
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Figure 2: Adaptive and total subdivision. 

The time needed to preprocess the scene must be only a small percentage of the total ray­
tracing time. Two alternatives are possible: 

• perform a regular division, which is not time consuming 

• parallelize the division itself. 

The best ray-tracing algorithms known today exploit some kind of multidimensional 
subdivision ([14-22]). 

Cachcing intermediate results for complex objects 

Intersection tests with some kinds of objects may involve some sophisticated, time 
consuming algorithms. As an example, bicubic patches and revolution surfaces generally 
involve a polynomial iterative root finder. In order to avoid convergency problems, a first 
surface subdivision is performed before the iterative root finder is started. Intersecting 
fractals involve recursive generation of polygons. Each step also involves (expensive) 
computation of a bounding volume. 

As the same preprocessing is performed for two neighbouring rays, a cache memory may 
be used to save partial results between rays. Sometimes, this kind of cache technique may 
drastically decrease the amount computing time ([I3] gives an example on fractals with 
98% of saving). 
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Different Levels of Parallelism 

The ray tracing algorithm exhibits different kinds of parallelism: 

Pixel level 

As the values of pixels are mathematically independent, the obvious level of parallelism is 
at pixel leveL When dealing with anti aliasing, the same applies to the samples which are 
composited to produce the pixels values. The pixels may be computed in parallel, but 
they share the difrerent values of the samples. The amount of parallelism involved is in the 
order of 106 • 

Rays 

As several rays (for reflection, refraction, and light sources) are sent from the intersection 
point where a ray hits an object, there is a second level of parallelism at ray level. The 
degree of parallelism is two, three or possibly more in case of multiple light sources. 

Geometric transformation 

Before the intersection test itself, a reference transformation is applied to the ray 
coordinates. This linear transformation involves a matrix by vector multiply which uses 
classical parallel algorithms. The degree of parallelism at this low-level is limited to the 
size of the matrix, i.e. the space dimension. 

Objects and primitives 

Let us now consider the scene instead of the rays. As the objects (or the primitives they 
contain) are independent, the intersection test between a given ray and all objects may be 
done in parallel. We expect a typical number of primitives per image of an order of 
magnitude of 103 to 105 when powerful dedicated machines will be available. Such a 
number of primitives allow more realistic images, but implies an unacceptable rendition 
time on today computers. 

Spatial region 

The same principal of independence may be applied in case of subdivision into spatial 
regions. The parallelism is then in the order of 102 to 104 , depending on the scene 
complexity. 

Duplicating or Distributing the Data Base 

As there is no shared memory in the target architecture (i.e. a transputer network), the 
designer is faced with an important decision: install a copy of the data base on each 
processor or split it up and distribute the parts among all the processors. 
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Duplication and processors farm 


In case of data base duplication, each processor owns the entire data base deseribing the 

scene. The processors farm approach may then be used: a master processor feeds a pool of 

slave processors and collects the results. 


The main benefit of this approach is its inherent simplicity. Any sequential ray-tracing 

algorithm can be used without modification. Indeed, only the top loop to initialise the 

pixel computation has to be modified. This leads also to the best 

computation/communication ratio. Neither communication bandwidth nor load balancing 

do not need particular care. 


The first drawback of this approach is the great amount of memory needed. The size of 

the data base describing the three-dimensional scenes increases as pictures tend to be more 

and more realistic. On the other hand, the total amount of memory used for a given 

picture grows linearly with the number of processors. 


TIle second drawback concerns the optimizations based on cache memory. As the 

intermediate results for two neighbouring rays may be computed on two differents 

processors, the locality property is lost, and tbe eache hit ratio falls down. 


Distributing the data base 


Each processor is given a subset of the data base and performs the intersection tests for all 

its objects and all the rays. This does not have the drawbacks of the duplication strategy 

mentioned above. However, at the cost of an increased complexity. Special attention bas 

to be paid to three importants aspects: how to split and allocate the data base on the 

different processors, the communication bandwidth required and the load balancing. 


Choosing an Algorithm 


A good algoritbm should exhibit the following properties: 


• 	 low computational complexity. Spatial or multidimensional subdivision tends to lead to a 
cost growing in log(n) instead of n with the number of objects. 

• 	 locality. The computation of an intersection test should require only a region bounded 
subset of the data base. 

• 	 low COSl preprocessing. 

• 	 no restriction on the scene. 

The algorithms proposed in the literature, for instance [14] and [19], do not satisfy the 
locality constraint: non regular subdivision as proposed in [22] involves heavy and difficult 
to parallelize preprocessing; the solution proposed in [17] tends to restrain tbe kind of 
scene to modelize. 

The algorithm used in our approach is an optimization of the algorithms proposed in [15] 
and [18]. 
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Load Characterization 
The load associated with a given region depends on the number of rays which intersect the 
region and the average computing time per ray in this region: 

L =" Nray X T mean 

Nray depends mainly of the external environment of the region (light sources, reflective 
surfaces, shadowing ... ) and of the volume of the region. reflects the region's 
content (number and complexity of the objects). 

Unfortunately, only the volume of the region and the size of its restricted data base may 
be evaluated without involving the ray tracing algorithm itself. As the subdivision is 
adaptive, we may roughly consider an uniform load and perform a dynamic load 
balancing during the rendering step. 

Communication and Reconfiguration 
The serial nature of the transputer links allows dynamic reconfiguration of the transputer 
networks and cascadable programmable switches of up to 72 links have been developed 
for the Supernode architecture. 

A possible and elegant method for ray communication between processors (in function of 
region allocation strategy) consists to partially reconHgure the network of transputers for 
each communication. A direct connection is temporarily established between the source 
and destination processors and as soon as the ray is transmitted the connection may be 
removed. 

A rough estimation shows an average computation time per ray of about ten milliseconds. 
As each reconfiguration step involves an arbitration between the different requests for 
connecting a given transputer link, this method leads to a bottleneck in the command of 
the switch. This becomes worse when the number of processors in the network grows. 

Allocation Strategy 
Choosing a total subdivision, all regions would be of the same size and may be easily 
mapped onto a two- or three-dimensional grid of processors. Communications would be 
limited to neighbouring regions and processors. When choosing the adaptive subdivision, 
an allocation strategy has to be defined in order to keep neighbouring regions as much as 
possible on neighbouring processors. 

A simple method considers each region (of variable size) as the union of sub-regions of the 
smallest size of the subdivision and then one can proceed as with a total subdivision. In 
such case, it seems highly desirable that the number of sub-regions be a multiple of the 
number of processors. While regions of larger size will be replicated on several processors, 
the principle of the data base distribution is not violated. Indeed, these regions may only 
contain a few number of objects. 
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Two options are allowed: map neighbouring regions on neighbouring processors or on the 
same processor. The second method obviously results in less communication bandwidth, 
but the first one has been chosen for it allows a better static load balancing. Indeed, 
global load disparities in the scene will be distributed on more processors. As a result, 
processors at opposite extremities of the grid are allocated neighbouring regions, and have 
to be directly connected together. Due to the number of links available, a two-dimensional 
network of transputers can be used. The example below shows a possible allocation 
scheme for a two dimensional division algorithm. 
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Figure 3: Allocation of regions to processors. 

Link Performances and Routing 

Once subdivision is done, the mapping of spatial regions onto processors will take place. 
Each processor is given a data base restricted to the regions it handles. Each ray will be 
sent from its origin and will travel from region to region (and so from processor to 
processor), intersects something or leaves the scene. 
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As neighbouring regions may be placed on non neighbouring processors, each working 
transputer has to perform a routing algorithm as well. The simulation of the 
communications on the T800 has shown a significant loss of communication performance 
when the same transputer performs the computation as well as tbc routing tasks. On the 
other hand, some links have to be freed on each working transputer in order to 
communicate with the environment (local data base acquisition and results extraction). 
Therefore extra processors for routing have been added to each working transputer. 

Dynamic Load Balancing 
The allocation strategy used tends to reduce the static load disparities (i.e. before the 
actual computation). Also some kind of dynamic load balancing has to be performed 
during the ray tracing itself. Real examples show that the restricted data base associated 
with each region will usually not exceed 10 Kbytes. This traffic could be transferred on a 
transputer link in only a few milliseconds. 

The load balancing unit (LBU) of our architecture is functionally described hereafter. 

Each working transputer is connected through a special control bus to a master controller 
and to a programmable switch, also controlled by the master. Each working transputer is 
periodically tested on its actual load. When disparity appears between a pair of workers, 
the master establishes a direct connection between them through the switch. The 
overloaded transputer sends a copy of its database to the underloaded worker and the 
former submits part of its job to the later. The connection is removed when either one of 
the two transputers returns to an acceptable load. 

Displaying the Results 
A dedicated display transputer drives a second switch to which two of its four links are 
connected. The free link of each worker transputer in a basic module is connected to this 
switch as well. As the ray tracing progresses. the display transputer interrogates the worker 
transputers in tum for pixel values already available. We expect a single link to work at 
about 100 Kbytes per second, switching overhead included. A whole image of 1000 X 1000 
pixels of three colours bytes each will be transferred in less than 15 seconds, far less than 
the expected computing time of a few minutes. 

Conclusion 
Good performances may be obtained by running the ray tracing algorithm on massively 
parallel architectures, and a novel transputer based architecture has been proposed. This 
architecture can be efficiently emulated on a Supernode of 64, working transputers (four 
basic Supernode modules). A future paper will present the experimentals results and 
performances. 
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Figure 4: Overall Transputer Based Architecture. 
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