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Abstract

A general construction of transfinite barycentric coordinates is obtained as a simple and natural gen-
eralization of Floater’s mean value coordinates [Flo03, JSW05b]. The Gordon-Wixom interpolation
scheme [GW74] and transfinite counterparts of discrete harmonic and Wachspress-Warren coordinates
are studied as particular cases of that general construction. Motivated by finite element/volume appli-
cations, we study capabilities of transfinite barycentric interpolation schemes to approximate harmonic
and quasi-harmonic functions. Finally we establish and analyze links between transfinite barycentric
coordinates and certain inverse problems of differential and convex geometry.

1. Introduction

Design and analysis of transfinite interpolation
schemes has been a core research topic in geo-
metric modeling since seminal works of CAGD pi-
oneers [Far02]. More recent interest in transfinite
interpolation stems from inventing transfinite ver-
sions of classical and modern barycentric coordinates
[JSW05b, WSHD06, HF06, SJW06].

The contribution of this paper is threefold. First, we
invent a general construction of transfinite barycentric
coordinates as a weighted version of transfinite mean
value coordinates [Flo03, JSW05b] (Section 2). Next,
we analyze relationships between transfinite barycen-
tric interpolation schemes and PDE-based interpola-
tion (Sections 3,4,5). A special attention is paid to
approximating harmonic functions (Sections 3,4). In
particular, we study and generalize simple and elegant
transfinite barycentric coordinates proposed twelve
years ago by Gordon and Wixom [GW74] and now
almost forgotten (Sections 4,5). Finally, we reveal in-
teresting links between the barycentric interpolation
schemes and the famous Christoffel-Minkowski prob-
lems studied in differential and convex geometry (Sec-
tion 6).

After this paper was submitted, we became aware
of a recent study [SJW06] where a similar approach
to a general construction of 2D transfinite barycentric
coordinates was proposed.

While our work is pure theoretical, we believe
that the presented results may find applications

in computational mechanics and fluid dynamics
where numerical methods based on barycentric in-
terpolation schemes gain more and more popular-
ity [AO06, SM06, KFCO06]. Free-form shape defor-
mations constitute another potential area of applica-
tions [JSW05b, DM06].

The starting point for our study is a general con-
struction of transfinite barycentric coordinates intro-
duced in [WSHD06]. Given a convex domain Ω, let us
consider a smooth function b(x, y), x ∈ Ω and y ∈ ∂Ω,
satisfying the following three properties

Non-negativity b(x, y) ≥ 0, (1)

Partition of unity

Z

∂Ω

b(x, y) dsy = 1, (2)

Linear precision

Z

∂Ω

y b(x, y) dsy = x. (3)

Now interpolation of function f(y) defined on ∂Ω into
Ω is given by

f(x) =

Z

∂Ω

f(y) b(x, y) dsy. (4)

2. Weighted mean value coordinates

The main idea behind the Floater mean value coor-
dinates [Flo03] consists of applying the mean value
property for harmonic functions to piecewise linear
functions. Consider a convex bounded domain Ω in
R

n and a function f(x) harmonic inside Ω

∆f ≡
∂2f

∂x2
1

+ . . . +
∂2f

∂x2
n

= 0.
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Figure 1: (a) Main notations employed throughout the paper. (b) Notations used in the proof that certain weighted
Gordon-Wixom interpolation schemes are pseudo-harmonic (c) Interpolating inside of a non-convex polygon with
the Gordon-Wixom coordinates adapted for non-convex domains. (d) Notations used to derive the Gordon-Wixom
coordinates for polygons.

Let x be a point inside Ω and S(x, r) be the sphere of
radius r centered at x and contained inside Ω. Then ac-
cording to the mean value theorem for harmonic func-
tions

f(x) =
1

|S(x, r)|

Z

S(x,r)

f(z) dν.

The authors of [JSW05b] also introduced an elegant
continuous version of the the mean value coordinates.
Below we give a simple derivation of the continuous
mean value coordinates.

Consider the unit sphere S = S(x, 1) centered at x

and parameterized by the outer unit normal ν (see
Fig. 1(a) for a visual feedback on some notations used
below). Let y be a point on ∂Ω and ρ = |x−y|. Denote
by z the intersection point between the ray [xy) and
S. Assume that we know the values of function f(·)
on ∂Ω and at x. Then we can estimate f(z) using the
linear interpolation:

f(z) ≈
(ρ − 1)f(x) + f(y)

ρ

Now let us apply S-averaging to the left and right sides
of the above equation:

Z

S

f(z) dν = |S| f(x)−f(x)

Z

S

dν

|x − y|
+

Z

S

f(y) dν

|x − y|

and, assuming that f(·) is harmonic, we arrive at
the transfinite mean value interpolation scheme of
[JSW05b]

f(x) =

Z

S

f(y)

|x − y|
dν

ffi
Z

S

dν

|x − y|
. (5)

This interpolation construction has a natural gen-
eralization

f(x) =

Z

S

f(y)w(x, ν)

|x − y|
dν

ffi
Z

S

w(x, ν)

|x − y|
dν, (6)

where w(x, ν) is a weighting function associated with
interpolated location x.

Obviously (6) is just another form of (4) whose ker-
nel satisfies the partition of unity property (2). One
can also consider (6) as a transfinite version of the
basic Shepard interpolation [She68].

Let us check whether (6) satisfies the linear preci-
sion property. For f(x) ≡ x we have f(y) ≡ y = x+ρν.
Substituting the latter into (6) gives

0 =

Z

S

ν w(x, ν) dν for each x ∈ Ω (7)

which is necessary and sufficient for linear precision.

One can see that (7) is satisfied if the weighting
function is centrally-symmetric, i.e., coincides at each
pair of antipodal points:

w(x, ν) = w(x,−ν). (8)

Consider an important case of the planar interpola-
tion: n = 2, ν = (cos θ, sin θ),

f(x) =

Z 2π

0

f(y)w(x, θ)

|x − y|
dθ

ffi
Z 2π

0

w(x, θ)

|x − y|
dθ. (9)

The orthogonality conditions
Z 2π

0

w(x, θ) cos θ dθ = 0 =

Z 2π

0

w(x, θ) sin θ dθ (10)

for each x ∈ Ω are necessary and sufficient for linear
precision.

It turns out that any barycentric interpolation
scheme can be represented in the form of (6) with the
weight function (which may be a measure of a general-
ized function) satisfying orthogonality conditions (7).
Indeed, according to the Riesz representation theorem,
given x ∈ Ω, a linear transfinite interpolation scheme
can be considered as a linear functional Tx defined on
an appropriate space of functions on ∂Ω

Tx : f |∂Ω → f(x)
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and, therefore, can be represented by integration
against a certain density µx

f(x) ≡ Tx(f) =

Z

∂Ω

f(y)µx(y) dsy. (11)

Denote by h(x, y) the distance from x to the sup-
porting plane at y ∈ ∂Ω, as seen in Fig. 1. The area
(length) element dsy of ∂Ω at y ∈ ∂Ω can be expressed
in polar coordinates (ρ, ν) centered at x ∈ Ω as

dsy = ρndν/h. (12)

Therefore we can rewrite (11) as follows

Tx(f) =

Z

S

f(y)µx(y)
|x − y|n

h(x, y)
dν.

It remains to set w(x, ν) = µx(y)|x − y|n+1/h(x, y).

Below we consider two important examples.

Transfinite Laplace coordinates. The transfinite
Laplace coordinates are a continuous version of the
discrete harmonic coordinates which are used widely
in computational mechanics [SM06]. The discrete
Laplace interpolation scheme was probably first time
proposed in [CFL82] and then reinvented many times
in connection with research on finite element meth-
ods [BVIK∗97] (the so-called non-Sibsonian interpo-
lation), computational geometry [Sug99], and dis-
crete minimal surfaces [PP99] (the so-called cotangent
weights). A particular case of 2D transfinite Laplace
coordinates was studied in [HS00] where interpolation
of data defined on straight line segments was consid-
ered.

Following [SJW06] one can define the transfinite
Laplace coordinates in a way similar to the derivation
of the transfinite mean value coordinates if, instead
of satisfying the mean value property, we search for
a solution minimizing the Dirichlet energy. Let us as-
sume that f(x) is known and consider a ruled surface
patch generated by straight segments connecting in-
ner point (x, f(x)), x ∈ Ω, with all boundary points
(y, f(y)), y ∈ ∂Ω. Then f(x) is defined such that the
Dirichlet energy attains its minimal value.

Let r = ρ(θ) ≡ |x − y| be the graph of ∂Ω in the
polar coordinates (r, θ) centered at x. Denote by Fx(z),
z ∈ Ω, the ruled surface described in the previous
paragraph

Fx(z) =
(ρ − r)f(x) + rf(y)

ρ
.

Here r = |x − z| and y ∈ ∂Ω is the intersection point
between ∂Ω and the ray from x through z. We arrive
at the following minimization problem

min←

ZZ

Ω
|∇Fx|

2 dz =

Z 2π

0
dθ

Z ρ

0
r dr

(

»

f(x)− f(y)

ρ

–2

+

+

»

(f(y)− f(x))

„

1

ρ

«′

θ

+
1

ρ
f ′

θ(y)

–2
)

=

=
1

2

Z 2π

0
dθ

(

[f(x)− f(y)]2+

»

f ′
θ(y)+(f(y)−f(x))

ρ′θ
ρ

–2
)

,

where the last integral is a quadratic function w.r.t.
f(x). Thus the optimal value of f(x) is given by

f(x) =

R 2π
0

n

f(y)− f ′
θ(y)

ˆ

ρ′θ/ρ
˜

+ f(y)
ˆ

ρ′θ/ρ
˜2

o

dθ

R 2π
0

n

1 +
ˆ

ρ′θ/ρ
˜2

o

dθ

=

Z 2π

0
f(y)

ρ′′θθ + ρ

ρ
dθ

ffiZ 2π

0

ρ′′θθ + ρ

ρ
dθ, (13)

where integrations by parts are used to derive (13).

Notice that (13) corresponds to (9) with

w(x, θ) = ρ′′
θθ + ρ. (14)

A simple integration by parts shows that (14) satisfies
the orthogonality conditions (10).

Probably the simplest way to define the transfinite
Laplace coordinates in R

n, n ≥ 3, consists of express-
ing the coordinates via the gradient of area (volume),
see [MBLD02, DMA02], for the relation between the
discrete harmonic coordinates and the gradient of an
area functional. Let n(y) be the unit outer normal of
∂Ω at y ∈ ∂Ω. Denote by V (x) the volume of Ω as a
function of x. Then, similar to the discrete case, we
have

0 = ∇xV (x) =

Z

∂Ω

n(y) dsy ≡

Z

S

n dn

K(n)
,

where K(n) is the Gaussian curvature of ∂Ω parame-
terized by its unit normal. Thus, assuming that ∂Ω
is parameterized by its Gauss map, the transfinite
Laplace coordinates are given by (6) with

w(x, ν) = 1/K(ν), (15)

where K(ν) is the Gaussian curvature of ∂Ω at the
point with normal ν.

In 2D, (15) is obviously reduced to (14) (see also
Section 6).

Transfinite Wachspress-Warren coordinates.

Motivated by FEM applications, Wachspress [Wac75]
proposed a construction of affine-invariant barycen-
tric coordinates for convex polygons in 2D. Recently
Warren and co-workers [War96, WSHD06] extended
the Wachspress coordinates to convex polyhedra in R

n

and presented a transfinite version of the coordinates

Let us denote by n(y) the outer unit normal to Ω
at y ∈ ∂Ω. The transfinite Wachspress-Warren coor-
dinates are given by [WSHD06]

f(x) =

Z

Ω

f(y)
K(y)ρ(x, y)

h(x, y)n
dsy

ffi
Z

Ω

K(y)ρ(x, y)

h(x, y)n
dsy,
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where K(y) is the Gaussian curvature of ∂Ω at y and,
as before, h(x, y) is the distance from x to the sup-
porting plane at y ∈ ∂Ω.

Thus, in view of (12), the transfinite Wachspress-
Warren coordinates are given by (6) with

w(x, ν) = K(y) [ρ(x, y)/ h(x, y)]n+1 . (16)

In 2D, straightforward computations show that (16)
can be written as

w(x, θ) = (1/ρ)′′θθ + 1/ρ. (17)

A geometric proof of (17) is given in Section 6. Simi-
lar to (14), orthogonality conditions (10) for (17) are
easily derived via integration by parts.

Notice a similarity between (17) and (14). It will be
explained in Section 6.

3. Pseudo-harmonic interpolation

Let us call an transfinite interpolation scheme pseudo-
harmonic if it reproduces the harmonic functions in a
ball.

Surprisingly, transfinite mean value interpolation
(5) does not approximate harmonic functions. Indeed,
let us consider the following pseudo-harmonic interpo-
lation scheme

f(x) =

Z

∂Ω

f(y) dsy

|x − y|n

ffi
Z

∂Ω

dsy

|x − y|n
(18)

which was introduced for d = 2 in [CMS98] as a trans-
finite version of a variant of the well known Shepard
interpolation method [She68]

f(x) =

PN
i=1 f(yi)|x − yi|

−n

PN
i=1 |x − yi|

−n
.

It is easy to see that (18) coincides with the Poisson
Integral Formula for the Laplace equation when Ω is
a ball.

According to (12) we can rewrite (18) as follows

f(x) =

Z

S

f(y) dν

h(x, y)

ffi
Z

S

dν

h(x, y)
(19)

which is another, quite elegant, form of the Poisson
Integral Formula. †

In general, (19) (or, equivalently, (18)) does not give
linear precision.

It is interesting to observe a similarity and difference
between (19) and transfinite mean value coordinates

† Certainly representations (18) and (19) of the solution to
the Laplace equation in a ball are deserved to be mentioned
in PDE textbooks.

(5). It also explains why (5) does not enjoy the prop-
erty of being pseudo-harmonic.

Simple computations show that already in 2D
the transfinite Laplace coordinates are not pseudo-
harmonic. This is not surprising since in general the
discrete harmonic coordinates lead to only zeroth-
order consistency of the corresponding finite difference
approximation of the Laplacian [Suk03]. However the
discrete harmonic coordinates deliver a good approx-
imation of the Laplace operator in Sobolev spaces of
negative order [War05].

As shown in [FHK06], the discrete harmonic and
Wachspress coordinates are the same for a circum-
scribable polygon. This implies that their transfinite
versions coincide for a 2D circle. Thus the transfi-
nite Wachspress-Warren coordinates are not pseudo-
harmonic as well.

4. Weighted Gordon-Wixom coordinates

For 2D convex shapes, a simple and elegant construc-
tion for transfinite pseudo-harmonic barycentric co-
ordinates was proposed by Gordon and Wixom in
[GW74]. Below we describe their multidimensional
analog.

Given a point x inside Ω, consider the unit sphere S

centered at x and a unit normal ν ∈ S. Let the straight
line through x determined by ν intersect the boundary
∂Ω in two points y1 and y2. Denote by ρ1 and ρ2 the
distances from x to y1 and y2, respectively. Now we
estimate f(x) using the linear interpolation between
f(y1) and f(y2)

f(x, θ) =
ρ2

ρ1 + ρ2
f(y1) +

ρ1

ρ1 + ρ2
f(y2) = (20)

=

»

f(y1)

ρ1
+

f(y2)

ρ2

–ffi »

1

ρ1
+

1

ρ2

–

S-averaging w.r.t. ν defines the Gordon-Wixom inter-
polation

f(x) =
1

|S|

Z

S

»

ρ2

ρ1 + ρ2
f(y1) +

ρ1

ρ1 + ρ2
f(y2)

–

dν.

(21)

As shown below for a more general situation,
the Gordon-Wixom interpolation scheme is pseudo-
harmonic and has linear precision.

Similar to weighted transfinite mean value coordi-
nates (6), let us introduce a weighted version of the
Gordon-Wixom interpolation scheme

f(x) =

R

S

h “

f(y
1
)

ρ1

+
f(y

2
)

ρ2

”. “

1
ρ1

+ 1
ρ2

”i

W (x, ν) dν

R

S
W (x, ν) dν

,

(22)
where W (x, ν) is centrally-symmetric (8).
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To show that (22) enjoys linear precision let us set
f(x) ≡ x. Then f(y1) ≡ y1 = x + ρ1ν and f(y2) ≡
y2 = x − ρ2ν and (22) is obviously satisfied.

Observe that if weighting function of (6) satisfies (8)
(centrally-symmetric), then the weighting functions of
(22) and (6) are related to each other by

W (x, ν) = w(x, ν)

„

1

ρ1
+

1

ρ2

«

.

In particular, (22) with W (x, ν) = 1/ρ1 + 1/ρ2 is re-
duced to mean value coordinates (5).

Now let us consider a particular case of (22) ob-
tained when W (x, ν) depends on distances ρ1 and ρ2

only. Since W (x, ν) is centrally-symmetric, it can be
written as a function of ρ1 · ρ2 and ρ1 + ρ2

W (x, ν) = W (ρ1 + ρ2, ρ1ρ2). (23)

Let us show that if (23) depends only on the product
of ρ1 and ρ1, then barycentric coordinates (22) are
pseudo-harmonic. Indeed if Ω is a ball then according
to the Intersecting Chords Theorem ‡

ρ1ρ2 ≡ c(x),

where c(x) depends only on x. Thus it is sufficient
to demonstrate that (21) is pseudo-harmonic. Notice
that we can exploit symmetry properties of (21) and
rewrite it as

f(x) =
2

|S|

Z

S/2

ρ2

ρ1 + ρ2
f(y1) dν, (24)

where by S/2 we denote a unit semisphere. Let Ω be a
ball of radius R. Consider the 2D disc obtained as the
intersection between Ω and the plane formed by y1, y2,
and the center of the ball. In notations of Fig. 1(b), we
obviously have

h1 = ρ1 sin ϕ, h2 = ρ2 sin ϕ, ρ1 + ρ2 = 2R sin ϕ,

h1h2

sin2 ϕ
= c(x),

ρ2

ρ1 + ρ2
=

h2

2R sin2 ϕ
=

c(x)

2R
·

1

h1
.

Thus (24) is reduced to (19). A slightly more complex
proof of this result for the 2D version of (21) is given
in [GW74] and attributed to W. W. Meyer.

Now we can see why the original Gordon-Wixom in-
terpolation scheme is good in approximating harmonic
functions. The second-order directional derivative of
f(x) in the ν-direction can be approximated by

f ′′
νν

(x) ≈ Dνν [f(x)] ≡ (25)

≡
2

ρ1ρ2

„ »

f(y1)

ρ1
+

f(y2)

ρ2

–ffi »

1

ρ1
+

1

ρ2

–

− 2f(x)

«

.

‡ The Intersecting Chords Theorem is usually formulated

for a 2D circle. However its extension onto the multidimen-

sional case is straightforward.

Since

2∆f(x) =
1

|S|

Z

S

f ′′
νν

(x) dν,

we obtain weighted Gordon-Wixom interpolation (22)
with weight

W (x, ν) =
1

ρ1ρ2
(26)

and, according to the Intersecting Chords Theorem,
arrive at (21) when Ω is a ball.

As mentioned before, weighting functions w(x, ν) in
(6) and W (x, ν) in (22) may be generalized functions.
In particular, Gordon and Wixom [GW74] considered
a transfinite interpolation scheme which can be ob-
tained from (22) if we set W (x, ν) = δ(ν −ν0), where
δ(·) is the Dirac delta function and ν0 is a given di-
rection.

Non-convex domains. So far we have assumed
that Ω is convex. It turns out that it is very easy
to extend the weighted Gordon-Wixom interpolation
scheme (22) to generic non-convex domains. Consider
the straight line l(x, ν) through x at direction ν inter-
secting ∂Ω in m points y1, . . . , ym. Let us set εi = 1 if
the ray [x, yi) arrives at yi from inside of Ω, εi = −1
if the ray approaches yi from outside of Ω, and εi = 0
if the ray is tangent to ∂Ω at yi. Define

f(x, ν) =

m
X

i=1

f(yi)w(x, yi)
εi

ρi

,

m
X

i=1

w(x, yi)
εi

ρi
, (27)

where ρi = |x− yi|. This simple one-dimensional con-
struction belongs to the family of barycentric rational
interpolation schemes studied widely in constructive
approximation [BBM05]. Now S-averaging w.r.t. ν

f(x) =
1

|S|

Z

S

f(x, ν) dν (28)

gives an extension of (22) to generic non-convex do-
mains.

If Ω is not generic, it may happen that l(x, ν)∩ ∂Ω
contains linear segments. It is natural to treat such a
situation as the tangency case and set ε = 0 in (27)
for all the points of those linear segments on l(x, ν).

Instead of (27) one can use high-order 1D barycen-
tric interpolation schemes introduced very recently by
Floater and Hormann [FH06].

An example of interpolating inside of a non-convex
polygon with (27) is shown in Fig.1(c). Similar to
[GW74] we evaluate (28) numerically.

Gordon-Wixom coordinates for polygons. Let
Ω be a 2D convex polygon and f(y), y ∈ ∂Ω, be given
by its values at the polygon vertices. Assume that f(y)
is linear on the edges of the polygon. Then (21) allows
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for a closed-form solution. For a planar domain, one
can rewrite (21) as

1

π

Z 2π

0

ρ2

ρ1 + ρ2
f(y1) dθ. (29)

Consider point x inside polygon Ω and place new
vertices on the boundary of the polygon such that
the straight line connecting x with an original ver-
tex intersects ∂Ω in another, possibly new, vertex. See
Fig. 1(d) where A and D are original polygon vertices
and B and C are new vertices. Then we repeat trigono-
metric calculations of [Flo03] and, in the notations of
Fig. 1(d), arrive at

ρ1(θ) =
ab sin α

a sin θ + b sin(α− θ)
,

λ1 =
b sin(α− θ)

a sin θ + b sin(α− θ)
, λ2 =

a sin(θ)

a sin θ + b sin(α− θ)
,

where λ1(θ) and λ2(θ), λ1 + λ2 = 1, are the weights
for the linear interpolation inside the segment AB. We
compute ρ2(θ) in a similar way and get the following
formula for the part of (29) corresponding to AB.

1

π

Z α

0

cd [f(A)b sin(α − θ) + f(B)a sin θ]

ac(b + d) sin θ + bd(a + c) sin(α − θ)
dθ. (30)

Although (30) looks quite complex, it can be evaluated
in closed form (we have used Maple to express (30)
in terms of elementary functions). Unfortunately the
result is too lengthy to present here.

5. Barycentric coordinates and PDEs

Quasi-Laplacian. Let us consider the Dirichlet
boundary value problem for a quasi-Laplacian oper-
ator:

∇·(a(x)∇f(x)) = 0 in Ω, f(x) is known on ∂Ω, (31)

where a(x) > 0 is a known conductivity coefficient.
Integration by parts gives

Z

S(x,r)

a
∂f

∂ν
dν = 0, (32)

where, as before, S(x, r) is the sphere of radius r cen-
tered at x and contained inside Ω and ν is outward
unit normal to S(x, r). Let us group opposite points
of Sr together in (32):

a
∂f

∂ν

˛

˛

˛

˛

x + r(ν)

− a
∂f

∂ν

˛

˛

˛

˛

x − r(ν)

≈ 2r
∂

∂ν

„

a(x)
∂f(x)

∂ν

«

=

= 2r
ˆ

a′
ν
(x)f ′

ν
+ a(x)f ′′

νν

˜

(33)

We estimate the first- and second-order directional
derivatives of f(·) by

f ′
ν
(x) ≈

f(y1) − f(x)

ρ1
,

and (25), respectively. Substituting these approxima-
tions into the right hand-side of (33), integrating over
a half-sphere S(x, r)/ 2, and taking into account (32)
yields

0 ≈

Z

S/2

f(y1) − f(x)

ρ1
a′

ν
(x) dν+a(x)

Z

S/2

Dνν [f(x)] dν

(34)
with Dνν [f(x)] defined in (25). We rewrite the inte-
grals in the right-hand side of (34) as integrals over
the whole unit sphere S and arrive at

f(x)

»
Z

S

a′
ν
(x)

ρ
dν + 2a(x) |S|

–

≈

≈

Z

S

f(y)

ρ
a′

ν
(x) dν + a(x)

Z

S

Dνν [f(x)] dν

which can be considered as a combination of the (26)-
weighted Gordon-Wixom interpolation scheme and
a′

ν
(x)-weighted transfinite mean value coordinates.

Note that it does not satisfy the linear precision
property because of weighting function a′

ν
(x) in the

mean value component. Notice however that linear
functions do not satisfy (31) unless the conductivity
coefficient a(x) is constant.

Of course, linear PDE (31) is rather a toy example.
However a similar approximation approach can be ap-
plied to quasi-linear PDE operators in the form

2

|S|

Z

S/2

∂ν (g (|∂νf |) ∂νf) dν, (35)

where g(·) is a positive function. A 2D version of (35)
was used in [Wei94] for anisotropic nonlinear image
diffusion purposes.

AMLE. According to an axiomatic approach to im-
age interpolation developed in [CMS98] and numerical
experiments conducted in [ACGR02], absolutely min-
imizing functions [ACJ04] satisfy many properties de-
sirable for a feature-preserving interpolation of height
data.

Weighted Gordon-Wixom coordinates (21) approx-
imate the solution to the AMLE equation if we set
W (x, ν) = δ(ν−ν0(x)), where ν0(x) is a direction for
which the right-hand side of

f ′
ν
(x) ≈

f(y1) − f(y2)

ρ1 + ρ2
, (36)

attains its maximal absolute value. Similar to the
AMLE interpolation, (36) is capable of interpolating
isolated values. For example, let Ω be the unit disk
without its center (a punctured disk). Define f(y) = 1
at the disk center and f(y) ≡ 0 on the outer bound-
ary of the punctured disk. Then the solution to (36) is
given by cone f(x) = 1 − |x|. Exactly the same result
is delivered by AMLE.

94

c© The Eurographics Association 2006.



Alexander Belyaev / On Transfinite Barycentric Coordinates

6. Christoffel-Minkowski type problems and

barycentric coordinates

So far we have studied abilities of various barycen-
tric interpolation schemes to approximate solutions to
second-order elliptic PDEs. In this section, we reveal
and discuss surprising links between the barycentric
coordinates and classical inverse problems of differen-
tial and convex geometry.

Minkowski problem. The classical Minkowski
problem is an inverse problem in differential geom-
etry and concerns reconstruction of a closed convex
hypersurface from its Gaussian curvature given as a
function of the outer surface normal [Min03]. Given a
positive function K(ν) defined over the unit sphere S,
a necessary and sufficient condition of the Minkowski
problem is

Z

Σ

ν dl ≡

Z

S

ν dν

K(ν)
= 0, (37)

where Σ is the reconstructed hypersurface, dl its area
element and dl = K dν by definition of the Gaussian
curvature. The necessity of (37) follows immediately
from the divergence theorem of vector calculus. The
sufficiency is non-trivial and was proven, under various
assumptions of smoothness of Σ, by Minkowski him-
self (1903), Alexandrov (1938), Lewy (1938), Miranda
(1939), Pogorelov (1952), Nirenberg (1953), Cheng
and Yau (1976), and others.

Exploring the similarity between (37) and (7), we
get for free the following result delivering a geometric
description of barycentric interpolation schemes. For
each x ∈ Ω, consider a family of hyperplanes in R

n
z

(z− x) · ν = p(x, ν) (38)

parameterized by ν ∈ S. For a given ν, p(x, ν) stands
for the signed distance from the plane defined by ν to
x. We assume that p(x, ν) is sufficiently smooth. De-
note by Σx the envelope of family (38) and let Kx(ν)
be the Gaussian curvature of Σx. Assuming that Σx is
convex (and, therefore, its Gaussian curvature is posi-
tive), we obtain transfinite barycentric coordinates (6)
with w(x, ν) = 1/Kx(ν). Vice versa, given barycen-
tric coordinates (6) whose weighting function w(x, ν)
is positive at x, a convex hypersurface Σx is recon-
structed from its Gaussian curvature

Kx(ν) = 1/w(x, ν).

In order to use the Minkowski problem for a geomet-
ric description of barycentric coordinates (6) whose
weighting function w(x, ν) is not always positive, one
can consider the so-called hedgehogs, closed surfaces
parameterized by their Gauss maps and described as
the envelops of their tangent planes. Unfortunately, if
n ≥ 3, (37) is not sufficient in the case of envelopes
forming non-convex surfaces [MM01](Proposition 7).

Christoffel-Minkowski problem. A generalization
of the Minkowski problem, the so-called Christoffel-
Minkowski problem, consists of finding a convex hy-
persurface Σ with a prescribed elementary symmetric
polynomial of the surface principal radii [GG02]. For
λ = (λ1, . . . , λn−1) ∈ R

n−1, let Sk[λ] be an elemen-
tary symmetric polynomial of degree k

Sk[λ] =
X

i1<...<i
n−1

λi1 . . . λi
n−1

,

where the sum is taken over all permutations of the
indices {1, . . . , n − 1}. Denote by Ri(ν) = 1/ki(ν)
the surface principal radii parameterized by the
Gauss map of the surface. Direct computations (see,
for example, [Bla30, BF34, Bus58, Sch93]) show that
Ri(ν), i = 1, . . . , n− 1, are the eigenvalues of the ma-
trix

∇2
ν
p(ν) + p(ν)I,

where ∇2
ν

is the Hessian operator w.r.t. a local or-
thonormal frame on S and I is the identity matrix. It
can be shown [BF34, Bus58, Sch93] that

Z

S

νSk[R1, . . . , Rn−1](ν) dν = 0. (39)

The Christoffel-Minkowski problem consists of de-
termining a convex surface whose curvature radii
R1(ν), . . . , Rn−1(ν) satisfy

Sk[R1, . . . , Rn−1](ν) = ϕ(ν), (40)

where ϕ(ν) is a given function such that
Z

S

νϕ(ν) dν = 0. (41)

Orthogonality condition (41) generalizes (37) and
can be used for a geometric characterization of trans-
finite barycentric coordinates.

A substantial progress in solving the general
Christoffel-Minkowski problem for convex bodies was
recently achieved in [GG02, STW04].

The Monge-Ampère equation

K(ν) ≡ det
ˆ

∇2
ν
p(ν) + p(ν)I

˜

= ϕ(ν)

used to solve the Minkowski problem is a particular
case of (40) which arises when the product of the cur-
vature radii is considered:

Sn−1[R1, . . . , Rn−1] = R1 · . . . · Rn−1 ≡ 1/K.

Christoffel problem. Another particular case of the
Christoffel-Minkowski problem is obtained from (40)
when k = 1. It gives the so-called Weingarten formula
[Wei84] (as cited in [Bla30])

trace
ˆ

∇2
ν
p(ν) + p(ν)I

˜

≡

≡ ∆νp(ν) + (n − 1)p(ν) = R(ν), (42)

95

c© The Eurographics Association 2006.



Alexander Belyaev / On Transfinite Barycentric Coordinates

where ∆ν is the spherical Laplacian and

R(ν) =

n−1
X

i=1

Ri(ν)

is the sum of the principal curvature radii (the recip-
rocal of the sum is the so-called harmonic curvature).
Since λ = (n − 1) is the first eigenvalue of ∆ν and ν

are the corresponding n− 1 eigenfunctions, the neces-
sary and sufficient condition of solvability (42) is given
by

Z

Σ

νR(ν) ds = 0. (43)

In 3D, this particular case of the Christoffel-
Minkowski problem was proposed and studied by
Christoffel in 1865 [Chr65] and seems to be the earli-
est inverse problem in differential and convex geome-
try. For a relatively recent account, see, for example,
[Sch93](Section 4.3),

Given barycentric coordinates (6) with weighting
function w(x, ν) satisfying (7), for each x ∈ Ω we set

R(x, ν) = w(x, ν)

and solve linear second-order elliptic PDE (42) Then
surface Σx is reconstructed from support function
p(x, ν). (The simplest way to solve (42) consists of
expanding w(x, ν) into spherical harmonics and con-
structing support function p(x, ν) of Σν as a spherical
harmonic series.)

Christoffel-Minkowski problems in 2D and 3D.

In 2D, the Christoffel and Minkowski problems coin-
cide and lead to the following second-order differential
equation

p′′(θ) + p(θ) = R(θ) ≡ 1/k(θ) (44)

for the support function p(θ). Curve Σ is then ob-
tained from its support function p(θ) in the following
parametric form

z(θ)≡

»

z1

z2

–

(θ) =

»

x1

x2

–

+

»

p(θ) cos θ + p′(θ) sin θ
p(θ) sin θ + p′(θ) cos θ

–

(45)

For our purposes, for each x ∈ Ω we determine Σν

by solving

p′′(θ) + p(θ) = w(x, θ) (46)

and then using (45). If w(x, θ) is a positive function
of θ, then Σx forms a convex curve. If w(x, θ) changes
its sign, Σx has cusps at the points corresponding to
the zeros of the curvature radius R(θ) = w(x, θ).

Fig. 2 shows an example of a planar curve generated
from its support function.

In 3D, we have two types of the Christoffel-
Minkowski problems corresponding to the Gaussian

curvature (the Minkowski problem) and harmonic cur-
vature (the Christoffel problem). For the Christoffel
problem, Σx is reconstructed by solving

∆νp(ν) + 2p(ν) = w(x, ν). (47)

Then one can reconstruct Σx from its support function
p(ν) using formulas derived in [VF92]. Similar to the
2D case, w(x, ν) may change its sign and Σx form cus-
pidal edges at the points where its harmonic curvature
1/w(x, ν) becomes infinite.
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Figure 2: (a) Polar plot of a given support func-
tion p(θ). (b) Graph of the curvature radius R(θ) =
p′′(θ)+p(θ). (c) The curve reconstructed from its sup-
port function p(θ). The curve has six cusps correspond-
ing to the zeros of its curvature radius R(θ).

Pedal and negative pedal surfaces. Pedal curves
and surfaces are differential geometry objects which
have a special significance in classical geometric op-
tics [Her00] and are often mentioned in textbooks on
classical differential geometry. Given a surface Σ and a
point x, the pedal of Σ w.r.t. x is defined as the locus of
the foots of the perpendiculars from x to the tangent
planes to the surface. The negative pedal curves and
surfaces are much less mentioned in the differential
geometry literature in spite of the fact that they can
be used for designing mirrors with prescribed prop-
erties [FMR01]. The negative pedal of Σ w.r.t. x is
constructed as the envelope of planes passing through
the points of Σ and perpendicular to the segments
connecting x with the points of Σ. The pedal and neg-
ative pedal curves and surfaces are also studied in the
projective geometry framework [CG67](Chapter 6).

Pedals and negative pedals find applications in ma-
terials science [POMZ99]. Following [POMZ99] let
us consider two Legendre transformations of positive
functions defined on the unit sphere S. Let r : S → R+

be a continuous function. The polar plot of r(ν), ν ∈ S,
is the surface (curve in 2D) defined in the (r, ν) polar
coordinates by r = r(ν). The first Legendre transform
r∗(ω) is the function corresponding to the negative
pedal of the polar plot of r(ν). The second Legendre
transform r∗(ν) is the function corresponding to the
pedal of the polar plot of r(ω).

As demonstrated in [POMZ99], the following dual-
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ity relations are hold

1/r∗ = [1/r]∗, 1/r∗ = [1/r]∗. (48)

In addition, if r(ν) satisfies certain convexity condi-
tions, then

[r∗]
∗(ν) ≡ r(ν) ≡ [r∗]∗(ν). (49)

Geometry of Wachspress-Warren coordinates.

Now we are ready to establish a link between the
transfinite Wachspress-Warren coordinates and the
Minkowski problem. As before, given a convex
bounded domain Ω in R

n and point x ∈ Ω, let
r = ρ(ν) be the polar plot of ∂Ω w.r.t. x, K(y)
denote the Gaussian curvature of ∂Ω at y ∈ ∂Ω,
and h(x, y) = (y − x) · n(y), where n(y) is outer
unit normal to ∂Ω at y, be the support function
of ∂Ω w.r.t. x. Consider surface Σx whose support
function w.r.t. x is given by 1/ρ(ν). Using duality
relations (48) and (49) it is easy to show that the
reciprocal of the Gaussian curvature of Σx is given
by Kρn+1/hn+1. Thus, according to (37), we have
proven the linear precision property of transfinite
Wachspress-Warren coordinates (6), (16). In the 2D
case, (17) now follows from (44).

An equivalent interpretation of the transfi-
nite Wachspress-Warren coordinates in terms of
pedal surfaces (polar duals) was considered in
[WSHD06, SJW06] (see also [JSW05a] where a similar
description of the discrete Wachspress-Warren coordi-
nates is presented).

Geometry behind Laplace coordinates. Accord-
ing to (15), the geometry of the transfinite Laplace co-
ordinates is simpler than that of Wachspress-Warren
coordinates. It is reduced to the Minkowski problem
for ∂Ω (therefore, it can be called by the Minkowski
extension of the 2D Laplace coordinates). For each
x ∈ Ω, the support function of Σx is given by r = ρ(ν),
the polar plot of ∂Ω w.r.t. x. The linear precision is
guaranteed by (37).

It seems, however, that the Christoffel extension of
the 2D Laplace coordinates is more appropriate for ap-
proximating harmonic functions than the Minkowski
extension considered in the previous paragraph. In-
deed, let us assume that functions p(ν) and R(ν),
ν ∈ S, in (43) are defined in R

n as homogeneous of
degree one: p(tz) ≡ tp(z) and R(tz) ≡ tR(z), z ∈ R

n.
Then (43) can be rewritten as

∆zp(z) = R(z) (50)

and the left-hand side of (50) with p(z) = ρ(z), where
ρ(ν) is the polar plot of ∂Ω, defines the weighting
function

w(x, ν) = R(z/|z|) (51)

corresponding to the Christoffel extension of the 2D

Laplace coordinates. The Laplacian from the left-hand
side of (50) indicates that (6) with (51) is a proper
choice for approximating harmonic functions.

Weighted Gordon-Wixom coordinates. As men-
tioned before, weighted Gordon-Wixom coordinates
(22) are equivalent to (6) with centrally-symmetric
weighting: w(x, ν) = w(x,−ν). Therefore, sur-
faces Σx constructed as solutions to a Christoffel-
Minkowski problem are also centrally-symmetric.
Centrally-symmetric convex bodies possess interesting
properties and are widely studied in convex geometry
[BF34, Sch93].

Geometry behind mean value coordinates.

Since for the mean value coordinates Σx is always
the unit sphere S, these coordinates play a distin-
guish role in the above inverse problem constructions
and correspond to the case when curvature function
Sk[R1, . . . , Rn−1](ν) from (40) is constant.

Algebra of barycentric coordinates. Given two
sets defined by their support functions, say p(ν) and
q(ν), ν ∈ S, one can consider algebraic operations over
the sets by adding (Minkowski addition), multiplying,
and convolving the support functions.

As observed before, the support functions of
surfaces Σx corresponding to the Laplacian and
Wachspress-Warren coordinates are given by ρ(ν) and
1/ρ(ν), respectively, where ρ(ν) is the polar plot of
∂Ω. Thus their product gives us the support function
corresponding to the mean value coordinates and we
can say that the Laplacian and Wachspress-Warren co-
ordinates are dual w.r.t. to the multiplication of their
corresponding support functions.

As noted in [MM06](Section 6, see also referneces
to works of H. Görtler therein), the convolution of two
support functions inherits properties of the factors.
For the sake of simplicity, let us consider the 2D case.
The convolution of p(θ) and q(θ) is given by

(p ⊗ q)(θ) =
1

2π

Z 2π

0

p(θ − α)q(α) dα. (52)

If p(θ) is centrally-symmetric, i.e., p(θ + π) ≡ p(θ), so
is convolution p⊗q. If q(θ) is of constant-width (Fig. 2
gives an example of a constant-width curve generated
from its support function),

q(θ + π) + q(θ) ≡ const,

then p⊗q is also of constant width. Notice that a circle
is the only centrally-symmetric set of constant width.

According to (46), if support function p(θ) of Σx

is centrally-symmetric / constant-width, so is weight-
ing function w(x, θ), and vice versa. Since the sup-
port functions corresponding to the weighted Gordon-
Wixom coordinates are centrally-symmetric, then
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“constant-width coordinates” are dual to the weighted
Gordon-Wixom ones w.r.t. convolution (52).

7. Directions for further work

As shown in [SJW06], transfinite barycentric inter-
polation schemes can be viewed as limiting cases of
their corresponding discrete versions, barycentric co-
ordinates on polyhedral domains. Certainly the dis-
crete case is more complex than the continuous one
considered in this paper. For example, several different
discrete counterparts of the transfinite barycentric co-
ordinates are studied in [FHK06, JW05]. Establishing
links between discrete barycentric coordinates and dis-
crete Christoffel-Minkowski problems constitutes an
interesting topic for further work.

In this paper, we haven’t even touched on the
transfinite Sibson coordinates [GF99] and Möobius-
invariant interpolation [BE03]. Following [GW74], it
would be also interesting to consider the Hermite data
interpolation problem and study its relationships with
fourth-order PDEs.

Another fascinating theme for future research con-
sists of studying links between transfinite barycen-
tric coordinates and continuous valuations on convex
sets. [Had57, Sch93]. Some links between the Had-
wiger characterization theorem of rigid motion invari-
ant valuations [Had57] and barycentric coordinates
are pointed out in [DMA02]. An interesting problem
here is to study relations between barycentric coordi-
nates and a more general class of translation invariant
valuations [Sch96].
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pp. 27–52. 5

[BE03] Bern M. W., Eppstein D.: Möobius-invariant
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der abwickelbaren Oberflächen, Festschrift der technis-

chen Hochschule. Berlin, 1884. 7

[Wei94] Weickert J.: Anisotropic diffusion filters for

image processing based quality control. In Proc. Seventh

European Conf. on Mathematics in Industry (Stuttgart,

1994), Teubner, pp. 355–362. 6

[WSHD06] Warren J., Schaefer S., Hirani A. N.,

Desbrun M.: Barycentric coordinates for convex sets.

Advances in Computational and Applied Mathematics

(2006). To appear. 1, 3, 9

99

c© The Eurographics Association 2006.


