
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Graphics Hardware 2007, San Diego, CA, August 04-05, 2007.

© 2007 ACM 978-1-59593-625-7/07/0008 $5.00

Graphics Hardware 2007
Timo Aila and Mark Segal (Editors)

.

A Real-Time FPGA-Based Architecture for
a Reinhard-like Tone Mapping Operator

F. Hassan and J. E. Carletta

Department of Electrical and Computer Engineering, The University of Akron, USA

Abstract

This paper presents a field-programmable gate array-based hardware architecture for a Reinhard-like tone
mapping operator. Modifications to the original Reinhard operator were done to ensure that the operator is
amenable to implementation in hardware. The architecture is described in VHDL and has been synthesized
using Altera Quartus tools. It achieves an operating frequency consistent with a video rate of 60 frames per
second for a frame of 1024×768 pixels. The quality of the implementation is measured using peak signal-to-
noise ratios on testbench images.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [Computing Methodologies]: Image
Processing and Computer Vision––Image Representation; I.3.1 [Computing Methodologies]: Computer
Graphics––Hardware Architecture.

1. Introduction

Novel camera sensors can capture scenes of much wider
dynamic range than standard display devices can display.
Tone mapping operators are used to bridge this mismatch.
It is highly desirable to be able to do this processing in real-
time, and embedded within the camera or display.
However, published tone mapping operators have been
implemented mostly on workstations and applied to stored
images, without regard to resource and timing constraints.
The work described in this paper modifies a well-known
local tone mapping operator so that it can be implemented
in real time on an embedded system with high throughput
and low cost. Various platforms can be considered for
implementation, including general purpose
microprocessors, digital signal processors, field
programmable gate arrays (FPGAs), and graphics cards. Of
these platforms, FPGAs are the most compelling for
embedded, high throughput image processing systems.
Commercially available FPGA devices permit low cost
implementations that are easily updated, much more easily
embedded than those using graphics cards, and
significantly faster than those based on processors. Despite

the importance of local tone mapping operators, there has
been no FPGA implementation of a state-of-the-art system
for local tone mapping of images of high dynamic range.

The remainder of this paper is organized as follows. In
Section 2 we review published tone mapping operators. We
then give some background on the Reinhard operator that
will be implemented in this paper in Section 3. Our
proposed architecture for a Reinhard-like operator will be
described in detail in Section 4. Details about the hardware
synthesis of the system are given in Section 5. In Section 6
we show the simulation results of the system using a set of
images from the Debevec library [Debevec and Malik
1997]. Finally, we give conclusions in Section 7.

2. Review of tone mapping operators

Tone mapping operators can be classified according to
whether their operators are global or local. Common global
tone mapping operators include those in [Tumblin and
Rushmeier 1993; Ward 1994; Larson et al. 1997; Durand
and Dorsey 2000; Pattanaik et al. 2000; Drago et al. 2003].
Because global tone mapping operators do the same
transformation on every pixel, they lend themselves well to
parallel implementations based on lookup tables. However,
it is not possible for a single transformation based on global
parameters to properly eliminate the effects of illumination

––––––––––––––––––––––

http://www.eg.org
http://diglib.eg.org

F. Hassan & J. E. Carletta / A Real-Time FPGA-Based Architecture for a Reinhard-like Tone Mapping Operator

© Association for Computing Machinery, Inc., 2007.

in images for which illumination varies locally. [Chui et al.
1993] were the first to show that global tone mapping
operators are not always sufficient.

In contrast, local tone mapping operators use transforms
that vary locally with the neighborhood of the pixel.
[Jobson et al. 1997a; Jobson et al. 1997b] normalized each
pixel with an estimate of illumination surrounding it. They
suggested the use of the mean of three different scales of
the Gaussian surrounds of the pixel as an estimate of
illumination. The design and development of a digital
signal processor implementation of this method using one
Gaussian surround was presented in [Hines et al. 2004],
and achieved a frame rate of 20 frames per second for a
256×256 grayscale image. [Reinhard et al. 2002] select the
best illumination estimate around the pixel from a Gaussian
pyramid of the image. The authors in [Goodnight et al.
2003] mapped the Reinhard operator to the pixel processor
on a programmable graphics hardware board. They were
able to process 256×256 gray scale images at a frame rate
of 30 frames per second. Another real-time implementation
of the Reinhard operator was suggested in [Krawczyk et al.
2005]. The performance of the implementation was
measured on a Pentium4 2 GHz processor and NVIDIA
GeForce 6800GT graphics card. Using four scales of
Gaussian pyramid; they were able to process only 14
frames per second for a 1024×768 image. Other local tone
mapping operators include iterative methods [Tumblin and
Turk 1999; Fattal et al. 2002], nonlinear filters [Durand and
Dorsey 2002; Choudhury and Tumblin 2001; Ledda et al.
2004] and image appearance models [Pattanaik et al. 1998;
Fairchild and Johson 2002; Johson and Fairchild 2003].
However, there is no published evidence of real time
implementation of such methods.

High dynamic range devices were suggested in [Ledda et
al. 2003; Seetsen at al. 2004] as an evaluation tool for tone
mapping operators. [Ledda et al. 2005] validated six
frequently used global and local tone mapping operators
against linearly mapped high dynamic range scenes
displayed on a novel high dynamic range device. The
Reinhard operator performed best for gray scale images.
This result has prompted us to investigate the Reinhard
operator.

3. The Reinhard local tone mapping operator

The Reinhard local tone mapping operator normalizes each
pixel of an image according to the average luminance
surrounding the pixel. The difficulty is in determining how
large a surrounding area to use in calculating the average
luminance; if too small a surround is used, it does not give
an accurate estimate of the local illumination, but if too
large a surround is used, the surround may encompass a
change in brightness that will throw off the estimate. Halo
effects are caused when too large a surround encompasses a
sudden change in brightness levels, causing a pixel to be
normalized incorrectly. Reinhard’s solution is to consider
successively larger surrounds. A smaller surround is

eliminated from consideration if the relative difference
between its estimate and the estimate of the next larger
surround is no more than a set threshold. When calculating
the illumination estimate for a surround, the Reinhard
operator weights the pixels in a surround according to the
Gaussian function:

2

22

2
1),,(s

ji

e
s

sjig
+

−
=
π

 (1)

where i and j are the indices of the pixel, and s is the scale
of the surround; this scale controls the rate of decay of the
Gaussian around the pixel being processed. The pixel being
processed has indices (i, j) = (0, 0). The Reinhard operator
uses nine surrounds; the first has s = 0.35, and each
successive scale is 1.6 times larger than the previous one.
When the estimate is calculated in the space domain via
convolution, a window size must be chosen for each scale
that is large enough to include the main area under the
Gaussian. The first Gaussian lies in a 3×3 window, and the
Gaussians get progressively wider, with the ninth in a
60×60 window. Together, the nine windows form a
Gaussian pyramid.

4. Proposed architecture

The block diagram of the proposed architecture of the
Reinhard-like operator is shown in Figure 1. The input to
the system is a pixel stream for a video frame. A Gaussian
pyramid is used to estimate the illumination local to the
pixel. A logarithmic average is also computed for the
global image to provide an estimate of the global
illumination. Finally, the input pixel is normalized by a
weighted sum of the local and global illumination
estimates. We developed hardware for each subsystem that
approximates the original operator well, but is simple
enough for real-time embedded processing. We next
consider hardware-friendly modifications to the Gaussian
pyramid, log average and normalization blocks of the
Reinhard operator.

4.1. Approximating the Gaussian pyramid

The original Gaussian filters are computationally complex;
nine windows are used, and the required filter coefficients,
with their exponential relationship, are in general difficult
to implement in fixed-point mathematics. We use fewer
scales, and replace the coefficients with ones that serve the
same purpose but are much more hardware-friendly. We
use four square windows of size 8×8, 14×14, 28×28 and
56×56 pixels, respectively. Figure 2 shows the 3D plot of
these windows; the values shown in the plot are
proportional to the logarithm of the corresponding weight
in the window. Expressions for the pixel weights in the

lower left quadrant are given, where   denotes the
ceiling function; the other three quadrants can be obtained
via symmetry.

66

F. Hassan & J. E. Carletta / A Real-Time FPGA-Based Architecture for a Reinhard-like Tone Mapping Operator

© Association for Computing Machinery, Inc., 2007.

As in a Gaussian filter, larger weights are given to the
pixels in the center of the window; however, we
approximate the steep exponential drop-offs of the two
smaller windows by implementing filters with coefficients
that are with powers-of-four and powers-of-two,
respectively; the less steep drop-offs of the larger windows
are approximated by using filter coefficients that are
powers-of-two repeated two and four times, respectively.
This special relationship of the weights we have chosen
ensures that computation of the averages can be done with
simple accumulator structures.

We demonstrate the idea using a one-dimensional window
of length fourteen and even symmetry. The one-
dimensional window is given by the weights:

[]









=

=
=

−

−

.14,,8for2
2
1

7,,1for2
2
1

14
6

1
6

K

K

k

k
kw

k

k

 (2)

An output pixel y[n] can be expressed in terms of the input
pixel stream P as:

6

7

1

14

8

141

2

2]8[2]8[
][

∑ ∑
= =

−− ×+−+×+−
= k k

kk knPknP
ny (3)

Note that in the first half of the window, each weight is
twice the one immediately preceding it. This half of the
window can be considered a rising geometric series with a
gain of two. Similarly, the second half of the window is a
falling geometric series, also with a gain of two, so that the
overall gain of the window is four.

We can take advantage of the structure of the window in
order to compute the window output using very simple
accumulator-based hardware. One accumulator is devoted
to the rising geometric series that is the first summation in
(3); a second accumulator tracks the falling geometric
series that is the second summation in the equation. The
output of the window can then be found by simply adding
the two accumulators together and dividing by the gain
factor of four.

As the window slides one pixel further along the data, the
accumulators are updated in the following simple way. For
the first accumulator, the incoming pixel has the largest
weight, of 26. All pixels already accounted for in the

accumulator have a weight of one-half of whatever the
weight was before sliding the window. Therefore, we can
simply halve the entire accumulator, subtract the pixel on
the extreme left hand side of the window weighted by 2-1,
and add the pixel in the middle of the window weighted by

Figure 1: Block diagram of the proposed architecture.

8282
, 22 −− ×= ji
jiw

77

, 22 −− ×= ji
jiw

  7

27
2

, 22
−





−
×=

ji

jiw

  7

47
4

, 22
−





−
×=

ji

jiw
Figure 2: The four windows for the four-scale
approximate Gaussian pyramid.

67

F. Hassan & J. E. Carletta / A Real-Time FPGA-Based Architecture for a Reinhard-like Tone Mapping Operator

© Association for Computing Machinery, Inc., 2007.

26. The second accumulator is responsible for the falling
geometric series. Here, the incoming pixel has the smallest
weight, 20, and weights are doubled each time the window
slides. Therefore, we can simply double the entire
accumulator, add the newest pixel, and subtract the pixel in
the middle of the window weighted by 27. While the
accumulator updates described so far apply only to
windows that lie completely within the borders of the
image, the updates can be easily modified using stacks to
accomplish symmetric extension at the image borders while
still inputting each image pixel only once.

The two-dimensional square windows are implemented
using two one-dimensional filters. The vertical filter
calculates the average of the input image along the
columns. The horizontal filter calculates the average of the
image processed by the vertical filter along the rows.
Because the pixels enter the system in a row-by-row order,
it is not sufficient to use a single accumulator to calculate
the output of the vertical filter. Instead, we use a set of
accumulators, one for each column of the image. If, for
example, the image contains 1024 pixels in a row, there is a
set of 1024 accumulators, stored together in a single 1024-
word memory. The accumulators in the set are updated one
by one as the pixels enter the system.

The bottleneck for existing implementations of local tone
mapping algorithms is memory access, so an appropriate
memory organization for supplying data to the four
differently sized windows is key to achieving real-time
performance. Memory is also needed to supply a delayed
input pixel stream, synchronized such that each input pixel
appears simultaneously with its local illumination estimate.
As shown in Figure 3, we divided the fifty-six rows of
pixels needed for the update of the largest window into ten
separate memories. Memory one holds fourteen rows of
pixels and is used as a delay block as well as a stack.
Memories two, three, four, and five hold seven, three,
three, and one row of pixels respectively, and they are used
as delay blocks. Memories six, seven, eight, nine and ten
hold one, three, three, seven and fourteen rows respectively
and they are used as delay blocks as well as stacks. All
these memories are implemented using dual-port physical
memories. The physical memories are sized up to hold a
number of rows that is a power-of-two. One additional
single-port physical memory of sixteen rows, not shown in
the figure, holds a copy of the last rows of the image. The
memory organization ensures that all pixels needed in a
single time step are in different physical memories; these
pixels include the four pixels at the extreme right sides of
the four windows, the four pixels at the extreme left sides,
the one pixel that lies in the (common) middle of the four
windows, and the delayed version of the input pixel stream.
Because they are in different physical memories, all pixels
needed to update the accumulators in a given time step can
be read simultaneously without conflict. FPGAs, which
contain large numbers of moderately sized memory blocks,
are an ideal platform for this sort of memory organization.

The local illumination estimate for a pixel Lave_local is found
by selecting the most suitable of the four windows. The
algorithm used is similar to Reinhard’s original selection
criterion, and compares the relative difference between a
window and the next larger window to a set threshold. The
most computationally complex part of the algorithm is the
division required for the relative difference. We do this
division in a hardware-friendly way by converting the
fixed-point value for the denominator into a floating-point
value with a mantissa between 0.5 and 1. We then use an
iteration based on the Newton-Raphson method to find the
reciprocal, after retrieving an initial guess for the iteration
from a look-up table that is indexed on a limited number of
bits of the mantissa. The procedure is such that one look-up
and one iteration are enough to achieve the required
precision.

4.2. Approximating the log average luminance

The log average luminance subsystem for our real-time
embedded version of the Reinhard operator calculates an
estimate of the global luminance of the image. It does this
by computing the sum of the base-2 logarithms of all the
pixels in the image. The global illumination is estimated as
2 raised to this sum, and corresponds to the average of all
the pixels. Figure 4 shows the block diagram of the log
average luminance subsystem. It is divided into three main
subblocks. The first takes the base-2 logarithm of the pixel
stream, the second computes the average of the logarithms,
and the third takes the inverse base-2 logarithm of the
average.

An estimate of the base-2 logarithm of an integer x can be
found from the number of leading zeros in the integer; the
weight of the most significant ‘1’ in x is the integer part of
the base-2 logarithm, and the remaining bits in x determine
the fraction part of the logarithm. For example, the integer
3481 has its most significant ‘1’ in the eleventh position; its
logarithm can be written as log2(3481) = log2(211+1433) =
11+log2(1+1433/211).

We can use the bits following the most significant one bit
in a number of different ways to estimate the fraction part
of the base-2 logarithm; we need to compute log2(1+f),
where f is a number between 0 and 1. One possibility
suggested in [Hau et al. 2004] is to simply use the bits
themselves directly as an approximation of the fraction
part. We propose to use a fixed number of bits following
the most significant ‘1’ to look up the value of log2(1+f)
in a table. The size of the lookup table and the error in the
estimation depend on how many bits are used to address
that table, and how many fraction bits are stored in the
table. As an example, for an address size of eight and word
size of eight, log2(1+1433/211) = 0.761, so that our estimate
of log2(3481) is 11.761. Hau’s method gives 11.699. The
actual value is 11.765. The proposed method gives a
quantifiable trade-off between hardware cost and the
percentage error at the output of the log average luminance
subsystem.

68

F. Hassan & J. E. Carletta / A Real-Time FPGA-Based Architecture for a Reinhard-like Tone Mapping Operator

© Association for Computing Machinery, Inc., 2007.

The sum of the base-2 logarithms of all the pixels in the
image is computed using an accumulator. The width of the
accumulator depends on the resolution and dynamic range
of the image. For example, a 1024×768 image with 13 bits
of precision for the base-2 logarithm (five bits for the
integer part and eight bits for the fraction part) requires an
accumulator of 33 bits. The log average is found by
dividing the accumulator by the number of pixels in the
image, here N = 1024×768. We approximate the reciprocal
of N with a four-term sum of powers-of-two as

()64220 22212 −−−− +++ , and then accomplish the
multiplication of the accumulator by the reciprocal with a
series of shifts and additions. The result has thirteen bits of
precision.

The final step of the log average luminance is to compute
the inverse base-2 logarithm of the average. Writing the
average as an integer part x and a fraction part f, we have
2(x+f) = (2x)(2f) where 2x is a power-of-two and 2f is a
number between 1 and 2, which we further break into 1+g.
A look-up table, addressed with eight bits of f and holding a
word size of eight bits, is used to determine g, and the ‘1’ is
added. The result is then multiplied by 2x using a barrel
shifter. The final output of the log average luminance is
computed by truncating the fraction bits of the output of the
barrel shifter. This log average luminance is the global
estimate of illumination Lave_global for the pixel.

4.3. Normalizing the pixel

The normalization block takes the local average around the
pixel and the weighted log average as inputs to normalize
the pixel stream. We add these two quantities to get the
normalization value of every pixel. The output of the
system is given by:

ave_globalave_local
map LaL

LL
∗+

= (4)

where a is a weighting factor, Lave_local is the local estimate
of illumination around the pixel, Lave_global is the global
illumination estimate and Lmap is the mapped luminance
represented in floating point. The division method
previously described is used again here.

At this point, the output pixel stream is represented in
floating-point with eight bits of mantissa and five bits of
exponent. The final step of the system is to convert the
output pixel stream to fixed-point. For display purposes, the
normalized pixel stream shoud have an eight-bit gray level
between 0 and 255. We scale Lmap to this range by first
adding eight to the output pixel exponent, which is
equivalent to multiplying the output pixel stream by 256.
Then, we send the mantissa of the output pixel stream to a
barrel shifter controlled by the exponent to convert the
pixel to fixed-point, and saturate the fixed-point output to
255.

Figure 4: The block diagram of the log average luminance.

Figure 3: Memory organization for a four-scale approximate Gaussian pyramid.

69

F. Hassan & J. E. Carletta / A Real-Time FPGA-Based Architecture for a Reinhard-like Tone Mapping Operator

© Association for Computing Machinery, Inc., 2007.

5. Hardware synthesis details

The proposed architecture was described in VHDL, and
synthesized using Altera’s Quartus II v5.0 toolset. It was
placed and routed on a Stratix II FPGA device. The
architecture was sized in order to accommodate high
resolution images of high dynamic range with 1024×768
pixels and 28 bits per pixel. It should be noted that memory
requirements would be less for lower resolution images or
images of smaller dynamic range.

Table 1 summarizes the synthesis report from Quartus. The
simplicity of hardware is reflected in the clock speed
achieved, and in the low utilization of logic cells. The
implementation has used a significant percentage of the
available embedded memory. It is clear that processing
algorithms for high resolution images, in general, require
significant amounts of memory. If they are to be
implemented on a single chip, a specialized FPGA device
with extended memory capabilities is required.

A typical video frame has horizontal blanking periods of 64
pixels, and a vertical blanking period of 32 rows. Given
that we would like to achieve a video frame rate of 60
frames per second, and that there are (1024+64)*(768+32)
or 870,400 pixels in the frame when we include the
blanking periods, we need to be able to process 60*870,400
= 52.24 megapixels per second. Our architecture, which has
a maximum operating frequency of 83.83 MHz, can
accommodate this by taking in one pixel per clock.

6. Experiments and results

To test the visual quality of the system we used a set of
testbench high dynamic range images from the Debevec
library. We obtain gray scale images by calculating a
luminance value for each pixel as: P= 0.27R+0.67G+0.06B.
We then transformed the images into a fixed-point

representation with sixteen bits of fraction and twelve bits
of integer, and simulated the images being processed by our
proposed architecture of the Reinhard-like operator. The
system is verified by comparing a fixed-point Matlab
simulation with a simulation of the behavioral VHDL using
Modelsim software. The only input parameter to the system
is the weight of the global average a which affects the
brightness of the output image. We used a fixed a=2 for all
images except for Vinesunset where a=0.5. Figure 5 shows
the set of images after processing by our system.
Evaluating the output images visually, we see that our
system gives comparable results to the original method. In
particular, we do not see halo artifacts; for this set of
images, these would manifest themselves as black or bright
bands around the church windows and behind the trees in
the natural images. Details in the dark areas can be seen,
and edges look sharp. We have also conducted a study of
the peak-signal-to-noise ratio (PSNR) contained by our
hardware friendly approximation to the Gaussian pyramid.
Our gold standard was a floating point version of the
Reinhard-like operator that uses Gaussian surrounds with
standard deviations of 2, 3.5, 7 and 14, respectively.
Considering the processed image from the gold reference to
be the signal, and the difference between the processed
images from the gold reference and the proposed
architecture to be the noise, the PSNR are given in Table 2.
The size of these values gives us confidence that the
approximation is reasonable. We conducted the same
PSNR study on a similar architecture that uses constant
weight pyramid rather than our hardware approximation of
the Gaussian pyramid. The PSNR values for that
architecture were on average 3dB lower, that is, using
constant weight windows results in twice as much error as
our approximation.

7. Conclusions and future work

The proposed architecture, with its simplicity and high
operating frequency, is a promising method for real-time
display of high dynamic range (HDR) images on standard
LCD screens. While the example system implemented here
is for 1024×768 gray scale images with 28 bits per pixel,
the design can be easily parameterized to deal with images
of different input dynamic ranges and displays of different
resolutions. Our future goal is to display a HDR image with
32 bits per pixel on a traditional LCD at a resolution of
1280x1024 pixels and a rate of 60 frames per second. The
current operating frequency is not quite fast enough to
reach this target. We are also considering extension to color
images.

Inclusion of more scales would improve the quality of the
processed images; the proposed architecture has four
scales, while the original Reinhard operator has nine.
Implementation of additional scales is not a simple
extension, because it will no longer be adequate to use only
geometric series based on powers-of-two. Still, we believe
that new bases can be chosen that will translate into simple,
fast hardware.

Table 1. Summary of hardware synthesis report.

Device Stratix II EP2S90F1020C3
Total bits of memory 2,952,960 / 4,520,448

Total logic cells 17553 / 72,768
Max operating freq. 83.83 MHz

Table 2. Summary of PSNR study, with values in dB.

 constant
weight

our
system

memorial 30.9 34.4
rosette 25.1 28.5
groveC 29.4 33.5
groveD 29.8 33.6

vinesunset 41.4 42.6

70

F. Hassan & J. E. Carletta / A Real-Time FPGA-Based Architecture for a Reinhard-like Tone Mapping Operator

© Association for Computing Machinery, Inc., 2007.

References

BURT, P.J., AND ADELESON, E.H. 1983. A multiresolution
spline with applications to image mosaics. ACM
Transactions on Graphics 2, 217-236.

CHOUDHURY, P., AND TUMBLIN, J. 2003. The trilateral filter
for high contrast images and meshes. Proceedings of
the Eurographics Symposium on Rendering, 186-96.

CHUI, K., HERF, M., SHIRLEY, P., SWAMY, S., WANG, C. AND
ZIMMERMAN, K. 1993. Spatially nonuniform scaling
functions for high contrast images. Proceedings of
Graphics Interface, 245-253.

DEBEVEC, P. E., AND MALIK, J. 1997. Recovering high
dynamic range radiance maps from photographs.
Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, 369-
378.

DRAGO, F., MYSZKOWSKI, K., ANNEN, T., AND CHIBA, N.
2003. Adaptive logarithmic mapping for displaying
high contrast scenes. Computer Graphics Forum, 24th
Annual Conference of the Eurographics
Association,419-426,

DURAND, F., AND DORSEY, J. 2000. Interactive tone
mapping. Proceedings of the Eurographics Workshop
on Rendering Techniques, 219-232.

DURAND, F., AND DORSEY, J. 2002. Fast bilateral filtering
for the display of high dynamic range images.
Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, 257-
266.

FAIRCHILD, M.D., AND JOHNSON, G.M. 2002. Meet iCAM:
An image color appearance model. IS&T/SID 8th Color
Imaging Conference, 33-38.

FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002.
Gradient domain high dynamic range compression.
Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, 249-
56.

GOODNIGHT, N., WANG, R., WOOLLEY, C., AND
HUMPHREYS, G. 2003. Interactive time-dependent tone
mapping using programmable graphics hardware. ACM
International Conference Proceeding Series: 14th
Eurographics Workshop on Rendering, 26-37.

HAU, T.N., LI, .T, AND VIJAYAN, K.A., 2004. A nonlinear
technique for enhancement of color images: an
architectural perspective for real-time applications.
Proceedings of the 33rd Applied Imagery Pattern
Recognition Workshop, 124-129.

HINES, G.D., RAHMAN, Z., JOBSON, D.J., AND WOODELL,
G.A. 2004. DSP implementation of the Retinex image
enhancement algorithm. Proceedings of the SPIE
Visual Information Processing XIII, 13-24.

JOBSON, D.J., RAHMAN, Z., AND WOODELL, G.A. 1997.
Properties and performance of a center/surround
Retinex. IEEE Transactions on Image Processing 6,
451-462.

JOBSON, D.J. RAHMAN, Z., AND WOODELL, G.A. 1997. A
multiscale Retinex for bridging the gap between color
images and the human observation of scenes. IEEE
Transactions on Image Processing 6, 965-76.

 JOHNSON, G.M., AND FAIRCHILD, M.D. 2003. Rendering
HDR images. Proceedings of IS&T/SID 11th Color
Imaging Conference, 36-41.

KRAWCZYK, G., MYSZKOWSKI, K., AND SEIDEL, H-P. 2005.
Perceptual effects in real-time tone mapping.
Proceedings of the 21st Spring Conference on
Computer Graphics, 195-202.

LARSON, G.W., RUSHMEIER, H., AND PIATKO, C. 1997. A
visibility matching tone reproduction operator for high
dynamic range scenes. IEEE Transactions on
Visualization and Computer Graphics 3, 291-306.

LEDDA, P., CHALMERS, A., TROSCIANKO, T., AND SEETZEN,
H. 2005. Evaluation of tone mapping operators using a
high dynamic range display. ACM Transactions on
Graphics, 24, 640-648.

LEDDA, P., SANTOS, L.P., AND CHALMERS, A. 2004. A local
model of eye adaptation for high dynamic range
images. Proceedings of the 3rd International
Conference on Computer Graphics, Virtual Reality,
Visualization and Interaction in Africa, 151-160.

LEDDA, P., WARD, G., AND CHALMERS, A. 2003. A wide
field, high dynamic range, stereographic viewer.
Proceedings of the 1st International Conference on
Computer Graphics and Interactive Techniques in
Australasia and South East Asia, 237 – 244.

PATTANAIK, S.N., TUMBLIN, J., YEE, H., AND GREENBERG,
D.P. 2000. Time-dependent visual adaptation for fast
realistic image display. Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive
Techniques, 47-54.

PATTANAIK, S.N., FERWERDA, J.A., FAIRCHILD, M.D., AND
GREENBERG, D.P. 1998. A multiscale model of
adaptation and spatial vision for realistic image display.
Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, 287-
98.

WARD, G. 1994. A contrast-based scalefactor for luminance
Display. Graphics Gems IV, Academic Press, 415-21.

71

F. Hassan & J. E. Carletta / A Real-Time FPGA-Based Architecture for a Reinhard-like Tone Mapping Operator

© Association for Computing Machinery, Inc., 2007.

Memorial

Rosette

groveD

groveC

Vinesunset

Figure 5. The set of images processed by our proposed architecture.

72

