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Abstract 

This paper presents a field-programmable gate array-based hardware architecture for a Reinhard-like tone 
mapping operator. Modifications to the original Reinhard operator were done to ensure that the operator is 
amenable to implementation in hardware.  The architecture is described in VHDL and has been synthesized 
using Altera Quartus tools. It achieves an operating frequency consistent with a video rate of 60 frames per 
second for a frame of 1024×768 pixels. The quality of the implementation is measured using peak signal-to-
noise ratios on testbench images. 

Categories and Subject Descriptors (according to ACM CCS):  I.4.10 [Computing Methodologies]: Image 
Processing and Computer Vision––Image Representation; I.3.1 [Computing Methodologies]: Computer 
Graphics––Hardware Architecture. 

 
 

1. Introduction 

Novel camera sensors can capture scenes of much wider 
dynamic range than standard display devices can display. 
Tone mapping operators are used to bridge this mismatch. 
It is highly desirable to be able to do this processing in real-
time, and embedded within the camera or display. 
However, published tone mapping operators have been 
implemented mostly on workstations and applied to stored 
images, without regard to resource and timing constraints. 
The work described in this paper modifies a well-known 
local tone mapping operator so that it can be implemented 
in real time on an embedded system with high throughput 
and low cost. Various platforms can be considered for 
implementation, including general purpose 
microprocessors, digital signal processors, field 
programmable gate arrays (FPGAs), and graphics cards. Of 
these platforms, FPGAs are the most compelling for 
embedded, high throughput image processing systems. 
Commercially available FPGA devices permit low cost 
implementations that are easily updated, much more easily 
embedded than those using graphics cards, and 
significantly faster than those based on processors. Despite 

the importance of local tone mapping operators, there has 
been no FPGA implementation of a state-of-the-art system 
for local tone mapping of images of high dynamic range. 

The remainder of this paper is organized as follows. In 
Section 2 we review published tone mapping operators. We 
then give some background on the Reinhard operator that 
will be implemented in this paper in Section 3. Our 
proposed architecture for a Reinhard-like operator will be 
described in detail in Section 4. Details about the hardware 
synthesis of the system are given in Section 5. In Section 6 
we show the simulation results of the system using a set of 
images from the Debevec library [Debevec and Malik 
1997]. Finally, we give conclusions in Section 7. 

2. Review of tone mapping operators 

Tone mapping operators can be classified according to 
whether their operators are global or local. Common global 
tone mapping operators include those in [Tumblin and 
Rushmeier 1993; Ward 1994; Larson et al. 1997; Durand 
and Dorsey 2000; Pattanaik et al. 2000; Drago et al. 2003]. 
Because global tone mapping operators do the same 
transformation on every pixel, they lend themselves well to 
parallel implementations based on lookup tables. However, 
it is not possible for a single transformation based on global 
parameters to properly eliminate the effects of illumination 
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in images for which illumination varies locally. [Chui et al. 
1993] were the first to show that global tone mapping 
operators are not always sufficient.  

In contrast, local tone mapping operators use transforms 
that vary locally with the neighborhood of the pixel. 
[Jobson et al. 1997a; Jobson et al. 1997b] normalized each 
pixel with an estimate of illumination surrounding it. They 
suggested the use of the mean of three different scales of 
the Gaussian surrounds of the pixel as an estimate of 
illumination. The design and development of a digital 
signal processor implementation of this method using one 
Gaussian surround was presented in [Hines et al. 2004], 
and achieved a frame rate of 20 frames per second for a 
256×256 grayscale image. [Reinhard et al. 2002] select the 
best illumination estimate around the pixel from a Gaussian 
pyramid of the image. The authors in [Goodnight et al. 
2003] mapped the Reinhard operator to the pixel processor 
on a programmable graphics hardware board. They were 
able to process 256×256 gray scale images at a frame rate 
of 30 frames per second. Another real-time implementation 
of the Reinhard operator was suggested in [Krawczyk et al. 
2005]. The performance of the implementation was 
measured on a Pentium4 2 GHz processor and NVIDIA 
GeForce 6800GT graphics card. Using four scales of 
Gaussian pyramid; they were able to process only 14 
frames per second for a 1024×768 image. Other local tone 
mapping operators include iterative methods [Tumblin and 
Turk 1999; Fattal et al. 2002], nonlinear filters [Durand and 
Dorsey 2002; Choudhury and Tumblin 2001; Ledda et al. 
2004] and image appearance models [Pattanaik et al. 1998; 
Fairchild and Johson 2002; Johson and Fairchild 2003]. 
However, there is no published evidence of real time 
implementation of such methods.  

High dynamic range devices were suggested in [Ledda et 
al. 2003; Seetsen at al. 2004] as an evaluation tool for tone 
mapping operators. [Ledda et al. 2005] validated six 
frequently used global and local tone mapping operators 
against linearly mapped high dynamic range scenes 
displayed on a novel high dynamic range device.  The 
Reinhard operator performed best for gray scale images. 
This result has prompted us to investigate the Reinhard 
operator. 

3. The Reinhard local tone mapping operator 

The Reinhard local tone mapping operator normalizes each 
pixel of an image according to the average luminance 
surrounding the pixel. The difficulty is in determining how 
large a surrounding area to use in calculating the average 
luminance; if too small a surround is used, it does not give 
an accurate estimate of the local illumination, but if too 
large a surround is used, the surround may encompass a 
change in brightness that will throw off the estimate. Halo 
effects are caused when too large a surround encompasses a 
sudden change in brightness levels, causing a pixel to be 
normalized incorrectly. Reinhard’s solution is to consider 
successively larger surrounds. A smaller surround is 

eliminated from consideration if the relative difference 
between its estimate and the estimate of the next larger 
surround is no more than a set threshold. When calculating 
the illumination estimate for a surround, the Reinhard 
operator weights the pixels in a surround according to the 
Gaussian function: 
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where i and j are the indices of the pixel, and s is the scale 
of the surround; this scale controls the rate of decay of the 
Gaussian around the pixel being processed. The pixel being 
processed has indices (i, j) = (0, 0). The Reinhard operator 
uses nine surrounds; the first has s = 0.35, and each 
successive scale is 1.6 times larger than the previous one. 
When the estimate is calculated in the space domain via 
convolution, a window size must be chosen for each scale 
that is large enough to include the main area under the 
Gaussian. The first Gaussian lies in a 3×3 window, and the 
Gaussians get progressively wider, with the ninth in a 
60×60 window. Together, the nine windows form a 
Gaussian pyramid. 

4. Proposed architecture  

The block diagram of the proposed architecture of the 
Reinhard-like operator is shown in Figure 1. The input to 
the system is a pixel stream for a video frame. A Gaussian 
pyramid is used to estimate the illumination local to the 
pixel. A logarithmic average is also computed for the 
global image to provide an estimate of the global 
illumination. Finally, the input pixel is normalized by a 
weighted sum of the local and global illumination 
estimates. We developed hardware for each subsystem that 
approximates the original operator well, but is simple 
enough for real-time embedded processing. We next 
consider hardware-friendly modifications to the Gaussian 
pyramid, log average and normalization blocks of the 
Reinhard operator. 

4.1. Approximating the Gaussian pyramid 

The original Gaussian filters are computationally complex; 
nine windows are used, and the required filter coefficients, 
with their exponential relationship, are in general difficult 
to implement in fixed-point mathematics. We use fewer 
scales, and replace the coefficients with ones that serve the 
same purpose but are much more hardware-friendly. We 
use four square windows of size 8×8, 14×14, 28×28 and 
56×56 pixels, respectively. Figure 2 shows the 3D plot of 
these windows; the values shown in the plot are 
proportional to the logarithm of the corresponding weight 
in the window. Expressions for the pixel weights in the 

lower left quadrant are given, where    denotes the 
ceiling function; the other three quadrants can be obtained 
via symmetry.  
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As in a Gaussian filter, larger weights are given to the 
pixels in the center of the window; however, we 
approximate the steep exponential drop-offs of the two 
smaller windows by implementing filters with coefficients 
that are with powers-of-four and powers-of-two, 
respectively; the less steep drop-offs of the larger windows 
are approximated by using filter coefficients that are 
powers-of-two repeated two and four times, respectively. 
This special relationship of the weights we have chosen 
ensures that computation of the averages can be done with 
simple accumulator structures. 

We demonstrate the idea using a one-dimensional window 
of length fourteen and even symmetry. The one-
dimensional window is given by the weights: 
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An output pixel y[n] can be expressed in terms of the input 
pixel stream P as: 
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Note that in the first half of the window, each weight is 
twice the one immediately preceding it. This half of the 
window can be considered a rising geometric series with a 
gain of two. Similarly, the second half of the window is a 
falling geometric series, also with a gain of two, so that the 
overall gain of the window is four.  

We can take advantage of the structure of the window in 
order to compute the window output using very simple 
accumulator-based hardware. One accumulator is devoted 
to the rising geometric series that is the first summation in 
(3); a second accumulator tracks the falling geometric 
series that is the second summation in the equation. The 
output of the window can then be found by simply adding 
the two accumulators together and dividing by the gain 
factor of four. 

As the window slides one pixel further along the data, the 
accumulators are updated in the following simple way. For 
the first accumulator, the incoming pixel has the largest 
weight, of 26. All pixels already accounted for in the 

accumulator have a weight of one-half of whatever the 
weight was before sliding the window. Therefore, we can 
simply halve the entire accumulator, subtract the pixel on 
the extreme left hand side of the window weighted by 2-1, 
and add the pixel in the middle of the window weighted by 

Figure 1: Block diagram of the proposed architecture. 
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Figure 2: The four windows for the four-scale 
approximate Gaussian pyramid. 
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26. The second accumulator is responsible for the falling 
geometric series. Here, the incoming pixel has the smallest 
weight, 20, and weights are doubled each time the window 
slides. Therefore, we can simply double the entire 
accumulator, add the newest pixel, and subtract the pixel in 
the middle of the window weighted by 27. While the 
accumulator updates described so far apply only to 
windows that lie completely within the borders of the 
image, the updates can be easily modified using stacks to 
accomplish symmetric extension at the image borders while 
still inputting each image pixel only once. 

The two-dimensional square windows are implemented 
using two one-dimensional filters. The vertical filter 
calculates the average of the input image along the 
columns. The horizontal filter calculates the average of the 
image processed by the vertical filter along the rows. 
Because the pixels enter the system in a row-by-row order, 
it is not sufficient to use a single accumulator to calculate 
the output of the vertical filter. Instead, we use a set of 
accumulators, one for each column of the image. If, for 
example, the image contains 1024 pixels in a row, there is a 
set of 1024 accumulators, stored together in a single 1024-
word memory. The accumulators in the set are updated one 
by one as the pixels enter the system. 

The bottleneck for existing implementations of local tone 
mapping algorithms is memory access, so an appropriate 
memory organization for supplying data to the four 
differently sized windows is key to achieving real-time 
performance. Memory is also needed to supply a delayed 
input pixel stream, synchronized such that each input pixel 
appears simultaneously with its local illumination estimate. 
As shown in Figure 3, we divided the fifty-six rows of 
pixels needed for the update of the largest window into ten 
separate memories. Memory one holds fourteen rows of 
pixels and is used as a delay block as well as a stack. 
Memories two, three, four, and five hold seven, three, 
three, and one row of pixels respectively, and they are used 
as delay blocks. Memories six, seven, eight, nine and ten 
hold one, three, three, seven and fourteen rows respectively 
and they are used as delay blocks as well as stacks. All 
these memories are implemented using dual-port physical 
memories. The physical memories are sized up to hold a 
number of rows that is a power-of-two. One additional 
single-port physical memory of sixteen rows, not shown in 
the figure, holds a copy of the last rows of the image. The 
memory organization ensures that all pixels needed in a 
single time step are in different physical memories; these 
pixels include the four pixels at the extreme right sides of 
the four windows, the four pixels at the extreme left sides, 
the one pixel that lies in the (common) middle of the four 
windows, and the delayed version of the input pixel stream. 
Because they are in different physical memories, all pixels 
needed to update the accumulators in a given time step can 
be read simultaneously without conflict. FPGAs, which 
contain large numbers of moderately sized memory blocks, 
are an ideal platform for this sort of memory organization.  

The local illumination estimate for a pixel Lave_local is found 
by selecting the most suitable of the four windows. The 
algorithm used is similar to Reinhard’s original selection 
criterion, and compares the relative difference between a 
window and the next larger window to a set threshold. The 
most computationally complex part of the algorithm is the 
division required for the relative difference. We do this 
division in a hardware-friendly way by converting the 
fixed-point value for the denominator into a floating-point 
value with a mantissa between 0.5 and 1. We then use an 
iteration based on the Newton-Raphson method to find the 
reciprocal, after retrieving an initial guess for the iteration 
from a look-up table that is indexed on a limited number of 
bits of the mantissa. The procedure is such that one look-up 
and one iteration are enough to achieve the required 
precision. 

4.2. Approximating the log average luminance 

The log average luminance subsystem for our real-time 
embedded version of the Reinhard operator calculates an 
estimate of the global luminance of the image. It does this 
by computing the sum of the base-2 logarithms of all the 
pixels in the image. The global illumination is estimated as 
2 raised to this sum, and corresponds to the average of all 
the pixels. Figure 4 shows the block diagram of the log 
average luminance subsystem. It is divided into three main 
subblocks. The first takes the base-2 logarithm of the pixel 
stream, the second computes the average of the logarithms, 
and the third takes the inverse base-2 logarithm of the 
average.  

An estimate of the base-2 logarithm of an integer x can be 
found from the number of leading zeros in the integer; the 
weight of the most significant ‘1’ in x is the integer part of 
the base-2 logarithm, and the remaining bits in x determine 
the fraction part of the logarithm. For example, the integer 
3481 has its most significant ‘1’ in the eleventh position; its 
logarithm can be written as log2(3481) = log2(211+1433) = 
11+log2(1+1433/211).  

We can use the bits following the most significant one bit 
in a number of different ways to estimate the fraction part 
of the base-2 logarithm; we need to compute log2( 1+f ),    
where f is a number between 0 and 1. One possibility 
suggested in [Hau et al. 2004] is to simply use the bits 
themselves directly as an approximation of the fraction 
part. We propose to use a fixed number of bits following 
the most significant ‘1’ to look up the value of log2( 1+f ) 
in a table. The size of the lookup table and the error in the 
estimation depend on how many bits are used to address 
that table, and how many fraction bits are stored in the 
table. As an example, for an address size of eight and word 
size of eight, log2(1+1433/211) = 0.761, so that our estimate 
of log2(3481) is 11.761. Hau’s method gives 11.699. The 
actual value is 11.765. The proposed method gives a 
quantifiable trade-off between hardware cost and the 
percentage error at the output of the log average luminance 
subsystem. 
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The sum of the base-2 logarithms of all the pixels in the 
image is computed using an accumulator. The width of the 
accumulator depends on the resolution and dynamic range 
of the image. For example, a 1024×768 image with 13 bits 
of precision for the base-2 logarithm (five bits for the 
integer part and eight bits for the fraction part) requires an 
accumulator of 33 bits. The log average is found by 
dividing the accumulator by the number of pixels in the 
image, here N = 1024×768. We approximate the reciprocal 
of N with a four-term sum of powers-of-two as 

( )64220 22212 −−−− +++ , and then accomplish the 
multiplication of the accumulator by the reciprocal with a 
series of shifts and additions. The result has thirteen bits of 
precision.  

The final step of the log average luminance is to compute 
the inverse base-2 logarithm of the average. Writing the 
average as an integer part x and a fraction part f, we have 
2(x+f) = (2x)(2f) where 2x is a power-of-two and 2f is a 
number between 1 and 2, which we further break into 1+g. 
A look-up table, addressed with eight bits of f and holding a 
word size of eight bits, is used to determine g, and the ‘1’ is 
added. The result is then multiplied by 2x using a barrel 
shifter. The final output of the log average luminance is 
computed by truncating the fraction bits of the output of the 
barrel shifter. This log average luminance is the global 
estimate of illumination Lave_global for the pixel. 

4.3. Normalizing the pixel 

The normalization block takes the local average around the 
pixel and the weighted log average as inputs  to normalize 
the pixel stream. We add these two quantities to get the 
normalization value of every pixel. The output of the 
system is given by: 

ave_globalave_local
map LaL

LL
∗+

=  (4) 

where a is a weighting factor, Lave_local is the local estimate 
of illumination around the pixel, Lave_global is the global 
illumination estimate and Lmap is the mapped luminance 
represented in floating point. The division method 
previously described is used again here.  

At this point, the output pixel stream is represented in 
floating-point with eight bits of mantissa and five bits of 
exponent. The final step of the system is to convert the 
output pixel stream to fixed-point. For display purposes, the 
normalized pixel stream shoud have an eight-bit gray level 
between 0 and 255. We scale Lmap to this range by first 
adding eight to the output pixel exponent, which is 
equivalent to multiplying the output pixel stream by 256. 
Then, we send the mantissa of the output pixel stream to a 
barrel shifter controlled by the exponent to convert the 
pixel to fixed-point, and saturate the fixed-point output to 
255. 

 
 

Figure 4: The block diagram of the log average luminance. 

 
Figure 3: Memory organization for a four-scale approximate Gaussian pyramid. 
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5. Hardware synthesis details 

The proposed architecture was described in VHDL, and 
synthesized using Altera’s Quartus II v5.0 toolset. It was 
placed and routed on a Stratix II FPGA device. The 
architecture was sized in order to accommodate high 
resolution images of high dynamic range with 1024×768 
pixels and 28 bits per pixel. It should be noted that memory 
requirements would be less for lower resolution images or 
images of smaller dynamic range.  

Table 1 summarizes the synthesis report from Quartus. The 
simplicity of hardware is reflected in the clock speed 
achieved, and in the low utilization of logic cells. The 
implementation has used a significant percentage of the 
available embedded memory. It is clear that processing 
algorithms for high resolution images, in general, require 
significant amounts of memory. If they are to be 
implemented on a single chip, a specialized FPGA device 
with extended memory capabilities is required. 

A typical video frame has horizontal blanking periods of 64 
pixels, and a vertical blanking period of 32 rows. Given 
that we would like to achieve a video frame rate of 60 
frames per second, and that there are (1024+64)*(768+32) 
or 870,400 pixels in the frame when we include the 
blanking periods, we need to be able to process 60*870,400 
= 52.24 megapixels per second. Our architecture, which has 
a maximum operating frequency of 83.83 MHz, can 
accommodate this by taking in one pixel per clock. 

6. Experiments and results 

To test the visual quality of the system we used a set of 
testbench high dynamic range images from the Debevec 
library. We obtain gray scale images by calculating a 
luminance value for each pixel as: P= 0.27R+0.67G+0.06B. 
We then transformed the images into a fixed-point 

representation with sixteen bits of fraction and twelve bits 
of integer, and simulated the images being processed by our 
proposed architecture of the Reinhard-like operator. The 
system is verified by comparing a fixed-point Matlab 
simulation with a simulation of the behavioral VHDL using 
Modelsim software. The only input parameter to the system 
is the weight of the global average a which affects the 
brightness of the output image. We used a fixed a=2 for all 
images except for Vinesunset where a=0.5. Figure 5 shows 
the set of images after processing by our system. 
Evaluating the output images visually, we see that our 
system gives comparable results to the original method.  In 
particular, we do not see halo artifacts; for this set of 
images, these would manifest themselves as black or bright 
bands around the church windows and behind the trees in 
the natural images. Details in the dark areas can be seen, 
and edges look sharp. We have also conducted a study of 
the peak-signal-to-noise ratio (PSNR) contained by our 
hardware friendly approximation to the Gaussian pyramid. 
Our gold standard was a floating point version of the 
Reinhard-like operator that uses Gaussian surrounds with 
standard deviations of 2, 3.5, 7 and 14, respectively. 
Considering the processed image from the gold reference to 
be the signal, and the difference between the processed 
images from the gold reference and the proposed 
architecture to be the noise, the PSNR are given in Table 2. 
The size of these values gives us confidence that the 
approximation is reasonable. We conducted the same 
PSNR study on a similar architecture that uses constant 
weight pyramid rather than our hardware approximation of 
the Gaussian pyramid. The PSNR values for that 
architecture were on average 3dB lower, that is, using 
constant weight windows results in twice as much error as 
our approximation. 

7. Conclusions and future work 

The proposed architecture, with its simplicity and high 
operating frequency, is a promising method for real-time 
display of high dynamic range (HDR) images on standard 
LCD screens. While the example system implemented here 
is for 1024×768 gray scale images with 28 bits per pixel, 
the design can be easily parameterized to deal with images 
of different input dynamic ranges and displays of different 
resolutions. Our future goal is to display a HDR image with 
32 bits per pixel on a traditional LCD at a resolution of 
1280x1024 pixels and a rate of 60 frames per second. The 
current operating frequency is not quite fast enough to 
reach this target. We are also considering extension to color 
images.  

Inclusion of more scales would improve the quality of the 
processed images; the proposed architecture has four 
scales, while the original Reinhard operator has nine. 
Implementation of additional scales is not a simple 
extension, because it will no longer be adequate to use only 
geometric series based on powers-of-two. Still, we believe 
that new bases can be chosen that will translate into simple, 
fast hardware. 

Table 1.  Summary of hardware synthesis report. 

Device Stratix II EP2S90F1020C3 
Total bits of memory 2,952,960 / 4,520,448 

Total logic cells 17553 / 72,768 
Max operating freq. 83.83 MHz 

 
Table 2. Summary of PSNR study, with values in dB. 

 constant 
weight 

our 
system 

memorial 30.9 34.4 
rosette 25.1 28.5 
groveC 29.4 33.5 
groveD 29.8 33.6 

vinesunset 41.4 42.6 
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Figure 5.  The set of images processed by our proposed architecture. 
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