
A Hardware Algorithm for Fast Realistic Image Synthesis

A. C. Yilmaz, S. Hagestein, E. Deprettere and P. Dewilde

A VLSI oriented algorithm, for the implementation of a generalized two-pass
radiosity method is presented. The method allows any reflection behavior,
varying from purely diffuse to perfect mirroring. Moreover, objects may be
defined in terms of curved (Bezier) surfaces. All computations in the pre- and
postprocess are similar and ray-tracing based, consequently a single architecture
can be devised for both passes. This architecture, when built on ray-rotating and
ray-tracing pipelined processors such as Cordics, results in a very high
throughput VLSI implementation of the proposed generalized two-pass
procedure.

1. Introduction

In recent years, new methods for realistic image rendering have been
presented. Ray-tracing and radiosity methods appear to be most suitable for
realistic image synthesis. Ray-tracing methods are conceptually simple and
especially suited to model transparency and near mirroring reflections. The
radiosity method, based on energy transport and conservation principles, models
correctly the diffuse interreflection within an environment. It has been
successfully applied in thermal heat transfer simulations [18,19] and was
reintroduced in computer graphics by Goral et al. [9]. The method is
computationally intensive since it requires the computation of the entries - the
so-called form-factors - in a large matrix and the iterative solution of a set of
linear equations involving this matrix. The computation of form-factors can be
simplified by projecting the patch onto a hemicube [5], though this leads to an
inhomogeneous sampling of the environment above the cube. We will use the
original hemisphere instead of the hemicube. The accuracy of the diffuse
intensity has been improved by an adaptive patch subdivision method [4] in
which the rendering of shadows and penumbras are accounted for. The
implementation proposed in [4] uses a hierarchical data structure requiring
adjacency relationship within the environment. An alternative approach will be
presented in this paper. A first attempt to extend the method to include non­

http://www.eg.org
http://diglib.eg.org

38

diffuse surfaces was proposed by Immel et al. in [11]. Since this method
computes a complete view-independent intensity distribution over all patches,
an unacceptable high cube resolution is required.

A practical method to deal with complex environments was introduced by
Wallace et aI. in [20]. They proposed a two-pass approach consisting of a
view-independent preprocess, based on the radiosity method, and a view­
dependent postprocess, based on ray-tracing. In the preprocess, form-factors are
computed by using a hemicube and a projection technique. In [20], so called
"extra form-factors" representing the extra amount of reflected energy via
perfect mirrors are taken into account. In [15] the restriction to perfect mirrors
was removed by using a procedural iteration to approximate differently defined
extra form-factors. Although this approach can reduce the processing time as
compared to the approach presented by Immel [11], the following drawbacks
can not be ignored. Firstly, in case of high intensity gradients, a lot of memory
is needed to store the visibility information for each non-diffuse patch.
Secondly, as with [4], a very high hemicube resolution is required to render the
directional intensity gradient accurately.

In this paper we present a novel two-pass procedure for the visualizing of
complex environments. The procedure is a modification to the approach in [20],
in the sense that it is both generalized and specialized. It is more general, not
only because it allows any reflection behavior, from purely diffuse to perfect
mirroring, but also because it accepts curved (Bezier) surface descriptions. The
procedure is specialized in that it is optimized in terms of hardware, in particular
high speed ASIC implementation.

The first pass (preprocess): In this pass we compute form-factors by using
a hemisphere and ray-tracing. A set of rays is used to define a reference
hemisphere. Each hemisphere ray refers to a precomputed delta form-factor
specifying the incoming energy within a small solid angle. This energy arrives
from a diffuse patch, directly or indirectly via specular reflections. For each
diffuse patch the rays are rotated, by using Cordie arithmetic, and cast. If the ray
intersects a diffuse patch directly, the corresponding delta form-factor is added
to the form-factor between the two involving patches. If the ray intersects the
same diffuse patch indirectly, via specular reflections, a weighted delta form­
factor is added to the form-factor. So, we compute correct intensities on diffuse
patches by taking multiple specular reflections into account, but without
computing specular patch intensities themselves. The size of the form-factor
matrix is independent of the number of specular patches. The use of a
hemisphere makes an efficient storage of the frustum (or the cone) weight­
factors possible, so that reflections depending on a varying solid angle and a
reflection power (see section 3.3) can be easily modeled. The storage problem
of multiple reflection and transmission within varying frustums has been

39

overcome by applying a backtracking procedure. All intersections are computed
by using a subdivision and a bounding box algorithm. By using a bounding box
algorithm, patches are no longer restricted to planar polygons but Bezier forms
can be processed as well. Once the form-factor matrix is constructed the diffuse
patch intensities are obtained by applying a Gauss-Seidel iterative matrix
equation solver [3].

Instead of the above mentioned adaptive patch subdivision method we apply
an "adaptive patch sampling" method, which avoids the need to using a
hierarchical data structure requiring the adjacency information. The sample
points on patches are controlled by parametric (u,v) coordinates.

The second pass (postprocess): In this pass we cast rays from a given eye
position through the screen pixels and compute intersections with the
corresponding patches. If the intersected patch is diffuse then the diffuse
intensity component of the screen pixel is obtained by bi-linear interpolation
using intensity values computed in the first pass. If the patch is specular then the
specular intensity component is computed by shooting rays confined to a
frustum.

It should be noted that shooting rays from a hemisphere in the preprocess
similar to shooting rays through the displaying screen in the postprocess and the
computation of extra light on diffuse patches, caused by multiple specular
reflections, in the preprocess is similar to the specular intensity computation in
the postprocess. Moreover, because both passes of the algorithm are ray-tracing
based, a single architecture is naturally used to implement both passes. Since all
rays computations are both similar and independent of each other, the whole
procedure is optimally tailored towards a very fast SIMD/wavefront-type
architecture.

The outline of this paper is as follows. In section 2 we give a concise review
of the radiosity method. In section 3 we will show how light energy transfer can
be modeled by defining, what we called, direct and indirect form-factors. Also
in this section we will show how these form-factors can be computed by
approximating patch to hemisphere projections. Adaptive patch sampling is
described in section 4. In section 5, attention will be paid to the postprocess,
including the view dependent specular intensity computation stage and the
rendering stage. In section 6, a preliminary conceptual hardware version is
given. In section 7 it is shown how Bezier patches are processed. Finally some
statistics and software simulation results are given in section 8.

2. The Illumination Equation

Kajiya [12] and Immel [11] have shown that the intensity of light reflected by
a surface obeys the following illumination equation:

40

loutCOout) = ECOout) + hP"COout,Otn) linCOin) cosO dro, (2.1)

where

0in = the incoming direction, described by polar angle °and azimuthal

angle <».
°=the angle between the incoming direction and the patch normal.

lout(Oout) =the intensity in outgoing direction Oout.

ECOour) =the outgoing intensity in direction Oout due to emission.

P"COout,Oin) =bidirectional reflectance/transmittance coefficient.

lin(Otn) = the incoming intensity in direction 0in'

n =the sphere of incoming directions

dro =the solid angle through which [in arrives.

In a number of papers [16,7,10] it was shown that with very little loss of

accuracy, the bidirectional reflection coefficient can be approximated as the sum

of a view-independent portion kdPd and a view-dependent portion

ksps(Oout,Otn)' Further separation of both portions into a reflected and

transmitted part yields:

p"(Oout,Oin) =kdPd + kypy + krPr(Oout'Otn) + ktp/Oout,Oin), (2.2)
where

kd =diffuse fraction of reflected light energy

ky = diffuse fraction of transmitted light energy

kr =specular fraction of reflected light energy

=specular fraction of transmitted light energy, k t

with kd + ky + kr + kt ~ 1.

Reflection models for surfaces have been described by Phong [16], Cook et al.
[7] and Hall et al. [10]. Because of its simplicity, Phongs' model (see section
3.3) is the commonly used one. It is a reasonable approximation of the specular
reflection process [7], based on empirical observations. Substituting (2.2) in
(2.1) gives us:

[out(Oout) =E(Oout) + [d,OUE + [y,out + Ir,outCOout) + It, out (Oout), (2.3)
where

[d,out = kdPdl/inCOtn)COS (O)dro, [r,out(Oour) = kr !Pr(Oout,Otn)lin(Otn)COSCO)dro,

[y,out =kypy !ltn(Oin)cOS (O)dro, [t,out(Oout) =kt fPt(Oout ,Oin)[in (8in)cos(O)dro.
Q

Although we may separate the reflectance into diffuse and specular terms, we
can not compute diffuse intensity components [d,out and ly,out independently of
the specular intensity components [r,outC8out) and [t,out(8our)' Indeed, an

41

incoming intensity I(Sin) is just an outgoing intensity Iout(Sout) of another patch
which in tum can contain both diffuse and specular components. In the
preprocess, the effect of incoming specular intensities is accounted for by
defining what we called indirect form-factors, which will be illustrated in
section 3.3.

Let us assume that all diffuse surfaces in an environment are subdivided into
patches, in such a way that each patch exhibits a constant intensity. Then for
each diffuse patch pair the geometrical relation (form-factor) representing the
fraction of energy leaving a patch and landing on another patch can be drawn
up. The form-factor between a differential area dA i of patch i and another patch
j, see figure 1, is defined [5] as:

1
COS$i cos$j . .

DdAjA = 2 HID(l,j)dAj, (2.4)

) j 7tr

where

HID (i,j) = 1 if patch i sees patch j and 0 otherwise.

The form-factor between two diffuse patches i and j is found by taking the area
average of (2.4) and is given by:

costh·costh .1- r r '1'1 'I'J HID (i,j) dAjdA i (2.5)
Ai 1\j-Aj 7tr2

If the distance between the two patches is large enough, then the integrand of
the inner integral in (2.5) remains almost constant [5], hence (2.4) can be used
instead of (2.5) to compute the form-factor. Once the form-factors between all
diffuse patches have been determined, a set of linear equations can be deduced.
In matrix form they look as follows:

(2.6)
where

FR,G,B' IR,G,B

IR,G,B is the vector of intensities,
ER,G,B is the vector of light source intensities,
FR,G,B is the form-factor matrix.

Each entry F R,G,B consists of the product of a form-factor and a diffusion factor
(kdPd or kypy) of the corresponding patch pair. This formula represents the
radiant intensity equation of an environment. The matrix equation can be
advantageously solved by using a Gauss-Seidel iteration method.

42

Ijlj
7

Ai

Figure 1. Fonn-factor geometry.

3. Hemisphere and Form-factors

3.1 Form-factors Between Diffuse Patches: Direct Contributions

As stated in the previous section, a form-factor represents the fraction of
energy leaving one surface and landing on another. The direct form-factor
specifies the direct energy transfer between two diffuse patches and is
proportional to the projection of one patch onto a hemisphere placed on the
other patch (figure 2a). The direct form-factor from diffuse patch i to diffuse
patch j can be defined as:

Dij = ~ HG'(ll,~) cos~dlldxi,

which is a spherical coordinate equation to (2.4), for r=1.

Gj/'·~ Gj //' .­.~,: ,~'~ .. ,,'" " ,/ ","
" " . '

............ ..

~.. "".'" --..~

<\:<;;;:J
2a / 11

,/;Mr .. "' "''''

Figure 2. Hemisphere projection (a) and hemisphere discretization (b).

Discretization of the hemisphere into constant differential areas M, figure 2b,
yields:

43

lim 1..I;MICOSXI :::; M I;COSXI = K-1I;COSXl'
Mr-~O X 1 X 1 I

for M sufficiently smaiL The normalization factor K M -IX results from the
fact that the fraction of energy emitted within the entire hemisphere equals 1.
Hence,

X N

K M = I;COSXk,

k=l

where N is the total number of differential areas on the hemisphere. Each
differential area MI, angle, Xl thus has its own contribution to the form-factor,
called delta form-factor bDij K-1 cosXI'

3.2 Hemisphere Discretization

Although a uniform discretization of the surface of the hemisphere is not easy
and does not lead to a uniform distribution of rays defining the hemisphere, a
simple and efficient, yet effective method is the following. The rays are such
directed that they intersect the hemisphere on circles parallel to the xy-plane
with polar angle jde, de= constant andj= O,l,... ,N, see figure 3.

z
circle 0 kMl

circle k

circle N
y

x

Figure 3. Hemisphere circles

Let the number of rays intersecting circle N, which lies in the XY plane, be
equal to M. The distance between two adjacent rays within this circle is then
Ax =2xM-1• We can also make the distance between two adjacent circles
equal to At, by subdividing the hemisphere into M 14 circles, which makes
de 2xM-1• Two adjacent rays within an arbitrary circle j with angle jde (see
figure 3) should then also be spaced by that same distance At. The number of
rays through circle j must therefore be approximately equal to

Nj round(MsinUde)). (3.1)

44

The distance tlxj between two adjacent rays through circle j is then

tlx. = 2nsinUile)
J round(M (sinUile»

Once the rays that define the quantized hemisphere are determined, their
individual contribution is computed and stored in a look-up table. Notice that all
rays lying on a single circle have the same delta form-factor. Hence the number
of contributions that has to be stored equals the number of circles on the
hemisphere. The same hemisphere can also be used to define the frustums that
are needed to model directional reflection functions. This will be exposed in the
next section.

Remark: By rounding off the number of rays through circle j, Msin Uile), to an
integer that is a multiple of four, only one quarter of the entire hemisphere has
to be stored. The error induced by this quantization becomes smaller as the
number of rays increases.

3.3 Indirect Contributions to Form-factors

In this section we show how extra form-factors can be computed by taking
multiple specular reflections into account, as suggested by Wallace et al. in [20],
without computing specular patch intensities. In [20] the form-factor was
defined as the quantity specifying the total energy transfer between two diffuse
patches. However, this transfer can take place via a strictly direct route (if there
are no obstacles) as well as via specular reflections, see figure 4. Consequently,
we may write the total received energy of a patch as the sum of the energy
received via direct and indirect, specular reflective, paths (see figure 4). These
are represented by a direct (Di) and a indirect (Sij) form-factor contributions
respectively, thus:

path
Fi) = Dij+Sij = Dij+ L S~

p=!
where

Fi) is the total form-factor.
D'j stands for the direct energy transfer from diffuse patch i to diffuse
patch j,
Sij stands for the energy transfer via (multiple) specular reflection(s),
path is the total number of indirect routes along which energy transfer
takes place.

The computation of Dij has been discussed in section 3.1. Here we shall put
emphasis on Sij, and we will confine ourselves to a practical example. Suppose
that patches 3 and 4 reflect light according to Phong's reflectance function [16]
which is given by (cos(a)n), where n is the reflection power and a is an angle
between the actual reflection direction and the mirror direction. The specular

45

virtual diffuse patch 2' diffuse patch 2 virtual diffuse patch 2"

perfect
specular pif£.h 3

,
,perfect

specular patch 4

diffuse patch I
~~

I .. 2
Sl2 512

Figure 4. Fractions of the form-factor via perfect specular patches.

non­
diffuse
patch 3

5a
diffuse patch I

patch 3

5b

non­
diffuse
patch 4

Figure 5. Fractions of the form-factor via non-diffuse patches.

reflectance of a patch may vary from almost diffusely (n >1) to perfect
mirroring (n~oo). To model such a reflectance, a so-called view-frustum is
used which in essence is a cone around the z-axis of the hemisphere in figure 3
and defined by a corresponding number of rays from the hemisphere. The
frustum size can be adapted to a particular patch reflection low by choosing an
appropriate number of rays from the hemisphere. A reflection frustum is
directed in the correct position by rotating the rays confined to the frustum. For
a given reflection power n, each frustum ray is weighted by a factor, which
depends on the reflection angle a.

46

The indirect fonn-factors, e.g. between patch 1 and 2 in figure 5a, can be
fonnulated by simply tracing a ray from the hemisphere (patch 1) until it
arrives at diffuse patch 2 after a number of specular reflections. For each
hemisphere ray intersecting specular patch 3, a frustum of rays will be cast in
the reflection direction. Then the contribution of a hemisphere ray to the indirect
fonn-factor S 12 in path 1, will be multiplied by a factor whose magnitude
depends on the position of the ray within the frustum and the number of frustum
rays that hits patch 2. This factor is equal to 1 if all frustum rays hit patch 2 and
o if all rays miss it. Assuming that patch 3 has a reflection power n 3, the
additional fonn-factor between patches 1 and 2 via one reflection (path 1) as
shown in figure 5a, is given by:

Y Yk n
I }sb =K-1L COS($k) {kS3 K,-1 L (cos(al» 3

k=1 1=1

where

Y is the number of hemisphere rays that hit patch 3,
Yk is the number of frustum rays that hit patch 2,
K,-1 is the nonnalization factor of the frustum.

K,-1 results from the observation that the incoming light energy is equal to the
scattered light energy in the outgoing direction (if there is no absorption).
Similarly, the indirect fonn-factor via two reflections (path 2), see figure 5b, can
be written as:

Z Zk Zkj n
I { fI }}SI2 = K-1 L COS($k) {k

S 4K,-1 L (cos(at»n 4 ks 3K ,,-1 L (cos(am» 3

k=l 1=1 m=l

where

z is the number of hemisphere rays that hit patch 4,
Zk is the number of frustum rays on patch 4 that hit patch 2 via patch 3,
zki is the number of frustum rays on patch 3 that hit patch 2,
K,-l is patch 4 frustum nonnalization factor.
K,,-l is patch 3 frustum nonnalization factor.

As mentioned before, we can see frustums as part of the hemisphere. Now
we shall discuss the computation and the storage of the weight-factors that are
assigned to the frustum rays. Consider the hemisphere in figure 3, with N
circles on its surface: j=O,l, ... ,N-l. (The circle with number N is not relevant
because of the zero contribution.) Then it is possible to construct N-l
U=O,1,... ,N-2) frustums with different sizes. Observing that all rays lying on a
single circle have equal contributions, only one weight-factor for each circle has
to be computed. Hence the storage capacity can be reduced considerably.

47

The circle 0, which has a zero radius, is represented by one ray, i.e. from
(3.1), N 0=1. For circle j the number of rays Nj is given by (3.1). The weight­
factors are computed by discretizing the Phong model in accordance with the
hemisphere discretization. The reflection power and angle then become n =nk
(k=O,l, ... ,N-2) and a = j!18 (j=0,l, ... ,N -2), respectively. The weight-factor for
circle j within a frustum with size k is then:

(cos(j!18))nk
Wjk = k

L (cos(i!18))nk N j

i=O

The denominator provides for the normalization. Using this formula, a weight­
factor table can be set up, as follows:

frusrum
size k

circle

0

2

N-2

N-l

0 2 N-2 N-l

WOl W O,2 W O,N-2 WO,N-l

0 WI,I W I ,2 W I ,N_2 WI,N_I

0 0 W 2,2 W 2,N-2 W2,N-I

0 0 0 W N - 2,N-2W N - 2,N-I

0 0 0 0 WN-1,N-l

Remark: The column k=N -1 represents the contribution of the hemisphere rays
to the form-factor, which is a limiting case where the frustum (cone) becomes
the hemisphere itself.

3.4 Aproximation of Projections by Ray-Rotating and Ray-Tracing

The projection of area Gj (patch j) onto the hemisphere placed on area Gj

(patch i) is computed by shooting one ray from the center of patch i through
each differential area M[of the hemisphere (see fig. 2b). If a ray intersects
patch j, then its contribution ODij is added to Dij. In case one ray has
intersections with several patches, the contribution of the nearest patch is taken.

Shooting the entire hemisphere rays from an arbitrary patch is done in the
following way. The set of hemisphere rays is created in advance, assuming an
initial orientation along direction vector (0 0 1) T. The direction vector (X Y Z)
and delta form-factor assigned to rays are stored for each ray. Then the
hemisphere is placed on the patch by rotating all hemisphere rays over the angle

48

between the z-axis and the patch nonnal, using two Cordie rotation processors
[2][13]. The Cordie is capable of rotating a 2 dimensional vector (figure 6). The
rotation angles 9 and ~ are computed from (0 0 1) T and the patch nonnal (nx ny
nzl by another Cordie, which is not indicated in figure 6. ~=arctan(nx-l. ny),
9=arctan(nz-1(nx' cos~+ny' sin~)), and the rotated vector becomes:

(Xe,<\I'Y <\I,Ze) = Roto,Ijl(XYZ),

Figure 6. Rotation section

4. Adaptive Patch Sampling

In order to improve image quality, a patch can be subdivided into subpatches
(or elements) in case it exhibits a high intensity gradient. In [4] this is done by
using an adaptive patch subdivision method. This approach requires adjacency
infonnation, which is used to ensure the continuity of the intensity along the
element edges in the rendering stage. Rather than subdividing a patch into
smaller patches or elements, we compute the center-point of each of these
elements, by which the number of patches remains constant. The center-points
are obtained by using an "adaptive patch sampling" method. Before an outline
of this method can be given, some background infonnation regarding the
substructuring technique is given first. For more details we refer to [4,14].

4.1 Substructuring

In the substructuring technique, element-to-patch fonn-factors instead of
element-to-element fonn-factors are considered. The patch-to-patch fonn­
factor is obtained by taking the area weighted average of the element-to-patch
fonn-factors, that is:

Fij =T
1

L
R

Fiq,jMiq (4.1)
I q=l

where

Fiq,j = the fonn-factor between element q (of patch i) and patchj.
Fi} = the fonn-factor between patch i and patch j.
R = the number of elements on patch i.

49

The coarse intensities (Ii) of the original patches are computed from the set of
equations (2.6). From these intensities, the element intensities are obtained by
using element-to-patch form-factors:

(4.2)
where

I iq =the intensity of element q of patch i.
I j ;;;; the coarse intensity of patch j.

These element intensities accurately reflect the high intensity gradients on
patches. The alternative patch sampling method is described in the next section.

4.2 Patch-Sampling

The idea behind the patch sampling method is based on the fact that actually
only the' center point of each element and the element-to-patch area ratio are
required to compute form-factors. The elements referred to in this section are
imaginary elements; their vertices are not relevant during the adaptive patch
sampling process. The element center-points (or patch sample points) are
defined in a global (x,y,z) coordinate system and their locations on the patch are
kept up with local (u,v) coordinates. Both sets of coordinates are determined by
using the binary subdivision technique. The ratio of the areas of a element and
the patch, specifies the contribution of an element form-factor to the patch
form-factor. In fact, this ratio can be interpreted as a weight-factor that can
easily be approximated during the subdivision process. Let n be the number of
subdivisions needed to obtain a particular imaginary element (q) and let the area
of the patch i in the (u,v) coordinate system be normalized to 1, then the
weight-factor, W iq' that has to be attached to the corresponding sample point is
2-2n . Hence, formula (4.1) can equivalently be written as:

R

Fij L WiqFiq,j (4.3)
q=l

Before starting the patch-sampling procedure, an initial guess must be
provided for the number of sample points for each patch on which high intensity
gradients are expected. From these points, form-factor computations are carried
out assuming (temporarily) that the intensity of an area Miq surrounding
sample point q of patch i is constant. For all patches and for all sample points,
the form-factors Fiq,j are determined. Applying (4.3), (2.6) and (4.2) yields one
or more intensity values for each patch. These intensity values are obtained for
an initial estimate of the possible gradient that might occur on a patch. To find
out whether many samples are needed on a patch, a gradient test algorithm is
invoked. This algorithm detects areas with high intensity gradient that have to
be sampled finer in a next step. To get the new sample points, a patch is

50

subdivided one step further. After this, the new fonn-factors for these points are
computed and added to the element-la-patch fonn-factor matrix by removing
the old row and inserting the four new rows. Naturally these rows provide more
accurate element-to-patch fonn-factors. Again, applying (4.3), (2.6) and (4.2)
will result in more intensity values per patch and hence will lead to a higher
image quality. The whole procedure is adaptively repeated until the required
criterion is met or the maximum subdivision depth is reached.

In case when there is an extreme high intensity gradient, taking more
samples locally is not practical, since the intensity data per patch would increase
drastically. A better solution here is to cut the patch along the sharp edge.

4.3 Gradient Test

To perfonn the gradient test, a 4-sample-point window is placed on the patch
and a comparison procedure is activated to find out whether there is a high
gradient or not. This procedure locally compares the differences among the
intensity values against a prespecified margin. In case of a high intensity
gradient, the whole patch is further subdivided to obtain a new set of center­
points. If a window lies on a part of the patch with a high intensity gradient,
then intensities for these new center-points on that part are computed via fonn­
factor computations. On the other hand, if the window lies on a part of the patch
that has no high intensity gradient, then intensities of the new center-points on
these parts are obtained via bi-linear interpolation [5] of the intensities of the
previous step. Although the subdivision of the whole patch is not necessary in
case the gradient is local, it turns out that this procedure not only simplifies the
gradient test algorithm, but also provides for a unifonn intensity grid which is
anyhow desired for the rendering process. In order to minimize storage
requirements, one can also store, for each patch intensities hierarchically and
perfonn the interpolations on the fly during the rendering stage.

When the intensity values for the new generated points are known, the
gradient test algorithm is applied again. If the required criterion (margin) is not
met, the whole procedure will be repeated. At tennination, the adaptive patch
sampling procedure provides a set of intensity values for each patch on which a
high intensity gradient was expected. Finally a grid is placed on each patch
such that each mesh of the grid embraces 4 sample points, and grid vertex
intensities are derived from the sample point intensities by interpolation. Only
vertex intensities are stored; this reduces overhead. Moreover, in the rendering
stage interpolation for pixel intensity computation, is now done between the
vertices; this is simpler than between sample-points.

51

5. Rendering

The preprocess provides an intensity grid for each patch. The resolution of
the grid varies depending on the intensity gradients on patches.

The postprocess computes the actual pixel intensities for red, green and blue
by tracing one ray through each pixel of the displaying screen. If the ray hits a
patch, two different (u,v) coordinates are reported to the host. The first (u,v) pair
is needed to indicate in which mesh an intersection point is located, and the
second pair is needed to determine the actual intersection point within such a
mesh. Then, to compute the diffuse intensity component for a screen pixel, we
can interpolate between intensities of the corresponding mesh points by using
both (u,v) coordinates. If the pixel ray hits a specular patch, then besides the
interpolated diffuse intensity component, if any, the specular intensity
component is computed by placing a frustum on the patch. If a frustum ray hits
a specular patch, a frustum is placed again, and so on. The number of recursive
steps can be controlled in two ways. One is by limiting the depth of recursion
adaptively according to the amount of the contributed intensity. The other is by
reducing the frustum size for successive bounces.

Notice that shooting rays trough the displaying screen is similar to shooting
rays from the hemisphere and the computation of specular intensity components
corresponds to the computation of indirect form-factors. This means that the
same computer architecture can be used for both pre- and postprocess.

6. Hardware

At this stage it is not yet clear which tasks of the entire image rendering
algorithm are suitable to be implemented in software or in hardware. As far as
the hardware is concerned, we therefore restrict ourselves to the heart of the
system which is the computation of form-factors and the solution of a set of
equations. All other computations such as bilinear interpolation and adaptive
patch-sampling will be assumed to be performed by the host.

Let R be the number of hemisphere rays and P the number of patches within
the environment. For a purely diffuse environment a number of p. R rays will be
rotated and shot. If space subdivision is not used, all patches must pass each ray,
so the number of intersection computations becomes p2. R, resulting into p. R
intersections. The time needed to compute the form-factors is therefore
proportional to p2. R, which makes the intersection computation the most time
consuming operation of the algorithm. Specular patches will cause an even
greater number of rotation operations and intersection computations.

The rotation operations are performed using a special high-speed Cordic
rotation processors [13]. Our goal therefore is to design an architecture built
around several intersection computation blocks.

52

6.1 	Intersection Computation

The hemisphere is rotated and placed on each patch. The rays that are shot
have the patch center as their origin. Each ray can accordingly be defined as:

aH~= [~~j +I' [ij. with II~II = 1.

In view of hardware implementation we chose an iterative bounding box based
algorithm for the intersection computation, as follows.

REPEAT UNTIL STACK IS EMPTY OR ACCURACY CRITERIA ARE MET:
POP PATCH FROM STACK

- SUBDIVIDE PATCH INTO FOUR SUBPA TCHES

- FOR EACH SUBPATCH DO

BEGIN COMPUTE BOUNDING BOX:
MAXX,Y,z(CONTROLPOINTS)= XMAX, YMAX ,ZMAX

MINX,Y,z(CONTROLPOINTS)= XM1N,YMIN,ZMIN

COMPUTE SIX INTERSECTIONS OF BOUNDING BOX WITH RAY:

tXMAX,tYMAX,tZMAX,IXMJN,tYMJN,tZMJN; where tXMAX a;l. (XMAX-XO)
IF MIN(tXMAX ,tyMAX, tZMAX)~ MAX(tXMIN ,tYMJN.tZMJN) THEN
hit:=true, PLACE SUBPATCH ON STACK, UPDATE (u,v) COORDINATES

END.

The advantages of this method are:

1. 	 At termination, the algorithm produces the parametric (u,v) coordinates of
the intersection point directly.

2. 	 The t-value, that is the distance between the origin of the ray and the
intersection point is automatically produced as well as the intersection
point itself. The t-value is used for distance comparison, the intersection
point for multiple reflection/transmission.

3. 	 The accuracy can be varied by simply adjusting the maximum subdivision
level and the minimum box dimension.

The system architecture used for the intersection computation is shown in figure
7, which is similar to the architecture for ray-tracing bicubic patches in Bezier
form as proposed by Pulleyblank in [17]. See also section 7.

53

test

stack

acy cri eria

Figure 7. Intersection computation

6.2 Multiple Reflectance

As stated in section 3, due to multiple reflection and/or transmission each
primary (hemisphere or pixel plane) ray can possibly generate a tree of
frustum-rays to be shot. Such a tree could possibly become too large, which
makes shooting all rays almost impossible. This problem is naturally solved
using a backtracking procedure. The frustum axes, that is the reflected or
transmitted rays that have the largest contribution of all frustum rays, form the
tree's skeleton. The skeleton is first composed by only considering the axis of
the reflected and/or transmitted frustums. When the contribution of an next axis
has become no longer significant after several bounces, the skeleton stops. The
last frustum axis is taken from the skeleton and its frustum rays are then shot. It
may again be possible for one of these rays to be stored as another frustum axis.
If all rays within a frustum are shot, then the frustum that is one level higher in
the tree is shot, and so on. This backtmcking procedure is carried out until all
frustums have been shot for one primary ray. The skeleton must be stored
together with all necessary information that is required to generate the frustum
rays. The following values have to be stored:

the frustum axis' origin and direction vector (or direction angles e and $),

- the frustum size and the number of rays within the frustum that already have
been shot

54

6.3 Functional Block Diagram

A preliminary functional block diagram for the architecture is illustrated in
figure 8. 'The intersection computation block, shown in figure 7, computes the
intersection point as described in section 6.1 and passes the required
information, such as the number of the intersected patch with its physical
description, the intersection point and the contribution (delta form-factor) of the
ray. In the kd processor the direct contributions to the total form-factor are
computed. 'The indirect contributions, via specular reflection and transmission,
to the total form-factor are computed in the kt and kr processors respectively. If
the contribution of the skeleton ray is greater than the threshold value Ll, the
transmitted and/or reflected axis ray is computed, pushed on the stack with all
necessary information (see sub section 6.2) and immediately shot again. When
the contribution of the specular ray(s) is no longer significant, the skeleton is
ended. 'The two circles labeled Cordie provides for the steering of the primary
and secondary rays. 'The whole procedure is supervised by the block labeled
control.

hemisphere rays

stack

6

reflected ray

Figure 8. Functional block diagram

6.4 Solving the Radiosity Equations

A less time consuming stage of the algorithm is the solving of the radiosity
equations (2.6), using an iterative Gauss-Seidel method. A hardware definition

55

for this stage has already been proposed in [2]. The architecture presented there
is built around ASIC processing elements (PEs), which are (pipelined)
multiplier/accumulator-processors.

6.5 Hardware Considerations

If the threshold value ~ is kept independent of the frustum size, the error
made by the selection of rays to be shot could become very large if the number
of rays within one frustum is large. The threshold value ~ should therefore take
on a value depending on the number of rays within a frustum. The complexity of
the architecture depends on the required accuracy for the intensities of the
screen pixel. The screen resolution determines the number of bits needed to
express the pixel intensities and the form-factors, which also indirectly
determines the number of rays that must be shot from one hemisphere. A
thorough investigation in this area is most necessary. Among several further
considerations, the most important ones are the following:

- The computation of the reflected and transmitted rays (see figure 8) could be
done on board or externally using an extra Cordic-processor.

- The stack for saving the skeleton could become too large to stay on board.

- The subdivision algorithm automatically produces the (u,v) coordinates of
the intersection points, which can be used for interpolation when using
quadrangular patches. When using different, e.g. triangular patches, another
interpolation procedure has to be used.

7. Bezier Patches

A 3D Bezier curve is defined by 16 control points, of which only the 4 comer
points actually lie on the surface. A surface representation can be found by
subdivision using the control points [17]. After one subdivision step the
resulting points define four Bezier sub patches, each determined again by 16
points. The subdivision is repeated until the sub patches may be considered
having a constant intensity. In the radiosity method the intensity of each patch
is only computed for the center-point of this patch. Without loss of accuracy the
leaf patch takes on the intensity value computed for its center-point. In order to
compute the form-factors between two arbitrary Bezier patches, we used only
16 center-points and their 16 normals. The hemisphere is placed on the patches
centered around each of the 16 points. Let u and v be the parameters along the
Bezier patch, we obtain after 3 subdivisions 16 points lying on the surface with
(u,v) coordinates u =2(n+ 1/2)/8, v 2(m+ 1/2)/8, with 0 ~ m, n ~ 3. The normal
to the surface in such a point is found from the four comer points obtained after
2 subdivisions, by computing the cross product of the two estimated tangent­
vectors.

56

The ray-patch intersection computation is carried out by an iterative
bounding box procedure as described in section 6.1. The' advantage of this
procedure is that the (u,v) coordinates of the intersection point are directly
available. The (u,v) coordinates are used to determinate which of the 16
subpatches is hit. The u,v coordinates are also used during the rendering stage,
where again a bilinear interpolation procedure is applied. The rendering of
shadows across the surface can be accomplished by adaptive patch sampling,
similarly as for the polygonal patches (see section 4).

8. Statistics and Simulations

With a software version of the algorithm some simulations have been carried
out for various values of the parameters, such as the number of hemisphere rays,
number of hemisphere circles and the radiosity of patches. In figure 9a is shown
how two radiosity values for RED (bR), for two arbitrary patches, converge as
the number of hemisphere circles R increases. In figure 9b is shown how the
total number of hemisphere rays depends on the number of hemisphere circles
used. The time needed to compute the form-factors is proportional to the
number of hemisphere rays (section 6),

80

70

60
bR

50

40

r ~
r---:~

30

0 10 20 30 40 50

9a Hemisphere circles 9b Hemisphere circles

Figure 9. Converging radiosity value (a), and number of hemisphere rays
(b).

In picture no.1 a floor is shown that is composed of four different reflecting
parts. From left to right : frustum angles: 8,6,4,2 degrees, number of frustum
rays: 195,121,61,19. All patches in picture no.2 are purely diffuse and/or
perfect mirror reflecting. The two-pass approach proves to be an efficient
method to integrate diffuse and specular reflectance behavior. The computation
of indirect form':factors accounts for the extra amount of light on the floor
directly in front of the mirror. A Bezier teapot consisting of 39 Bezier patches
is shown in picture no.3. The number of form-factors determined for this
picture is (39* 16)2. An approximation of each Bezier patch by 50 triangular

57

58

patches would have required (39* 50)2 form-factors to be computed, which
implies 13 times as much computation time and 3 times as much memory
demand. Picture no.4 enlights the patch sampling method. The maximum
subdivision depth has been chosen 4. The number of form-factors, that is the
number of sample points computed for the floor equals 28.

9. Conclusions

In this paper we have presented a hardware algorithm for the synthesis of
realistic 3D images on an engineering workstation.

Both form-factor computation and image rendering (including intensity
computation on specular surfaces) are based on ray-tracing. The computation of
patch to hemicube projection has been replaced by an estimation of patch to
hemisphere projection, which is particular suitable for ASIC implementation.
Moreover, this approach allows a simple selection of a delta form-factor
representing an amount of energy within a small solid angle originating directly
from a diffuse patch, or indirectly via specular reflective patches.

Shadows along surfaces are computed by applying "adaptive patch
sampling", indicating that the number of points on patches grows but not the
number of patches, thereby saving local and global memory.

A set of rays defining the hemisphere are stored in advance. For each diffuse
patch they are rotated according to the patch orientation and cast independently.
Cordie arithmetic is used to perform the rotation operations. A bounding box
subdivision procedure is used to compute the ray-patch intersection point. The
patches may have polygonal as well as Bezier forms.

Since the form-factor computation in the preprocess and the image rendering
in the postprocess are solely ray-tracing based, a single SIMD/wavefront-type
architecture is naturally used to implement both processes. This architecture,
when built on ray-rotating and ray-tracing pipelined processors allows for a
very high throughput VLSI implementation of the generalized two-pass
procedure.

As mentioned before, a set of accuracy criteria must be decided upon before
a final architecture can be designed. Also the possibility and consequences of
including non uniform rational Bezier curves (NURB)s has to be investigated.

The (u,v) coordinates play an important role during several stages of the
algorithm. The subdivision hardware that was proposed in this paper is very
suitable to generate these coordinates, but it is not suitable for pipelining the
operations. This problem can be overcome by modifying the subdivision
strategy.

59

Since the size of the fonn-factor matrix can not grow larger than the
available storage capacity, a restriction to the number of patches within
envirorunents may be necessary. This restriction can be removed by using a
progressive refinement technique. This has already been presented in [6] for
diffuse surfaces. The algorithm presented in our paper can be easily adjusted in
that way. The final architecture of the generalized two-pass 3D image synthesis
engine will also allow for an extended version of the progressive refinement
method given in [6].

10. 	Acknowledgments

The authors wish to thank Professor F.W. Jansen of the department of
Computer Sciences at the Delft University of Technology (The Netherlands), for
many valuable discussions. They also whish to thank Erik Platzbecker for his
contribution to the software.

11. References

1. 	 Blinn, J.F., "Models of Light Reflection for Computer Synthesized
pictures," Proceedings of SIGGRAPH'77, In Computer Graphics, Vol. 11,
No.2, 1977, pp. 192-198.

2. 	 Bu J.and E.F.Deprettere, "A VLSI System Architecture for High-Speed
Radiative Transfer 3D Image Synthesis", The Visual Computer, Vol. 5
No.3 June 1989.

3. 	 Bu J. and E.F.Deprettere, "A Parallel VLSI Algorithm for Fast Sparse
Matrix Solution by Gauss-Seidel Iteration". Proc. ISCAS '87, Vol. 3,
pp.1052-1055, 1987.

4. 	 Cohen, M.F, Greenberg, D.P, Immel, D.S, Boch, PJ, "An Efficient
Radiosity Approach for Realistic Image Synthesis", IEEE Computer
Graphics & Applications Vo1.6 No.2 March 1986 pp.26-35.

5. 	 Cohen, M.F, Greenberg, D.P, "The Hemi-Cube, A Radiosity Solution for
Complex Envirorunents", ACM Proceedings of SIGGGRAPH '85 Vo1.19
No.3, July 1985 pp.3I-40.

6. 	 Cohen, M.F, Chen, S.E, Wallace, J.R, Greenberg, D.P, "A Progressive
Refinement Approach to Fast Radiosity Image Generation", Computer
Graphics, Vol. 22, No.4, August 1988, pp. 75-84.

7. 	 Cook, R.L, Porter, T, Carpenter, L, "Distributed Ray-Tracing", Computer
Graphics I8,3,pp.137-146, 1984.

8. 	 Foley, J.D. and Darn, van A, "Fundamentals of Computer Graphics".
Addison-Wesley Publishing Co., 1882.

60

9. 	 Goral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg, Bennet
Battaile, "Modelling the Interaction of Light Between Diffuse Surfaces",
Proceedings of SIGGRAPH'84, ill Computer Graphics, Vol. 18, No.3,
July 1984, pp. 213-222.

10. 	 Hall, R.A. and Greenberg, D.P., "A Testbed for Realistic Image
Synthesis", IEEE Computer Graphics and Applications, Vol. 3, No. 10,
Nov. 1983, pp. 10-20.

11. 	 Immel, David S., Micheal F. Cohen, Donald P. Greenberg, "A Radiosity
Method for Non-diffuse Environments", Proceedings of SIGGRAPH'86,
ill Computer Graphics, Vol. 20, No.4, Aug. 1986, pp. 133-142.

12. 	 Kajiya. J.T .• "The rendering Equation", Computer Graphics, Proceedings
Siggraph 86, Vo1.20, No.4, August 1986, pp. 143-150.

13. 	 Lange de A.A.J., Hoeven van der AJ., Deprettere E.F., Bu J., "An
Optimal Floating-point Pipeline CMOS CORDIC Processor", Proc.
ISCAS '89, Vol. 3, pp. 2043-2048,1988.

14. 	 McGuire W. Gallagher R.H. "Matrix Structural Analysis", John Wiley &
Sons, New York, 1979.

15. 	 Min-Zhi Shao, Qun-Sheng Peng, You-Dong Liang, "A New Radiosity
Approach by Procedural Refinements for Realistic Image Synthesis",
Computer Graphics, VoL 22, No.4, August 1988, pp. 93-101.

16. 	 Phong, Bui Tuong, "Illumination for Computer Generated Pictures,"
Communications of the ACM, Vol. 18, No.6, June 1975, pp. 311-317.

17. 	 Pulleyblank, R.W, "The Feasibility of a VLSI Chip for Ray Tracing
Bicubic Patches", IEEE CG&A, march 1987 pp.33-44.

18. 	 Siegel R. and Howell J.R, "Thermal Radiation Heat Transfer",
Hemisphere Publishing Corp., Washington DC.,1981.

19. 	 Sparrow, E.M. and Cess, R.D. "Radiation Heat Transfer", Hemisphere
Publishing Corparation Washington DC., 1978.

20. 	 Wallace, J.R, Cohen, M.F, Greenberg, D.P, "A Two Pass Solution to the
Rendering Equation - A Synthesis of Ray-Tracing and Radiosity
Methods", ACM Proceedings of SIGGRAPH'87 Vol. 21, No.4, July
1987, pp. 311-320.

