Joint Virtual Reality Conference of EuroVR - EGVE (2011)
S. Coquillart, A. Steed, and G. Welch (Editors)

Novative Rendering and Physics Engines to Apprehend
Special Relativity

T. Doat 713 , E. Parizot 2 and J-M. Vézien 8!

ICNRS/LIMSI/VENISE group, Orsay, France
2APC — Paris 7 University, Paris, France
3Paris-Sud 11 University, Paris, France

Abstract

Relativity, as introduced by Einstein, is regarded as one of the most important revolutions in the history of physics.
Nevertheless, the observation of direct outcomes of this theory on mundane objects is impossible because they can
only be witnessed when relative velocities close the speed of light are involved. These effects are so counterintuitive
and contradicting with our daily understanding of space and time that physics students find it hard to learn Special
Relativity beyond mathematical equations and to understand the deep implications of the theory.

Although we cannot travel at the speed of light for real, Virtual Reality makes it possible to experiment the effects
of relativity in a 3D immersive environment. Our project is a framework designed to merge advanced 3D graphics
with Virtual Reality interfaces in order to create an appropriate environment to study and learn relativity as well
as to develop some intuition of the relativistic effects and the quadri-dimensional reality of space-time.

In this paper, we focus on designing and implementing an easy-to-use game-like application : a carom billiard.
Our implementation includes relativistic effects in an innovative graphical rendering engine and a non-Newtonian
physics engine to treat the collisions.

The innovation of our approach lies in the ability i) to render in real-time several relativistic objects, each moving
with a different velocity vector (contrary to what was achieved in previous works), ii) to allow for interactions
between objects, and iii) to enable the user to interact with the objects and modify the scene.

To achieve this, we implement the 4D nature of space-time directly at the heart of the rendering engine, and
develop an algorithm allowing to access non-simultaneous past events that are visible to the observers at their
specific locations and at a given instant of their proper time. We explain how to retrieve the collision event between
the pucks and the cushions of the billiard game and we show several counterintuitive results for very fast pucks.
The effectiveness of the approach is demonstrated with snapshots of videos where several independent objects
travel at velocities close to the speed of light, c.

Categories and Subject Descriptors (according to ACM CCS): 1.2.3 [Computer Graphics]: Physically-
Based Modeling—I1.2.3 [Computer Graphics]: Modeling&Simulation—I.2.4 [Computer Graphics]: Realtime

Rendering—I.2.3 [Computer Graphics]: Collision Detection—I.2.4 [Computer Graphics]: Edutainment—

1. Introduction: understanding relativity by simulation

Learning physical sciences often requires imagination and
a solid ability to abstraction. This is particularly true in the
case of the theory of Relativity, even limited to the case of
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Special Relativity, which modifies our basic intuition about
space and time, and replaces them by notions that are not
directly accessible to ordinary human experience.

The theory of Relativity teaches us that space and time
are neither absolute, i.e. independent of the observer (or
the reference frame associated with the observer), nor
independent from one another. Instead, they make up a
global geometric structure with 4 dimensions, called space-
time, whose “time” and “space” components depend on the
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reference frame used to describe physical bodies and events
in terms of positions and instants. In particular, the length
of a given object, as well as the duration of a phenomenon
(between two well-defined events) will be — not only appear
— different for two observers moving with respect to one
another.

As it turns out, this has some very deep consequences
about the nature of space and time, that are in direct
contradiction with our intuition. As ordinary human
experience is limited to very slow velocities compared to
the speed of light, ¢, it leads to a number of physical
effects that are particularly puzzling to the student who
first discovers them, and even to experienced physicists.
This basic limitation, however, can be challenged and
actually overcome by modern numerical simulation systems
where universal constants, such as the speed of light, can
be adjusted at will. Computer Graphics (CG) techniques
can recreate physically realistic phenomena, while Virtual
Reality (VR) can immerse users into a virtual world where
the speed of light is reduced to a few centimetres per second.

This perspective triggered the creation of an
interdisciplinary team, gathering VR specialists, physicists
and didacticians, with the aim of merging advanced 3D
graphics with VR interfaces in order to create an appropriate
environment to study Relativity as well as to develop some
intuition of the quadri-dimensional reality of space-time.

In the present work we focus on the building blocks
that compose our application, featuring the simulation of
a relativistic carom billiard. On the one hand, we describe
the rendering part, with an innovative relativistic rendering
engine based on the space-time interval. On the other hand,
we describe the physical simulation part with an original
collision engine based on collision anticipation.

In section 2 we present an overview of previous works
on learning and simulating Special Relativity. Section 3
presents the main difficulties faced when designing a
relativistic carom billiard application along with the
proposed solutions, while section 4 illustrates the results and
the performances of our methods. Section 5 summarizes the
work and indicates future developments.

2. Virtual relativity: challenges and issues

Several researchers [SSV02, SSVO1, DKP10] have studied
the problem of how students learn relativity concepts
(invariance of the speed of light, frame of reference,
simultaneity of space-time events). It was found that,
very often, even Master students do not properly grasp
the fundamentals and consequences of relativistic physics.
Hence there is obvious interest in using modern computer
simulations to help them.

Very early, mathematics were used to predict what objects
would look like in relativistic motions. The first solutions

appeared in 1959 with Penrose [Pen59] and Terrell [Ter59].
Then, researchers focused on various relativistic effects in
light interaction (Doppler, search light, aberration of light,
acceleration). For real-time rendering, two main techniques
were proposed: the ray-tracing technique [HD89] and the
polygon rendering technique [HTW90]. Weiskopf extended
the basic rendering techniques and presented a solution
exploiting modern graphic cards (GPU) for Special [Wei01]
and General Relativity [WSE04]. Recently, Savage [SSM06,
SSMO07] developed a game-like computer simulation where
the user can fly at relativistic speeds and see the world
according to his reference frame in real-time.

However, all these techniques only handle one moving
object (i.e. one reference frame) relative to an otherwise
static world. In effect, the simulated world, although 4D in
nature, is thus mostly a hybrid 3D+1D simulation. Having
two or more moving observers participating to the same
scene would allow advanced exploration by seeing the same
4D events from different points in space and with different
reference frames. Also, current works do not allow users
to modify the scene. This significantly reduces the power
of such tools to explore other features (e.g. kinematics
and dynamics) of the theory of Relativity and actually
experience the 4D spacetime. We believe that promoting
the user from the status of observer to the status of actor,
which is at the heart of VR, opens a fruitful way to improve
students understanding of the theory by making “thought
experiments” more concrete.

In this context, our approach consists in creating an
application that i) embeds the laws of Special Relativity
and 4D spacetime, ii) visually renders the phenomena in a
realistic fashion, with no restriction on the relative motion of
the observer and/or the objects in the scene and iii) enables
the user to alter the simulation by specifying the motion
of objects. As a first test case, we present an easy-to-use
application that is likely to awake curiosity about a 4D
world: a relativistic carom billiard (previously introduced
in a poster [DPV11]). The carom billiard is close to the
snooker game in essence but has fewer balls and no holes.
This French billiard game enables the users to observe
and interact with several independent objects. Throught
relativistic motions and collisions, we aim to highlight the
notion of event which is a key concept from the didactic
point of view. In this paper we focus on two main aspects
of such a simulator: the rendering engine and the physics
engine.

3. Simulating a relativistic carom billiard
3.1. Specificity of the relativistic spacetime

Two key features of the theory of Special Relativity have
a direct impact on our ability to simulate and render an
accurate relativistic spacetime:

o the speed of light c is finite (and invariant), so we don’t
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see the objects where they are now, but where they were
when they emitted the photons that we perceive now. The
determination of what a given observer effectively sees
at a given location at a given time (i.e. at a given point
in spacetime), requires a framework in which the whole
history containing the past positions of the various objects
of the scene is accessible to find the emission event.

e lengths and durations are not invariant and depend on the
relative velocity between the objects and the reference
frames involved. Thus, there is a priori a conflict between
the intrinsic definition of the objects in their own reference
frame and their actual occurrence in other reference
frames, with respect to which they are moving. More
precisely, Special Relativity teaches us that, in these other
reference frames, the (instantaneous) lengths between two
given points of the object are generally not the same. For
instance, a billiard ball that is intrinsically a sphere, is
no longer a sphere when described in the rest frame of
the billiard board (see Fig.3), with respect to which it
is moving. This calls for a consistent description of the
objects in any reference frame, i.e. in the 4D spacetime
reality itself.

In addition to these key features, the dynamics of the
relativistic world are different from the classical dynamics
usually simulated in VR. In our case, the main differences
appear in the outcome of the collisions (between the balls,
see Sec. 3.3.2.2, and between a ball and a cushion, see
Sec. 3.3.2.3). A detailed description of the underlying
physics will be given in a later article. Here, we simply
sketch how we consistently handle the interactions of objects
in the simulation, and indicate some interesting features
which are relevant to didactic studies of Relativity.

3.2. Implementing relativistic rendering

Both of the above-mentioned effects — the modification of
the objects geometry and the photon propagation delay —
combine in a non-trivial way so that objects can appear
to be significantly distorted compared to what would be
expected in their reference frame. Likewise, because of the
propagation time of the photons, the objects appearance will
vary depending on their apparent velocities relative to the
observer.

3.2.1. Exploiting the invariance of space-time intervals

Binary search
to fing the m u D + >
corresponding \

emission event +2 Lol t Event on the

History of the past observer's
events of the vertices  world line
of the puck Result on screen

Figure 1: Rendering a 3D object in Relativity: a
combination of the finite speed of light effect and the length
contraction(included in the history, see Sec.3.2.3).
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Different objects, and even different points of a given
object, may obviously be located at different distances from
the eyes of the observer. Therefore, even though the velocity
of light is the same in all directions, the photons arriving at
the same time where the observer stands — which is referred
to as the observation event, i.e. the here-and-now of the
observer, where the image is calculated —, must have been
emitted at different times. This will create visual distorsions.
The key challenge is thus to determine, for each vertex of the
simulated world, the emission event of the photons reaching
the eyes of the observer at the observation event.

To calculate physically correct images, our solution
(Fig. 1) consists in creating a copy of the mesh of the
object and for each frame, modifying the position of each
vertex according to what the observer actually sees at a
given time under the laws of Relativity. The updated mesh
can be rendered by the classic graphics pipeline. In other
words, our strategy amounts to inserting a dedicated stage
in the simulation pipeline, which takes as an input the scene
defined in a particular reference frame (here, the rest frame
of the billiard board), and outputs the scene instantaneously
seen by the observer, given his position and his velocity.

As it turns out, the determination of these emission events
is actually simple and fast, if one uses the space-time interval
between two events (more details in our previous work
[DV10] and more generally in [Boh10]), defined as:

8% = 26t — 81 (time-like convention), (1)

where &r and &/ are respectively the time interval and the
(spatial) distance between the events. Both 6¢ and 8/ depend
on the reference frame, but the central feature of Relativity
is that 8s does not: it is invariant.

Now given that photons propagate along paths with
null space-time intervals, the emission event, (fe,7), and
the observation event, (f,75), are always related by the
simplest equation: As®> = 0. Then, for each vertex of the
simulated scene, the emission event corresponding to the
current observation event is obtained as the event of its
timeline (whether the object is moving or not) that satisfies
As([Emission], [Observation]) = 0. Causality further ensures
that this event is unique, and we obtain it by solving this
equation, noting that As is a monotonic function of the vertex
timeline events, for any fixed observation event. Photons
emitted by the vertex at instants for which As < 0 have not
yet reached the observer, while those emitted at instants for
which As > 0 have already struck him in the past.

The use of a dichotomy procedure to solve the above
equation for each vertex of the scene proves fast enough,
even for quite elaborated scenes. Besides, since the space-
time interval is an invariant, the technique can be applied
identically in any reference frame, ensuring a generic
rendering approach, whatever the number of moving objects
and observers.
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Let us now explicit how the past positions of the vertices
is stored and retrieved during the simulation.

3.2.2. Implementing the Lorentz contraction of lengths

In Computer Graphics, each object is generally discretized
with an appropriate number of vertices organized in a
mesh structure. This definition of objects, however, may be
problematic in a relativistic context, because this intrinsic
definition specifies the relative distances between the
vertices in the rest frame of the object. Now, a consequence
of Relativity is that the instantaneous distance between two
vertices depends on the reference frame. To follow the
evolution of the simulation, we chose the billiard board as
a natural reference frame. Then, if an intrinsically spherical
ball is moving with respect to the board, it is not spherical
in the board rest frame, and the position of its vertices must
be computed consistently. The so-called Lorentz transform
specifies how coordinates transform from one frame to
another, and it is easy to show that the net effect of
the movement of an object at velocity v is an effective
contraction of all distances along the direction of the motion,
with a factor, v, called the Lorentz factor, defined as:

y=—t @

N

This Lorentz factor essentially measures the amplitude of
the relativistic effects. For instance, a spherical ball moving
with Lorentz factor y becomes, in the board frame, an
ellipsoid with a smaller axis in the direction of motion, equal
to the radius of the sphere divided by 7. Faster moving balls
are thus more “compressed”. When v < ¢, it is essentially
equal to 1, which means no difference with respect to the
Galilean case. When v reaches sizable fractions of ¢, 7y
increases, and so do relativistic effects, becoming divergent
asv—c.

Thus, before considering any time delay related to light
propagation, each object initially defined in its own rest
frame must first be re-defined as an effective mesh, in the
natural rest frame of the simulation, according to the velocity
and movement direction it exhibits at a given time.

3.2.3. History data structure and real time updating

As indicated above, the rendering of a relativistic scene
involves a search in the history of each vertex. Our strategy
is the following: each time an image is generated for the
user, we store the position of each vertex at the current
simulation time, after applying Lorentz contraction to the
intrinsic definition of the objects (see Fig. 2). The history
table built in this way can then be deep-searched through by
dichotomy to find the emission event associated with each
vertex, at any later observation event. If additional precision
is needed, a linear interpolation of the emission event is
made between two successive table cells.

Finally, we record the proper time of the vertices as they

Very fast puck
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Get the vertices
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in the table's
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Frame sequence of a moving puck near a cushion
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t-2 t1 t

Corresponding history of
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?( % _ Lorentzian R' J

Ex = transform \X x

— e
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Figure 2: Example of updating one vertex in the history

move around in the scene as an additional parameter in the
history data structure. For each vertex, the proper time is
incremented by A’ = % at each updating step, where At
is the time increment in the simulation frame and v is the
Lorentz factor given by Eq. (2), which implements time

dilation.

3.3. Implementing relativistic dynamics

Let us now present in more details the physics engine
implemented in the application in order to properly simulate
collisions between the billiard components. Such physical
accuracy is important for users to be able to develop the
correct intuition about relativistic dynamics, in addition
to the above-mentioned purely kinematic effects. Before
describing the main features of our physics engine, let us
first stress a fundamental caveat when dealing with solids in
Relativity.

3.3.1. Solids and rigid rotation in Relativity

Solids in Physics are but idealizations of actual physical
bodies defined as macroscopic entities whose components
remain at constant distances from one another, never
experiencing any stretching or compression. This is in direct
conflict with a key finding of the theory of Relativity: since
no information can propagate faster than ¢, when two solids
collide the contact points start changing direction while the
other points cannot know anything about the collision yet.
The velocities cannot change instantly throughout the body,
which must thus deform. In other words, a solid cannot exist!

This is a serious problem, which is quite interesting by
itself and leads to instructive paradoxes in the context of
our application, with great didactic value. The only way out
that would be physically satisfactory would be to simulate
the balls as a network of interacting particles and follow
their motion under the influence of mutual forces transmitted
locally at a velocity lower or equal to c. This, however,
would be extremely time consuming, and incompatible with
real time rendering. We will address this particular problem
in a forthcoming paper. For now, we stick to the assumption
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that the simulated objects are perfect solids rigidly attached
to their center, and set up to determine the motion of these
centers according to the laws of Relativity. Doing so, we are
prepared to face non physical phenomena appearing during
the collisions, over time scales corresponding to the “light-
width” of the objects involved.

Another important caveat is that the rotation of the balls
on the board implies that different points have different
velocities, and the ball cohesion requires internal forces that
must become extremely large. In addition, a translation of
the ball centers at a velocity close to the speed of light is
physically impossible if the balls are not gliding (instead of
simply rolling) on the board, as rigid rotation would imply
the top part to move faster than c. Therefore, in order to avoid
internal contradictions and unnecessary complications, we
chose to explicitly replace the balls by cylindrical pucks,
whose flat bottoms make them simply glide over the board.
We thus leave aside the specific problem of rotations, to be
addressed in future works.

3.3.2. Handling relativistic collisions

3.3.2.1. General strategy The detection of collisions in
a relativistic framework is more complicated than in usual
computer simulations, because the shape of the objects
and their geometric extension depend on their motion with
respect to the reference frame in which they are considered
(see Sect. 3.2.2).

In the non relativistic approximation, the pucks are simply
cylinders (or circles, as projected on the board) of radius
R. At any given time of the simulation, one may check for
collision between objects. For puck-puck collision and puck-
cushion collision, it occurs when the distance becomes lower
respectively than 2R and than R.

When the pucks move with relativistic velocities,
however, they no longer define circles in the board reference
frame R, but ellipses with major axis 2R and minor axis
2R /y. Determining the contact point of such ellipses moving
with respect to one another or to a cushion is far more
complicated. In the first case, the collision solution involves
4th-order equations.

We overcome this difficulty i) by reformulating the
problem in a convenient reference frame and ii) by
anticipating collisions so that we do not have to run a
collision search algorithm at each time step. Starting from
a given state of the billiard game, we compute in advance
the time and location of any possible future collision. This
can be done analytically, with pucks moving in straight
lines between collisions. From the instants of all potential
collisions, assuming nothing else occurs in the meantime, we
simply determine which one will occur first, and we can then
safely let the simulation run freely until that instant. At this
time, we determine the outcome of the collision according to
relativistic kinematics (see below), and only then do we have

(© The Eurographics Association 2011.

to recompute the anticipated times of possible collisions
and update the next collision event. This allows to process
chained collisions on the same frame. For each frame, if no
collision occurred, we simply move the pucks according to
their velocity.

3.3.2.2. Puck-puck collision The appropriate reference
frame to treat puck-puck collisions is the so-called “center-
of-mass frame”, in which the total momentum of the two-
pucks system is zero. In this frame, the two pucks have
exactly opposite velocities and thus the same Lorentz factor.
Their elliptic shape is also the same, and we can be
certain that the collision event will occur at the middle
of their centers, which is at rest in this frame. A more
complete description is proposed in Appendix. Sec. 4.2.2
demonstrates that real-time collision detection is achieved.

3.3.2.3. Puck-cushion collision To determine the future
collision event between a puck and a cushion (see Fig. 3),
the best choice is to place oneself in the rest frame of the
puck, where it has its proper circular shape. In this frame,
the cushion obviously moves with the velocity opposite
to that of the puck in the board rest frame. But although
the cushion remains rectilinear, its orientation is tilted,
depending on the puck velocity vector. Once this orientation
is calculated properly from the laws of Relativity, the first
contact point is identified has the intersection between the
puck circle and the radius perpendicular to the cushion. This
radius also provides the recoil direction of the puck. Finally,
a simple inverse Lorentz transform solves the collision
problem (event and outcome) in the board rest frame. It can
be verified analytically that the resulting reflection angle is
identical to the incident angle if (and only if!) the collision
is elastic.

wall

collision

X

red puck

Figure 3: A moving pucks onto a cushion, respectively, in
the board frame and in the puck frame

4. Experiments

We now present some examples of the results and
performances obtained with our real-time billiard
simulation. Figure 4 shows the general set up. All pictures
below are computed for the same point of view, assuming
the observer is standing at rest beside the board, although
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he/she could of course move around at any (including
relativistic) velocity. We have reduced the speed of light to
a velocity such that it takes 2 seconds to cross the board.

Figure 4: The carom billiard running in the EVE CAVE
(CNRS/LIMSI, Orsay, France)

4.1. Rendering images

As explained in Sect. 3.1, the scene viewed by the observer
at a given time gathers earlier positions of the different points
of the objects. Figure 5 shows a situation with all pucks
in parallel tracks at different velocities. But the observer
actually sees pucks with different relative positions and
shapes (Fig. 6). In Fig. 7(b), a zoom shows the combined
effect of the length contraction and the finite speed of
light. Although not visible in these static images, a very
striking effect is that the apparent velocity of the pucks
with respect to the board also depends on the direction of
their motion with respect to the observer. This, as well as
other relativistic effects (cf. Sec. 4.3), is not precomputed:
it derives naturally from the physical laws embedded in the
rendering algorithms of the simulation.

Figure 5: Actual positions of the pucks, at a given time in
the billiard board rest frame.

~ =30%c
=

Figure 6: The scene of Fig. 5, as seen by the observer.

4.2. Performance evaluation

In this section, we evaluate the performances of both
our rendering and collision engine within a common test

(@ (b)

Figure 7: Artificial view of a puck. Here the computed scene
is the same as in Figs. 5 and 6 but we (unrealistically)
change the point of view to show details.

framework. The tests were run on a 64-bits PC architecture,
featuring a 3-Ghz processor, a Nvidia QuadroFx 1700
graphics card and 4 Gbytes of RAM. The test scene consists
in pair-wise collisions of pucks on the carom billiard table,
ranging from 2 to 10 pucks (see Figs. 8(a) and 8(b)). The
rendering and collision engine were evaluated separately
on short simulation sequences (two back-and-forth travels
for each pair of pucks). The scene in Fig. 8 contains
~ 30000 vertices, but only the ~ 4960 vertices of the
pucks are actually concerned by the relativistic engines (cf.
Sect. 3.2.3).

(a) The tested scene with (b) The tested scene with ten
couple of pucks pucks

Figure 8: The tested scene with different configurations

4.2.1. Rendering engine

Figure 9 shows the performance characteristics of the
rendering engine depending on the number of relativistic
objects. Here the number of memorised events (positions)
for each vertex of the scene is set to 1000 in the history array,
which is enough given the time frame of the test. From the
results, we can infer that the rendering part of the basic three-
pucks simulation typically takes about 3.5 ms per frame.
Table. 1 shows the memory occupation as a function of the
number of pucks and vertices. Both frame rendering time
and memory usage vary linearly as complexity increases.

4.2.2. Physics engine

Figure 10 shows the performance characteristics of the
physics engine as a function of the number of pucks. The

(© The Eurographics Association 2011.
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Execussion Time for the Physics Engine
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Figure 9: performance of the rendering engine.

Pucks | Vertices | Events | Memory Usage
1 496 1000 9,46 Mo
2 992 1000 18,92 Mo
4 1984 1000 37,84 Mo
6 2976 1000 56,76 Mo
8 3968 1000 75,68 Mo
10 4960 1000 94,60 Mo

Table 1: Table of the memory usage of the rendering engine.

middle curve is the averaged collision computation time
per frame during the complete simulation. The top curve is
the maximum time observed, typically on a collision frame
(between pucks or with a cushion). The lower curve is the
minimum time, in the absence of collisions. These three
curves clearly show that the collision anticipation method
(see Sect. 3.3.2) provides high performance calculation,
the time becoming more important when several collisions
occur in the same frame (Table 2). Still, the total run-
time dedicated to physics remains well within real-time

requirements. In the standard three-pucks simulation, the
avera~ ralanlatinn timna 10~ N NNYT e

0.08-— Average Time of Calculation J
0.071 Minimum Time of Calculation (Without Collision)
g 0.06 Maximum Time of Calculation(With Collisions)
E 0.05
E 0.04
£ 0.03
£ 002 _— —
F o011 —a—
0.00 "// ‘ !
1 2 3 4 5 6 7 8 9 10

Number of Pucks

Figure 10: performance of the physics engine

4.2.3. Conclusion

Currently, the basic carom billiard application chosen to
host special relativity experiments uses three pucks. The
complete scene with ~ 30000 vertices (1488 for the
relativistic rendering engine) runs on the test PC with a

(© The Eurographics Association 2011.

2 Pucks | 10 Pucks
Frame Withought Collision (ms) | 0.0002 0.0009
Frame With Collision (ms) 0.008 0.055
Number of Collision 2 15

Table 2: Table of the calculation time for frame generation
with and withought collisions for two and ten pucks

framerate of about ~ 80 fps. In this configuration, the
computational time for the combined rendering and physics
engines is only ~ 3.5 ms. This time remains small and
well within real-time requirements, proving it is possible to
render Lorentzian kinematics, the propagation effects due to
the finite speed of light as well as non-Newtonian physics.
Of course it is now envisaged to use more elaborated
simulation scenarios with more complex scenes, in an
immersive context (see Fig. 4 where the billiard game is
played in a CAVE-like facility).

4.3. Relativity for didactics: some observations

Interaction with the simulation is made possible by applying
impulsions to the pucks, to observe the finite speed of light
effect and the Lorentzian length contraction in a carom
billiard. Furthermore, our application allows to observe
some subtle consequences of the theory of Special Relativity
which are particulary important for didactics:

e Apparent simultaneity: our application includes the ability
to replay the current simulation. By changing his location,
the user can observe events to appear simultaneous in a
reference frame (say two pucks encountering a cushion at
the same time in the board frame) but non simultaneous
in another. The awareness that a scene does not unfold
identically in all reference frames is at the heart of the
understanding of 4D relativity.

e Apparent acceleration and deceleration of the pucks:
during the evolution of the simulation, the apparent
velocity of the pucks vary depending on their motion with
respect to the observer. This effect is reminiscent of, but
distinct from the well-known Doppler effect: if the puck
is moving away from the observer, its velocity seems to
be smaller than if it is approaching.

e Angle after collision: from the didactic point of view,
it is interesting to note that the relativistic dynamics of
collisions is significantly different from the classical case.
In particular, if a puck collides another puck at rest on
the board, the recoil (resp. deflection) angle will be larger
if the impact parameter is smaller (resp. larger). With
classical laws of physics, it can be shown that after the
collision, the redirected pucks moves in a direction that
is always perpendicular to the recoil direction of the hit
puck. However, this intuitive expectation does not hold
any longer in relativistic physics. Resulting trajectories
after collisions at velocities close to the speed of light
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exhibit an angle that is systematically smaller than 90°,
asymptotically approaching zero as the initial velocity
approaches c.

We believe that using our application to experience these
effects “without thinking” will help to develop intuition on
relativistic behaviours while trying to play billiard properly
at relativistic velocities. It is expected to help students
in their efforts to understand Einstein’s theory from a
practical point of view. This will be tested by the EVEILS
(acronym for Virtual Spaces for Scientific Exploration and
Education)group through a dedicated research work in
didactics and formal evaluations on physics students.

5. Conclusion and future work

This work introduces an application that simulates a
relativistic carom billiard, in which the speed of light
may be reduced to such a velocity that unfamiliar or
even counterintuitive effects can be directly experienced.
This tool significantly improves on previous attempts to
simulate our 4D space-time continuum, by extending the
observation of static environments by one observer moving
at relativistic speed to exploration and interaction with 4D
objects of arbitrary velocities and motions, in arbitrary
reference frames.

We presented new solutions for relativistic rendering,
based on a data structure that keeps track of the spacetime
positions of the (vertices in the) different objects, and an
algorithm that efficiently retrieves the events that generated
the photons seen by an observer at a given time. This
algorithm exploits the space-time interval between any two
events, and the fundamental invariance of the speed of
light in all reference frames. The fact that it relies on the
underlying principles laid out by Einstein is a reason for
its efficiency, which allows us to render complex relativistic
scenes in real time.

We also introduced a physics engine dedicated to the
simulation of the collisions of the pucks between each
other and with the billiard cushions. We solved the problem
of collision detection for relativistic pucks with arbitrary
motion, which is much more complicated than in the
classical case. This is done thanks to a suitable change of
reference frame implemented in an “anticipation algorithm”
that computes the collision events and the outcome of the
collisions.

This allowed us to emphasize some fundamental
differences between the classical and relativistic cases, from
the point of view of kinematics as well as dynamics.
We believe that the ability for the user to discover these
effects by himself, through a direct exploration of and
interaction with a relativistic 4D scene that is physically
consistent, is of great didactic value. Developing a more
intuitive understanding of Relativity through experience
should also be valuable for experienced physicists. Initial

polls were already conducted on physics students to
clearly identify common misconceptions and problems
encountered while learning Relativity. As framework, we
believe that immersive Virtual Environment offer more
intuitive interface than a standard 3D desktop for our
application. This point will be studied in details in a futur

paper.

We are now in the process of designing VR experiments
based on these findings [SMM™ 10, MSW*08]. Experiments
run in the setup presented in Fig. 4, will expose challenging
issues such as the change of reference frame or the relativity
of simultaneity to students of different levels.

In the Virtual Environment, we adopt an egocentric
point of view based on a tracking device. Thus, users
can move in the scene and chose different points of view
to observe one directly. With the tracking device a new
difficulty has become: this device is disturbed by a noise.
This is imperceptible for the classical scene but for the
relativistic scene it is becoming extremly disturbing. Due to
the aberration effect, for a velocity of the user approaching
the simulated speed of light, a small variation of this velocity
causes a big deformation of the showed scene.

To improve interaction and the understanding of the
difficulty to access to relativistic mouvements in term of
energy, we plan to include haptic device including a coherent
mapping of energy to show that approaching the barrier ¢
require an exponential amount of energy.

In the future, we plan to improve our application by
simulating additional rendering artefacts such as aberration,
as well as improving the dynamics of the system
with the addition of relativistic friction and non-elastic
collisions, which can be implemented without changing our
computational framework.

On a longer run, we would like to extend the collision
engine to more complex objects (i.e. generic polygon
meshes) and to investigate relativistic objects in rotation.
In terms of rendering, the Doppler and searchlight effects
can also be implemented, but the pedagogical value of such
essentially visual effects is still unclear.

From the computational point of view, the running time
can be reduced by the use of parallelization methods.
For example, the back-propagation of photons using the
space-time interval can be calculated for each vertex
independently, which makes for an easy parallelization.
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Appendix: solving the puck-puck collision problem

In this Section, we briefly describe how we solve the
collision problem between two pucks, Py and P,, knowing
their position and velocity vectors at a given instant in the
billiard board rest frame. The goal is to determine whether
the two pucks will collide, and if they do, where and when
will the “collision event” take place.

(© The Eurographics Association 2011.

First, let us note that the height of the cylindrical pucks
doesn’t play any role in the collision problem, and we shall
thus consider the pucks as intrinsically 2D circles, with
radius R, moving in the plane of the board. The board itself is
chosen as the simulation reference frame, noted R, in which
the collision problem needs to be solved.

Because of the length contraction effect associated with
Lorentzian kinematics, the two moving pucks are not
represented by circles with diameter 2R in reference frame
'R, but by ellipses with major axis 2R and minor axis 2R/,
where the Lorentz factor gamma = (1—v* /c?)~ 1/2 depends
on the velocity of the puck under consideration. The minor
axis coincides with the direction of motion, and is also a
priori different for each puck. We can identify the position
of the center of pucks P; and P; by the vectors 7| and 7, in
the board rest frame.

As the pucks move around on the board, they may or
may not collide, and finding the collision point in the
board reference frame R requires posing and solving a
complicated equation of order 4, which is neither practical
nor efficient in the context of a real-time simulation.
However, the situation is much simpler in the so-called
“center-of-mass frame”, defined as the reference frame in
which the total momentum of the two-pucks system is zero.
Let R’ denote this particular reference frame.

A simple analysis of the underlying kinematics shows that
this frame moves with respect to the board at a velocity ¥
given by

A (L T 1
YitY2
where V; is the velocity vector of puck i, and v; is the

corresponding Lorentz factor (note that we have assumed all
pucks to have the same rest mass).

3

This velocity (see Fig. 11) fully determines the Lorentz
transform to be applied to compute the coordinates of the
puck centers in the center-of-mass frame, R’, at any given
time in R. Of course, since the two pucks are not located
at the same position, the corresponding events in R’ are not
simultaneous. We thus need to “retropropagate” the earliest
pucks in order to start, in R’, with simultaneous positions of
the two pucks centers: 7| and 7.

The velocity vy given by Eq. (3) can also be used
to compute the velocities ¥ and ¥ of the balls in the
center-of-mass frame. Applying the relativistic law for the
composition of velocities, we obtain:

Vi

Vi —Vo+
o VR YO Ty
W= )
1 — ¥
2
where V; || = Vi - Vip/ v% is the component of V; parallel to ¥,

and V; | =V; —V; is the perpendicular component.

Thanks to the above choice for ¥, the two pucks actually
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have exactly opposite velocities in R': #] = —(Fig. 12).
This implies that they have identical Lorentz factors, Y| =¥},
so the effective contractions are the same and both pucks
have the same shape in this frame.

61% of ¢
190% of ¢

red puck

Figure 11: The moving pucks in the board frame.

point of
collision

red puck

Figure 12: Same as in Fig. 11, but seen in the center-of-mass
frame.

Thus, we are back to a manageable situation where two
identical pucks (with same deformation) move along parallel
tracks, deduced from the position of the centers in R’
and their velocities. It is then easy to determine whether a
collision will occur or not: if the distance between the tracks
is smaller than 2R, and the balls move fowards (not away
from) each other, the pucks will collide; otherwise, they will
not.

Moreover, the symmetry of the problem in R’ makes it
obvious that the collision point will be exactly the midpoint
of the pucks centers, which turns out to be standing still in
the center-of-mass frame.

Finally, simple geometric considerations allow us to
compute the instant of the putative collision, knowing the so-
called impact parameter, b (which is defined as the distance
between the above-mentioned parallel tracks), and the initial
distance of the ball centers along their relative velocity, D).
Both are obtained straightforwardly from the positions and
velocities of the pucks in R’.

First, we determine the minimal distance of approach of
the balls along their parallel trajectories:

4RZ =12
diin = (5)
min ,YJI

from which we deduce the time until collision:
D) — dmin
)

!/

At = (6)

As a final subtlety, we follow our convention to deal with
solid bodies in Relativity (see the discussion in Sect. 3.3.1)
and add the extra time needed for the information of this
contact event to reach the center of the pucks, determining
in this way the sought collision events (one for each puck,
at its own center). A final Lorentz transform with velocity
— allows us to determine the coordinates of these collision
events back in the rest frame of the billiard board, R.

Now, we need to determine the resulting velocities, both
in terms of their direction and their norm. This is done in
the following way. The collision is first computed in the
center-of-mass frame, R’. In the case of an elastic collision,
the total kinetic energy is preserved. Furthermore, since the
two pucks initially have the same velocity (in norm) in
that frame, as well as the same mass, the symmetry of the
situation guarantees that they have the same velocity after
the collision as well. The total kinetic energy is thus twice
that of any of the pucks, both before and after the collision.
We thus deduce that an elastic collision leaves the norm of
the ball velocities unchanged.

To determine the direction of the motion of the pucks
after the collision, our trick is to determine the common
tangent to the ellipsoidal pucks at their contact point (when
the collision occurs). This is easily done analytically, from
the ratio of the great axis and the small axis of the ellipsoid,
which is simply Y (see above). At contact, the reciprocal
force between the two pucks acts perpendicularly to that
tangent, and is thus unable to modify the component of the
balls velocity which is parallel to it. The outgoing velocities
are thus fully determined by saying that:

e the component of the velocities parallel to the tangent at
the contact point is unchanged

e the component of the velocities perpendicular to the
tangent at the contact point is reversed (to ensure an
identical norm)

In the case when the collision is not elastic, the same
procedure applies, the only difference being that the
perpendicular component must be reduced so that the kinetic
energy of the pucks after the collision is the appropriate
fraction of that before the collision, as determined by the
elasticity coefficient.

Finally, the outgoing velocities in the billiard board frame
are deduced from the above by composing them with the
velocity of the board with respect to the center-of-mass
frame, i.e. by applying transformation (4) with velocity —v
instead of V.

This algorithm proves to be very efficient, and indeed
compatible with real-time rendering (see Sec. 4.2.2).
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