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Abstract

The reconstruction of 3D models of human body parts from range data is different with respect to that of general objects as
they do not exhibit sharp discontinuities. Following this consideration, HRBF models which implement locally adapted filters
are here introduced. They are based on stacking grids of Gaussians one over the other, where each grid operates at a
different scale. The grids are not filled with Gaussians but these are inserted only in those crossings where the residual error
is greater than the digitising noise. This allows to achieve a uniform reconstruction error. It results a very efficient and fast
tool which can operate in real-time. Results on scanning a woman face are reported and discussed.

1. Introduction

3D scanning consists of fitting an analytical model to a set
of 3D points sampled over the surface. In computer
graphics, where the renderers work usually on triangles,
the surface is represented as joint patches’. To obtain high
definition and to preserve the exact topology (mainly
vertexes and corners), this procedure becomes
computationally expensive and cannot be carried out in
real time. However, human body parts are, by their nature,
relatively smooth and this property is exploited here to
develop a more efficient procedure to recover their 3D
shape.

We start from a set of 3D points randomly sampled over
the surface with the only hypothesis that the surface has
been heavily oversampled. Due to measurement noise, a
simple triangulation (e.g. Delaunay tessellation) of the
data points would produce an undesirable wobbling
surface. To obtain a clean reconstruction, the approach
proposed here is to use a reconstructor whose local
frequency content can be automatically set from the data
points. We observe that the spatial frequencies which
constitute measurement noise are much higher than that of
the body parts which, being smooth, feature low spatial
frequencies. Therefore a low-pass filter with an adequate
cut-off frequency will reconstruct the surface details and
cut off the digitising noise. The Cut-off frequency is a very
critical parameter: with a too low cut-off frequency, only
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the surface outline can be reconstructed and the most
subtle details are left out. Increasing the cut-off frequency,
the surface details are progressively outlined. However,
the cut-off frequency cannot be increased ad libitum as a
too high cut-off frequency yields the reconstruction of the
origina surface with the digitising noise imposed over it.
A possibility is to increase the cut-off frequency until the
following condition is met:

ds.(Pla)- z(P)dP
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where D is the input domain, z(P) are the points sampled
over the surface and Sy(P|a) is the reconstructor. a are the
parameters which define the cut-off frequency of S, and e
is related to the digitising error. A particularly suitable
choice of the function Sy(P|a) is offered by the
Hierarchical Radial Basis Function model (HRBF)
proposed originally in the connectionist domain®.

2. Method
S(P) = 4 A wGR s) @)
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In the HRBF model, the surface z(P) is reconstructed by
adding the contributions of several grids of Gaussians,
where each grid outputs a linear combination of its
constituent Gaussians. The resulting surface, S(P), is
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expressed as reported in Eq. (2) where L is the number of
grids, My is the number of Gaussians in each grid, each
centred in a grid crossing. wy is the weight associated to
the ki Gaussian of the I grid. All the Gaussians in one
grid feature the same value of s, s, which determines the
cut-off frequency of that grid, the smaller is s;, the higher
is the cut-off frequency (the lower is the scale.

Grids with different s, allow the reconstruction of the
surface at different scales. The first grid reconstructs the
surface at a very coarse scale. Let us cal a(P) this
reconstruction. For each data point a residual, ri(P), can
be computed as: ri(P) = ai(Ps) — z(P). In particular, for
each Gaussian can be computed the loca residual rai(k,l)
as.

Al 3
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where Ry are all the points in the receptive field of the
Gaussian, defined as the region Py = 2s;.

ri(k,l) will be greater than noise in those regions where
the details have not been reconstructed. This second grid
will therefore be devoted to approximate this residual: its
input will be ry(k,l) and its output the reconstruction,
a(Py). A second residual, ra(Px), is generated as. ra(Px) =
a1(P) — ri(P). With this second residual, a third grid is
built and the procedure is repeated until the local residual
error, goes under the noise threshold over all the input
space (uniform convergence in L1).

In the intermediate grids, the Gaussians will not be
inserted in the whole space but only in those regions
where the loca residua in Eg. (3) is over the noise
threshold. This alow to save many Gaussian units and
computational time.

The weights, wi in Eqg. (2), can be computed directly
from the data points. In Borghese and Ferrari? it has been
shown that the surface z(P) can be reliably reconstructed if
we substitute the product of the surface height in the grid
crossings times the square of the Gaussian spacing, Dx, to
the weights:
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The height of the surface is usually not available in the
grid crossings or it is usualy corrupted with noise. z(Px;)
can be more advantageously determined through the local
Maximum A-Posteriori Estimate, MAP of Eq. (4b).
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3. Resultsand Conclusion

The reconstruction of a woman face is reported in Figure
1. 12,641 data points have been sampled over the face
using the Autoscan system” as a digitiser with an accuracy
of about 0.1mm. These points are fed to HRBF which
furnishes a 3D model with a mesh size of 1.5mm. It
should be remarked that the mesh size can be reduced ad
libitum being S(P), Eg. (4d), continuos. Colour and
texture have been acquired from a photograph taken
parald to the face and mapped over the 3D model. The
reconstruction requires only few seconds on a SGI Indigo2,
250Mhz processor, and can be implemented in real-time
on aparallel machine.

Figure 1: 3D Reconstruction of a woman's face.

HRBF combines speed in the parameters computation
with reconstruction accuracy and it is particularly suitable
to be used with 3D digitisers to reconstruct in real-time a
3D surface from a set of sparse data points.
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