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A B S T R A C T

In this thesis we present contributions to different challenges of com-
putational light transport. Light transport algorithms are present in
many modern applications, from image generation for visual effects
to real-time object detection. Light is a rich source of information that
allows us to understand and represent our surroundings, but obtaining
and processing this information presents many challenges due to its
complex interactions with matter. This thesis provides advances in this
subject from two different perspectives: steady-state algorithms, where
the speed of light is assumed infinite, and transient-state algorithms,
which deal with light as it travels not only through space but also
time. Our steady-state contributions address problems in both offline
and real-time rendering. We target variance reduction in offline ren-
dering by proposing a new efficient method for participating media
rendering. In real-time rendering, we target energy constraints of mo-
bile devices by proposing a power-efficient rendering framework for
real-time graphics applications. In transient-state we first formalize
light transport simulation under this domain, and present new efficient
sampling methods and algorithms for transient rendering. We finally
demonstrate the potential of simulated data to correct multipath inter-
ference in Time-of-Flight cameras, one of the pathological problems in
transient imaging.
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Part I

I N T R O D U C T I O N & O V E RV I E W





1I N T R O D U C T I O N

Computational methods for light transport have been extensively re-
searched in computer graphics and vision, with numerous applications
in industries such as entertainment, architecture, robotics, astronomy,
or medicine. Light transport simulation is the basis of both offline and
real-time rendering, providing synthetic imagery of many sorts for
movie production, video games, or product prototyping. But beyond
the generation of classic 2D images for visualization, it can also be
a powerful forward model to predict and analyze light behavior in
other complex problems. Since the emergence of computational imag-
ing [271], many imaging systems operate with extra information about
light propagation: Light field cameras are able to capture multiple
views of a scene in a single shot, hyperspectral devices capture richer
information in the electromagnetic spectrum, and high-dynamic range
imaging systems can increase the range of light intensity supported in
both capture and display [94, 232, 248]. Like many other systems whose
main source of information is light, these rely on some sort of light
transport processing, and therefore providing accurate and efficient
methods for light transport simulation and analysis is an important
task.

Monte Carlo methods are nowadays the cornerstone for offline real-
istic image synthesis [205, 292], and have become a robust workhorse
in modern production rendering engines [53]. Despite Monte Carlo
rendering being a mature field, research in this direction is still thriv-
ing, comprising novel methods that improve computational efficiency,
increase accuracy in the results, or allow handling complex light trans-
port phenomena unexplored before [109]. Although variance reduction
remains as one of the perpetual challenges in Monte Carlo methods,
some other research trends include for example lifting long-standing
rendering assumptions of classic radiative transfer [114], or devising
practical models for complex appearance such as multi-layered materi-
als [12, 288].

While offline rendering still demands solutions to long-standing chal-
lenges such as variance reduction, during the last years the advances in
hardware—either for imaging, computation, or display—have opened
new challenges and possibilities in many light transport applications.
The increase of computational power and memory in GPUs, and their
integration in consumer-level devices have escalated to a point where
we can generate high-quality renders in real time with a simple swipe
of our fingers. The availability of computationally-intensive hardware
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4 introduction

in our pockets opens new challenges beyond the usual rendering prob-
lems, such as high battery consumption in rendering applications. On
a more general scope, modern GPUs have made deep learning a vi-
able tool to address many problems in computer vision and graphics.
Both offline and real-time rendering benefit from these optimization
approaches, for example for denoising [11], real-time shading [199],
or rendering participating media [136]. With the combination of deep
learning and rendering [141], the need of synthetic data for training
faces challenging problems such as massively generation of data and
proper domain exploration.

Breaking through traditional imaging, devices that are capable of
capturing light at frame-rates comparable to its speed have become
more accessible to both the research community and the general public.
This has given rise to a vast amount of methods within the field of
transient imaging [113], which leverage information in the temporal
domain of light propagation for applications such as material recog-
nition [195, 278] or hidden-object detection [79, 257]. These methods
have led to a high demand of reliable transient light transport data, in
contrast to the steady-state data obtained with conventional cameras
and traditional synthesis methods. However, capturing transient light
transport data is either slow, expensive, or its accuracy is limited by the
available hardware. Simulating light in motion is of key importance for
the development of the field, allowing to generate accurate data under
controlled setups, for benchmarking and prototyping, as a forward
model for inverse problems, and as a source for machine learning. This
sort of simulations are referred to as transient rendering. While research
on the latter has been alive for nearly half a century, research on tran-
sient rendering is still at an early stage, requiring novel approaches
that explore and address problems on the temporal domain of light
transport.

goal In a moment when research in steady- and transient-state
light transport is very active, this thesis presents contributions in both
sides, organized in two different parts. In Part II we target both long-
standing problems and novel challenges in rendering from a classic
steady-state perspective, with contributions in efficient offline rendering
of participating media, and energy-efficient rendering for real-time
applications. Part III is dedicated to light transport in transient state,
where we set the grounds for a principled light transport simulation
framework, identify and provide solutions to different challenges in this
domain, and demonstrate the potential of synthetic data generation for
transient imaging problems. In the following we give a brief overview
of these two parts.



1.1 steady-state light transport 5

1.1 steady-state light transport

The first ray-casting algorithm for image generation was introduced
to computer graphics by Appel in 1968 [7]. Since the formulation of
distributed ray tracing for global illumination by Cook et al. in 1984

[37], and the subsequent introduction of the rendering equation by
Kajiya in 1986 [133], research on physically-based rendering has come
a long way. Aiming to mimic the behavior of a conventional camera,
steady-state rendering methods generate synthetic 2D images by com-
puting light transport on a scene based on mathematical definitions of
objects, materials, media, cameras, and light sources. High-quality 2D
imagery is omnipresent in our lives, in fields such as movie production,
digital prototyping, architecture, video games, or medical imaging.
With ray-optics as the common ground in offline and real-time ren-
dering, each of these have followed different paradigms in order to
synthesize realistic 2D imagery. In the following we give an overview
of different challenges and trends in offline and real-time rendering,
and summarize the contributions of this thesis related to each one of
them.

offline rendering Offline methods are mainly based on Monte
Carlo integration. By stochastically sampling light transport equations,
they are able to produce hyper-realistic results that accurately represent
light interacting with matter. One of the pathological problems of these
methods is the visible noise in the resulting images, consequence of
variance in the Monte Carlo estimators. This variance is not uniform in
the whole image, and its behavior depends on the scene configuration
and the methods used to sample the transport equations. Increasing the
sampling rate uniformly in the whole image is usually a bad practice,
since some regions may converge faster than others, specially in the
case of participating media. Research on variance reduction methods is
therefore one of the main trends in rendering [292]: By leveraging infor-
mation implicit on the light transport equations or obtained during the
rendering process we can devise smarter sampling and reconstruction
algorithms that adaptively render arbitrary scenarios. In this thesis
we present contributions in offline rendering of participating media
by proposing a new algorithm that adaptively samples media and
performs error-bounded interpolations based on radiance derivatives
(see Chapter 2).

real-time rendering Real-time methods in the other hand, rely
mainly on rasterization pipelines, where geometry is projected towards
the image plane and the pixel color is computed in a shading operation.
This shading operation may or not be based on stochastic sampling
of light transport equations, but in general makes strong assumptions
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about light transport to guarantee real-time frame rates. Nonetheless,
a great amount of graphics processing units (GPU) are purposely de-
signed for this sort of processes, and their computational power is
able to generate graphically rich content. Moreover, GPUs have already
flooded smartphones, tablets, and hand-held game consoles, targeted to
convey real-time high-quality imagery under battery-powered devices.
In a world where battery life has equaled in importance to computa-
tional power and memory, power usage in graphic processors comes
into the fold of efficiency standards. GPU designers have already put
power efficiency as a prerequisite when building their architectures,
and not only targeted for battery life optimization, but also aiming for
environmental-friendly hardware [99, 194]. From a software perspec-
tive, however, most research has mainly focused in providing faster
rendering pipelines, while reducing their energy consumption is still
an unexplored subject. In this thesis, we present contributions on this
aspect by introducing a software-based real-time framework for energy-
aware rendering (see Chapter 3). Our framework precomputes energy
maps of virtual scenarios for different effects in the rendering pipeline,
and computes the optimal settings in runtime to minimize power usage
and maximize image quality.

1.2 transient light transport

Transient imaging refers to a series of methods that make use of light
transport at temporal resolutions comparable to its speed, focusing on
capture and simulation of light in motion, and exploiting the temporal
information of light transport for scene understanding and reconstruc-
tion. Some of these applications, such as real-time depth estimation,
are widely available through off-the-shelf products. Other applications,
such as reconstruction of non-line-of-sight geometry [79, 131, 165, 257],
in general require more complex machinery, higher computational
power, or are limited to controlled scenarios. While transient imaging
devices are becoming more and more available to both researchers and
end-users, the hardware characteristics usually limit the accuracy on
the captured data. Providing practical methods that increase the quality
of the results without hindering the capture process or the range of
applicability is one of the main challenges in transient imaging. In
that sense, simulating transient light transport has proved to be an
effective tool for transient imaging problems, either as a source of
reliable ground-truth data [206], as a forward model in optimization ap-
proaches [57, 58, 123], or for method prototyping and evaluation [198].
Research on transient rendering is therefore of high importance, since
well-established steady-state methods may not longer be appropriate
in the temporal domain of light propagation.
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In the following we first give an overview of transient light transport
simulation and its challenges, and briefly describe our contributions
to tackle these. Second we summarize the core concepts of one of
the long-standing problems in transient imaging, and introduce our
contributions to address it.

efficient methods for transient rendering Traditional
steady-state rendering simulates how a conventional camera images a
scene. Since light propagates at around 300,000 km/s, in a single shot
of a conventional camera light travels several hundreds of kilometers,
and the frame captures the scene with light fully propagated. Therefore,
steady-state rendering assumes speed of light is infinite, discarding any
temporal information. Transient rendering breaks this assumption, and
“unfolds” light transport over the temporal domain by accounting for
the light propagation delays due to the optical path and light-matter
scattering events. In practice this implies that every pixel of a regular
2D image is now resolved in time, effectively becoming a 3D volume.
But adapting existing steady-state rendering methods to transient-state
presents many challenges. First, we are sampling a higher-dimensional
space, so it requires a much higher number of samples to achieve
the same sampling density at every frame in the temporal domain.
Second, steady-state methods for light transport simulation are usually
radiance-driven, in the sense that they focus on sampling light paths
that have higher contribution to the radiance signal. Since light intensity
decays at each interaction with matter due to absorption, steady-state
algorithms tend to generate more samples at short light paths. In
transient rendering, this generates exponentially-decaying distributions
of samples over time, and therefore variance becomes aggravated at
later timings. To address these issues it is necessary to provide a proper
formalization and analysis of Monte Carlo methods in transient-state
that allows characterizing the existing challenges in a principled way,
and providing a solid framework for upcoming research efforts in
transient rendering.

In this thesis we contribute to transient rendering by extending
Veach’s path integral formulation [254] to the transient domain, an-
alyze and address sampling issues in this extended domain of light
transport, and provide a consistent method for signal reconstruction
in the temporal domain (see Chapter 5). Next, we focus on transient
rendering of participating media, and adapt photon beams methods
[118] to increase sampling density in the temporal domain (Chapter 6).
Based on our previous framework, we formulate a consistent progres-
sive method for transient light transport in participating media that
significantly mitigates variance over time.
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multipath interference in tof imaging A long-standing
problem in transient imaging applications is multi-path interference
(MPI). While the propagation of a light path occurs at a single instant
in time, the limited temporal resolution of transient devices makes
light paths with different timings to fall simultaneously at the sensor,
therefore interfering with each other.

One common application of transient imaging is depth estimation,
where the distance of a visible object can be estimated by emitting
light towards an object from a light source co-located with the sensor.
The Time-of-Flight of a single light bounce will determine the distance
to the object. However, MPI due to surrounding geometry and lim-
ited temporal resolution may introduce some errors in this estimation,
since longer indirect light paths may arrive in the same frame cap-
tured by the sensor. This problem is particularly aggravated in the
so-called Time-of-Flight (ToF) depth cameras, which rely on correlating
a continuous emission of modulated light, and have exposure times
in the order of nanoseconds. These cameras work with baseline depth
ranges resolutions from a centimeter to several meters. During a single
exposure of these cameras the interfering indirect paths may have al-
ready propagated across the whole scene, and therefore the introduced
MPI leads to a significant depth overestimation. While previous works
have addressed this problem, they usually require complex hardware
modifications, or computationally intensive methods.

As a final contribution of this thesis we address the problem of
multipath interference in ToF depth capture avoiding these two dis-
advantages (Chapter 7). Parting from the previous contributions of
this thesis, we rely on simulated transient data to analyze multipath
interference on depth images. Thanks to controlled setups provided by
transient rendering, we mimic the behavior of ToF cameras in simula-
tion and obtain MPI-tampered depth maps, along with their reference
solutions. We then use these to train real-time corrections of MPI in syn-
thesis using a hybrid approach that combines both real and synthetic
data.

1.3 contributions and measurable results

In the following we state the publications which support the contri-
butions of this thesis. For the publications in which I am not the lead
author, my particular contribution is detailed at the beginning of their
corresponding chapter in the thesis.
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1.3.1 Publications

• Second-Order Occlusion-Aware Volumetric Radiance Caching (Chap-
ter 2). This work has been published at ACM Transactions on
Graphics [181] in 2018, which has an impact factor of 4.384, ranked
3/104 (Q1) in the “Computer Science, Software Engineering” cat-
egory of the JCR index (data from 2017).

• Real-time Rendering on a Power Budget (Chapter 3). This work
has been published at ACM Transactions on Graphics [263] in
2016, with an impact factor of 4.088, ranked 1/106 (Q1) in the
“Computer Science, Software Engineering” category of the JCR
index.

• Recent Advances in Transient Imaging: A Computer Graphics and
Vision Perspective. This work has been published at Visual Infor-
matics [113], which is an Elsevier journal recently created in 2017,
with no available impact factor. Chapter 4 is written based on the
excerpts of this publication that most relate to the topics covered
in the remainder of Part III.

• A Framework for Transient Rendering (Chapter 5). This work has
been published at ACM Transactions on Graphics [111] in 2014,
with an impact factor of 4.096, ranked 1/104 (Q1) in the “Com-
puter Science, Software Engineering” category of the JCR index.

• Progressive Transient Photon Beams (Chapter 6). This article has
been conditionally accepted under minor revisions at Computer
Graphics Forum, with an impact factor of 2.046, ranked 22/104

(Q1) in the “Computer Science, Software Engineering” category
of the JCR index. It is an extension of the article Transient Pho-
ton Beams [180] which was accepted at the Spanish Conference
in Computer Graphics (CEIG), 2017, and received one of the
two Best paper awards in the conference. Additionally, a poster
based on this article was accepted at SIGGRAPH 2017, and ended
semifinalist on the ACM Student Research Competition.

• DeepToF: Off-the-Shelf Real-Time Correction of Multipath Interfer-
ence in Time-of-Flight Imaging (Chapter 7). This work has been
published at ACM Transactions on Graphics [179], which has
an impact factor of 4.384, ranked 3/104 (Q1) in the “Computer
Science, Software Engineering” category of the JCR index. This
project started during my internship at Microsoft Research Asia.

1.3.2 Internships

This thesis has also led to the following research internships:
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• A five-month internship at Disney Research Los Angeles (Glendale,
CA), supervised by Carol O’Sullivan.

• A two-month internship at Microsoft Research Asia (Beijing, China),
supervised by Xin Tong. This internship led to the publication of
one of the articles of this thesis [179] (Chapter 7).

• A three-month internship at Adobe Research (San Jose, CA), su-
pervised by Xin Sun. This internship has resulted in a patent
application.
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2S E C O N D - O R D E R O C C L U S I O N - AWA R E V O L U M E T R I C
R A D I A N C E C A C H I N G

Variance reduction is one of the long-standing problems in offline
rendering. Storing and reusing the sampled light paths during the
rendering process has proved to be an effective approach to reduce it,
such as in many-lights [87, 140, 203, 204], photon-density estimation
[21, 117, 118, 122], or radiance caching methods [116, 152, 230, 267].
In this chapter we propose an improved radiance caching method for
participating media rendering. Our method overcomes many issues
of previous radiance caching methods by providing an error metric
based in second-order derivatives, and presenting a more accurate
derivative computation method that accounts for occlusions in single
and multiple scattering. We analyze and illustrate the benefits of our
method in 2D media, and demonstrate how these benefits extend to
complex 3D scenarios.

This work was published in ACM Transactions on Graphics and
presented at SIGGRAPH 2018. A preliminary version of this work was
also presented as a poster at SIGGRAPH 2017.

J.Marco, A. Jarabo, W. Jarosz & D. Gutierrez
Second-Order Occlusion-Aware Volumetric Radiance Caching

ACM Transactions on Graphics, Vol.37(2)
(Presented at SIGGRAPH 2018)

J. Marco, A. Jarabo, W. Jarosz & D. Gutierrez
Second-Order Occlusion-Aware Volumetric Radiance Caching

SIGGRAPH 2017 Posters

2.1 introduction

Accurately simulating the complex lighting effects produced by par-
ticipating media in the presence of arbitrary geometry remains a chal-
lenging task. Monte Carlo-based methods like path tracing numerically
approximate the radiative transfer equation (RTE) [28] by stochasti-
cally sampling radiance in the medium. These approaches can handle
complex geometry and general scattering properties, but since they
lack memory and are largely blind to the radiance signal, they perform
many redundant computations leading to high cost. A common strat-
egy to increase efficiency is to adaptively sample radiance based on
its frequency content, limiting the sampling density in regions where

13
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radiance barely changes, and placing more samples in regions with
higher frequency variation [292].

Based on this principle, volumetric radiance caching [116] computes
and stores radiance at sparse cache points in the medium, and uses
these samples to reconstruct radiance at nearby locations whenever
possible. The method is based on first-order translational derivatives
of the radiance, which are used to i) determine how far away a cache
point can be reused while controlling error, and ii) improve recon-
struction quality by extrapolating the cached radiance values along
their gradients. Unfortunately, since the gradient derivations ignore
occlusion/visibility changes, the method fails in scenes containing oc-
cluders where changes in visibility are the dominant factor in local
radiance behavior. Moreover, the reconstruction and error metric both
rely on the same gradient estimates and ignore variations caused by
higher-order derivatives. These factors lead to suboptimal cache point
distributions, which fail to properly sample high-frequency features
such as occlusions, while simultaneously oversampling other regions
of the scene. This results in reduced efficiency and visible rendering
artifacts.

Second-order illumination derivatives have proven to be a powerful
and principled tool for sparsely sampling and interpolating surface
irradiance [120, 230], as well as controlling error in density estimation
techniques [13, 84, 137]. Inspired by these recent developments, we
propose a new second-order, occlusion-aware radiance caching method
for participating media which overcomes the limitations of current
state-of-the-art methods.

To this end, we introduce a novel approach to compute first- and
second-order occlusion-aware derivatives of both single and multiple
scattering, and generalize the Hessian-based metric of Schwarzhaupt
et al. [230] for controlling the error introduced by first-order extrapo-
lation of media radiance. In addition, we extend recent work on 2D
radiometry, currently limited to surfaces [120], and derive a 2D theory
of light transport in participating media. We use this framework to
illustrate and analyze the limitations of the state of the art, as well as
the benefits of our proposed method. We demonstrate the generality of
our approach by deriving occlusion-aware derivatives of 3D media radi-
ance and applying our Hessian-based metric to 3D cache distributions,
showing that the benefits predicted by our 2D analysis hold equally
in 3D. Our approach improves volumetric cache point distributions in
isotropic homogeneous media, providing a significantly more accurate
reconstruction of difficult high-frequency features, as Figure 2.8 shows.
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2.2 related work

We summarize here existing work on radiance caching methods as well
as other techniques that leverage illumination derivatives to improve
Monte Carlo rendering. For a general overview of scattering and ex-
isting adaptive sampling and reconstruction techniques, we refer the
reader to other recent sources of information [81, 292].

Radiance caching: Irradiance caching was originally proposed by
Ward et al. [267] to accelerate indirect illumination in Lambertian scenes.
The method computes and caches indirect irradiance only at a sparse
set of points in the scene, and extrapolates or interpolates these values
whenever possible from cache points deemed to be sufficiently close by.
Since indirect illumination changes slowly across Lambertian surfaces,
the costly irradiance calculation can often be reused over large parts
of the image, substantially accelerating rendering. There has been a
wealth of improvements to irradiance caching, but we discuss only the
most relevant follow-up work and refer to the work by Křivánek and
Gautron [152] for a more complete survey.

Ward and Heckbert [266] significantly improved reconstruction by
leveraging gradient information, and Krivánek et al. [155] incorporated
heuristics to improve error estimation (and therefore quality) during
adaptive caching. Křivánek and colleagues [153, 154] also extended irra-
diance caching to handle moderately glossy, non-Lambertian surfaces.
Herzog et al. [95] used anisotropic cache points based on the orientation
of the illumination gradient. All these methods only considered surface
light transport.

Jarosz et al. [116] proposed volumetric radiance caching, which ac-
celerates single and multiple scattering in participating media. They
proposed an error metric based on the first-order derivative of the
radiance, but their formulation ignored volumetric occlusion changes.
In follow-up work, Jarosz et al. [115] derived occlusion-aware gradi-
ents, but only of surface illumination in the presence of absorbing
and scattering media, ignoring gradients of the media radiance itself.
Both approaches are prone to suboptimal cache point distributions and
visible artifacts since they ignore higher order derivatives or occlusion
changes in media. Our work addresses both of these issues. Ribardière
et al. [223] proposed using anisotropic cache points and a second-order
expansion for radiance reconstruction. Their approach, however, did
not consider visibility changes due to their point-to-point computation
of derivatives.

Recently, Jarosz et al. [120] and follow-up work [230] made significant
progress in heuristics-free error control for surface irradiance caching
by formulating error in terms of second-order derivatives. In particular,
Schwarzhaupt et al. [230] proposed a novel radiometrically equivalent
formulation of irradiance gradients and Hessians, which properly
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accounted for occlusions. The authors used these for extrapolation
and principled error control, respectively. We extend these ideas and
apply them to light transport in participating media, deriving first- and
second-order occlusion-aware derivatives for improved reconstruction
and principled error control in volumetric radiance caching.

Differential domain: Arvo [10] derived closed form expressions for
irradiance derivatives in polygonal environments, and Holzschuch
and Sillion [97] and Holzschuch and Sillion [98] derived second-order
illumination derivatives for error control in the radiosity algorithm.
Local differentials have also proven useful for texture filtering [103,
246], photon density estimation [118, 228], and spectral rendering [50].
Ramamoorthi et al. [220] analyzed gradients of various surface lighting
effects, including occlusions, and showed how these can be used for
adaptive sampling and interpolation in image space. Lehtinen et al.
[168] and follow-up work [176], proposed to compute image gradi-
ents instead of actual luminance values in Metropolis light transport
(MLT), and feed a Poisson solver with these gradients to reconstruct
the final image. Later work [144, 177] extended the applicability of this
gradient domain idea to simpler Monte Carlo path tracing methods,
and demonstrated how solving light transport in the gradient domain
improves over primal space, while remaining unbiased. Rousselle et al.
[225] showed how such Poisson-based reconstruction approaches can
be directly formulated as control-variate estimators. Kaplanyan and
Dachsbacher [137] leveraged second-order derivatives of irradiance to
estimate optimal kernel bandwidth in progressive photon mapping,
focusing on surface light transport only.

Closely related to our work, Belcour et al. [13] performed a frequency
analysis of light fields within participating media. They summarize the
local light field using covariance matrices, which provides Hessians of
fluence (up to sign) due to scattering and absorption. Their approach
explicitly accounts for radiance changes only in the plane perpendicular
to ray propagation, needing to average the per-light-path information
from many rays to compute the 3D fluence spectrum. To account
for visibility changes, they also require precomputing the covariance
matrices in a finite neighborhood, sacrificing locality and incurring the
cost of scene voxelization. In contrast, we provide a fully local method
for computing first- and second-order derivatives of media radiance,
without requiring voxelization, all while accounting for changes due to
visibility, scattering, and transmittance.

2D spaces: Simplification to lower-dimensional spaces is a recurring
tool used in problem analysis. In image synthesis, reduction to hypo-
thetical 2D worlds has been used to obtain insights and illustrate the
benefits of more complex 3D approaches [91, 207]. More recent analyses
of derivative and frequency domains [46, 185, 220], as well as recent
work on complex reflectance filtering [283, 284] reduce the complexity
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of their derivations by performing them in 2D, before showing how the
gained insights generalize to 3D. Jarosz et al. [120] introduced a 2D sur-
face radiometry and global illumination framework, and showed how
this allows for a more practical analysis of 2D versions of standard ren-
dering algorithms due to faster computation and simpler visualization.
Other fields such as acoustic rendering have recently benefited from 2D
reduction to provide interactive simulations [4]. Two-dimensional sim-
ulations have also been proved useful to synthesize higher-dimensional
light transport, as in transient rendering [20, 111]. In this work we
follow a similar methodology as Jarosz et al. [120], providing a novel
2D radiometry framework for participating media.

2.3 2d and 3d light transport in participating media

We describe here the main radiometric aspects of working in a two-
dimensional domain, compared to 3D. Similar to Jarosz et al. [120],
we assume an intrinsic model where light is generated, scattered, and
absorbed within a plane, thus ensuring energy conservation.

The outgoing radiance at a point x in a medium is defined as the
angular integral of the incident radiance Li(x, ~ωi), modulated by the
scattering phase function fs(x, ~ωi, ~ωo):

L(x, ~ωo) =
∫

Ω
fs(x, ~ωi, ~ωo) Li(x, ~ωi) d~ωi, (2.1)

where ~ωi and ~ωo are directions over the spherical domain Ω pointing
into and out of the point x respectively. The incident radiance Li =
Lm + Ls is the sum of radiance arriving from the surrounding medium
(Lm) and from surfaces (Ls):

Lm(x, ~ωi) =
∫ s

0
µs(y(t)) Tr(x, y(t)) L(y(t), ~ωi) dt, (2.2)

Ls(x, ~ωi) = Tr(x, ys) Lo(ys, ~ωi), (2.3)

where y(t) = x − t~ωi is a point in the medium, and ys is a point
on a surface at distance s with outgoing radiance Lo modeled by the
rendering equation [133]. The transmittance Tr models the attenuation
due to scattering and absorption between two points, and µs(x) = ρσs
is the scattering coefficient at x, with ρ and σs the density and scattering
cross-section in the medium, respectively. We detail our notation in
Table 2.1, and highlight the main radiometric differences between self-
contained 2D and 3D worlds, described below.

Differences in 2D: When moving to a 2D world, the intrinsic radio-
metric model implies that all radiance travels within a planar medium,
scattering therefore over angle instead of solid angle. This means that
radiance falls off with the inverse distance instead of inverse squared
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distance [120]; this will become important in our analysis of first- and
second-order derivatives.

The main changes when applying Equations (2.1–2.3) in 2D are:

• The integration domain Ω of Equation (2.3) becomes circular
instead of spherical.

• The phase functions in 2D must be normalized over the circle,
not the sphere, of incident directions.

• Lo(ys) now indicates radiance from the closest curve (the 2D
equivalent of a 3D surface).

In the next sections, we use this self-contained 2D world to better de-
pict and reason about the improvements of our new occlusion-aware
gradients and Hessians for media (Section 2.4), and our second-order
error metric (Section 2.5), before extending them to a more practical
three-dimensional world. Working in 2D also allows us to avoid collaps-
ing a 3D scene into a 2D image for visualization, where information
from many media points would contribute to a single image pixel. This
allows us to illustrate the performance of our algorithm in a more
intuitive way (Section 2.6) and to depict the introduced errors more
clearly.

2.3.1 Radiance Caching in Participating Media

Before deriving our second-order, occlusion-aware volumetric radiance
caching approach, we first summarize Jarosz et al.’s [116] original
formulation. To determine the radiance at any point x′ in the medium1,
their algorithm first tries to approximate this value by extrapolating
(in the log domain) the cached radiance Lk from nearby cache point
locations xk along their respective gradients:

L(x′, ~ωo) ≈ exp
[

∑k∈C (ln Lk +∇ ln Lk · ∆x′)w(xk, x′)
∑k∈C w(xk, x′)

]
, (2.4)

with ∆x′ = (x′ − xk). Here ∇ ln Lk = ∇Lk/Lk is the log-space transla-
tional gradient of cache point xk, and w(xk, x′) is a weighting function
that diminishes the influence of a cache point to zero as x′ approaches
the cache point’s valid radius. The collection of nearby cache points C
consists of all cache points whose valid radii contain x′. If no nearby
cache points are found, then the algorithm computes radiance using
Monte Carlo sampling and inserts the value and its gradient into the
cache for future reuse.

1Throughout the text, x′ represents points where we approximate radiance by interpo-
lating the cache points, while x represents points where we compute radiance and its
derivatives explicitly.
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Jarosz et al. [116] proposed to compute the valid radii using a metric
based on the local log-space radiance gradient:

R = ε
∑ Lj

∑ ‖∇Lj‖
, (2.5)

where ε is a global error tolerance parameter and Lj and ∇Lj are the
individual Monte Carlo samples of radiance and translational gradient
respectively. Unfortunately, this error metric is an ad-hoc approximation
of the error in the log-scale interpolation, which can lead to difficulty
predicting the error in the sample distribution and suboptimal cache
distributions.

Jarosz et al. maintain a separate cache for single/surface scatter-
ing and multiple scattering. They compute single-scattering gradients
by Monte Carlo sampling the first translational derivative of Equa-
tions (2.1) and (2.3) in surface-area form. They trace out many rays in
the sphere of directions around point x to obtain a number of surface
hit points ys. Their gradient calculation, in essence, considers how the
radiance Ls from each of these hit points would change (due to changes
of transmittance and geometry terms, but not visibility) as x translates,
but the surface hit points ys remain fixed (see Figure 2.1a). For multiple-
scattering gradients, they Monte Carlo sample the first derivative of
Equations (2.1) and (2.2), where the whole set of sampled paths is
assumed to move rigidly (see Figure 2.1b), accounting for translational
derivatives at each scattering vertex.

This gradient formulation can efficiently compute the local change
in radiance of any single Monte Carlo sample, but—by operating
independently on each radiance sample—it is not able to capture
global effects such as visibility gradients. As a consequence, changes
in radiance that becomes occluded/unoccluded as the shaded point is
translated are not taken into account (see Figures 2.1a and 2.1b, red).
As an illustrative example, Figure 2.2 shows how ignoring occlusions
(purple line) leads to incorrect single- and multiple-scattering gradients
in the penumbra region beneath the occluder.

In the remainder of this work we describe our novel Hessian-based
radiance caching method for participating media that overcomes the
aforementioned limitations. In Section 2.4 we introduce our approach
for computing occlusion-aware first- and second-order derivatives of
media radiance. Then, in Section 2.5 we introduce our Hessian-based
error metric and extrapolation method for volumetric radiance caching.

2.4 radiometric derivatives in media

Following the work of Schwarzhaupt et al. [230] on global illumina-
tion on surfaces, we formulate the radiance at x as a piecewise linear
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Figure 2.2: Compared to prior occlusion-unaware gradients (purple), our gra-
dients (yellow) converge to the reference solution (blue) with in-
creasing angular sample count both for single scattering (left) and
multiple scattering (right). The convergence plots are computed in
the red crosses in the respective middle images.

representation of the incoming radiance. Conceptually, we build an
approximated coarse representation of the scene as seen from the media
point x by triangulating adjacent stochastic angular samples ys (see
Figures 2.1c and 2.1d). The interesting property of this triangulation is
that the geometry term for each triangle (segments in 2D) models the
attenuation due to the solid angle; as a consequence, changes in the
geometry term (due to translation of x) model changes in the observed
radiance.

We extend Schwarzhaupt et al.’s [230] formulation to handle not
only light transport from surfaces, but also from media. In the case of
surfaces, the sample points ys are located at the first surface point as
seen from x in direction # �yx (Figure 2.1d). For points in a participating
medium, however, radiance arrives from multiple distances along each
direction. We therefore consider a set of concentric triangulations at
increasing distances ri, each representing the outgoing radiance at that
particular distance in the medium. If occluding geometry exists closer
than the distance ri, we place a zero-radiance sample at the surface
intersection (points marked with ? in Figure 2.1e).

Handling Occlusions and Transmittance: In essence, we are ap-
proximating the integration along Ω, by transforming the scene into a
discrete set of virtual piecewise linear representations of the geometry
and media around x. As noted by Schwarzhaupt et al., this representa-
tion implicitly encodes changes in visibility by means of the geometry
term. Our approach for media, however, requires taking transmittance
into account and using different geometry terms (see Figure 2.1c), since
surface-medium light transport only has a cosine term at the source
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Figure 2.3: Left and center: Visible and occluded cases for 2D surface-media
radiance for an angle γ. Red segment represent the piecewise-linear
construction as seen from x. Right: 3D interpretation, where occlu-
sions are represented by slanted triangles, and visibility changes are
modeled as changes in the 3D geometry term between the triangle
points y ∈ 4, and x.

ys. We illustrate this with a 2D example in Figure 2.3, left and center:
Assuming a constant angle γ between vectors #    �xy0 and #    �xy1, occlusions
generate segments ` = y1 − y0 at grazing angles, with derivatives
proportional to the steepness of the segment. When moving within the
medium, the projected angle of ` towards x is proportional to cos θy,
and therefore the radiance from ` increases with cos θy. This allows
modeling the visibility changes as a change on the 2D geometry term
G = cos θy/‖ # �xy‖. This principle holds also for 3D, as Figure 2.3, right,
shows: Occlusions are represented by slanted triangular faces, and
visibility changes are modeled as changes in the 3D geometry term
between the triangle points y ∈ 4 and x. We leverage this equivalence
to provide a unified formulation for radiance derivatives, applicable
both to 2D and 3D2.

Using the formulation presented before, we approximate L(x, ~ωo) by
discretizing the space into a set of concentric rings R as:

L(x, ~ωo) ≈ ∑
ri∈R

1
pdf(ri)

∑
`j∈Li

Lj(x, ~ωo), (2.6)

where the last ring rs ∈ R has all its vertices on surfaces, Li is the set
of segments for ring ri, and pdf(ri) is the probability of sampling a
particular distance when building the ring (for the surface ring, we have
pdf(rs) = 1). Lj is the radiance contributed by each segment `j ∈ Li,
defined by the integral:

Lj(x, ~ωo) =
∫
`j

f (x, ~ωi, ~ωo) G(x, y) Tr(x, y) L(y, ~ωi) dy. (2.7)

2For convenience, we formulate all the equations in terms of 2D media and geometry
subdivisions in segments `, but all formulae are equally applicable in 3D by substituting
segments ` by triangles 4.
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By construction, the visibility between x and y is V(x, y) = 1, and
y is a point on a virtual surface; we thus need to account for the
foreshortening at y. This allows for a unified formulation of both
surface-to-medium and medium-to-medium radiance derivatives, using
the same geometry term in both cases. Note that we have merged
together the phase function fs(x, ~ωi, ~ωo) and scattering coefficient µs(x)
as a directional scattering function f (x, ~ωi, ~ωo) = µs(x) fs(x, ~ωi, ~ωo), to
make the following derivations simpler.

Differentiating Equation (2.6) with respect to x provides approxima-
tions for the first and second order derivatives:

∇L(x, ~ωo) ≈ ∑
ri∈R

∑
`j∈Li

∇Lj(x, ~ωo)

pdf(ri)
, (2.8)

HL(x, ~ωo) ≈ ∑
ri∈R

∑
`j∈Li

HLj(x, ~ωo)

pdf(ri)
, (2.9)

which in turn require differentiating the radiance from each segment.
Unfortunately, we cannot compute Equation (2.7) and its derivatives

analytically in closed-form, while computing it numerically would be
prohibitively expensive. We instead introduce a set of assumptions to
build a closed-form approximation:

• For a sufficiently fine subdivision the angle γ tends to 0, so ~ωi can
be regarded as constant for the whole segment, and f (x, ~ωi, ~ωo) =
f (x, ~ω`, ~ωo), with ~ω` a fixed direction from x to a point in segment
`.

• For all y ∈ `, we assume constant Tr(x, y) = Tr(x, y`), and
L(y, ~ωi) = L(y`, ~ωi). Following existing approaches for surface
irradiance, we choose y` as the furthest point in the segment `,
which will be the first to be occluded/unoccluded.

These assumptions allow us to significantly simplify the integral in
Equation (2.7) to:

Lj(x, ~ωo) ≈ f (x, ~ω`j
, ~ωo) Tr(x, y`j

) L(y`j
, ~ωi)

∫
`j

G(x, y) dy

= f (x, ~ω`j
, ~ωo) Tr(x, y`j

) L(y`j
, ~ωi) F`j

(x), (2.10)

which now admits a closed-form solution in both 2D and 3D (see Ap-
pendices 2.B and 2.C). More importantly, this allows us to approximate
the derivatives of Lj in closed form as:

∇Lj ≈ LF∇ f +∇LF f , (2.11)

HLj ≈ LFH f +∇LF∇ᵀ f +∇ f∇ᵀLF + HLF f , (2.12)
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where

∇LF = Lr∇F` +∇LrF`, (2.13)

HLF = LrHF` +∇Lr∇ᵀF` +∇F`∇ᵀLr + HLrF`, (2.14)

∇Lr = L∇Tr +∇LTr, (2.15)

HLr = LHTr +∇L∇ᵀTr +∇Tr∇ᵀL + HLTr. (2.16)

For brevity we have omitted function parameters, and we express
gradients and Hessians in terms of the scaled radiance LF = F`Lr,
and the reduced radiance Lr = LTr. While Equations (2.10–2.16) are
general, we restrict our work to Lambertian surfaces and isotropic,
homogeneous media (in Section 2.7 we discuss how to extend it to
anisotropic and heterogeneous media). This means that both L and f
are constant, and therefore their derivatives cancel out as ∇L = HL =
∇ f = H f = 0, removing directional dependences; this allows us to
simplify Equations (2.11) and (2.12) to:

∇Lj ≈ L f (Tr∇F` +∇TrF`) , (2.17)

HLj ≈ L f (TrHF` +∇Tr∇ᵀF` +∇F`∇ᵀTr + HTrF`) . (2.18)

We refer to Appendices 2.A, 2.B and 2.C for all the terms.
By construction, our formulation in Equation (2.6) and its deriva-

tives (Equations (2.8) and (2.9)) are biased but consistent estimators
of L(x, ~ωo), ∇L(x, ~ωo), and HL(x, ~ωo), respectively. In addition the as-
sumptions imposed in Equation (2.10) introduce some additional bias
due to the piecewise assumption in the scattering f , transmittance Tr,
and radiance terms L. However, as shown in Figure 2.2 our formulation
converges accurately to the actual derivatives. Note that we use this
biased but consistent approximation only to compute first- and second-
order derivatives of media radiance (Equations (2.8) and (2.9)), while
computing actual radiance values (Equation (2.1)) using the standard
unbiased Monte Carlo estimator. In the following, we describe how
to use the derivatives in Equations (2.8) and (2.9) for interpolating
radiance from a set of cache points, and define an error metric for such
interpolation.

2.5 second-order error control for media radiance ex-
trapolation

The error in radiance caching is controlled by a tolerance value ε, and
depends both on how radiance is extrapolated, and on the radiance
moments at cache point x. These moments define a valid bounding
region ℵ where a point x′ can be used for extrapolation. We provide
here the key ideas and resulting equations for the valid regions in
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the context of 2D and 3D participating media and provide detailed
derivations in the supplementary material3.

Existing work on radiance caching for participating media estimates
the relative error using radiance gradients at x. However, ignoring
higher-order derivatives creates suboptimal cache distributions that
often oversample regions near surfaces and light sources. Given the
radiance and the first n derivatives at a media point x, we can approx-
imate radiance at point x′ ∈ ℵ using an nth-order Taylor expansion.
Following previous work [230] we truncate to order one, approximating
L(x′, ~ωo) as:

L(x′, ~ωo) ≈ L(x, ~ωo) +∇L(x, ~ωo)∆x′ . (2.19)

Since we focus on isotropic media, we remove the directional depen-
dence in the following derivations to simplify notation. By using a
second order expansion of L(x) as our oracle, we can approximate the
relative error ε̂′(x′) of the extrapolation as:

ε̂′(x′) ≈
∣∣∆ᵀ

x′HL(x)∆x′
∣∣

2 L(x)
, (2.20)

with HL(x) the Hessian matrix of L(x). This expression is similar
to the second-order error metric proposed by Jarosz et al. [120] and
follow-up work by Schwarzhaupt et al. [230], although these works
dealt with surfaces only.

By integrating Equation (2.20) in the neighborhood of x for a given
error threshold ε, we can express the valid region in two-dimensional
media as an ellipse with principal radii Rλi

2D (see the supplemental
document3 for the complete derivation)

Rλi
2D = 4

√
4L(x)ε
π|λi|

, (2.21)

where λi is the i-th eigenvalue of the radiance Hessian HL(x). This for-
mula is analogous to the relative error metric presented by Schwarzhaupt
and colleagues [230] for surfaces, but here the radii are computed by
taking the principal components of the volumetric radiance Hessian.
Adding the third dimension, the valid region for a cache point becomes
a 3D ellipsoid, whose principal radii are:

Rλi
3D = 5

√
15L(x)ε
4π|λi|

. (2.22)

Our second-order error metric and its derived radius assume knowl-
edge of the radiance and its derivatives at x. In practice, these are
3http://webdiis.unizar.es/~juliom/pubs/2018TOG-SecondOrderMediaCaching/

2018TOG_SecondOrderMediaCaching_supp.pdf

http://webdiis.unizar.es/~juliom/pubs/2018TOG-SecondOrderMediaCaching/2018TOG_SecondOrderMediaCaching_supp.pdf
http://webdiis.unizar.es/~juliom/pubs/2018TOG-SecondOrderMediaCaching/2018TOG_SecondOrderMediaCaching_supp.pdf
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usually computed by Monte Carlo techniques, which lead to other
sources of error such as variance (inherent to Monte Carlo sampling),
or bias (due to inaccuracies computing the derivatives).

The presented metric describes the error introduced by extrapolation
from a single cache point in participating media. However, at render
time, we compute radiance at each shaded point by interpolating from
multiple cached points, as:

L(x′) ≈ ∑k∈C [L(xk) +∇L(xk) · ∆x′ ]w(xk, x′)
∑k∈C w(xk, x′)

, (2.23)

with C the set of cache points whose radii include x′, and w(xk, x′)
the interpolation kernel. Following Jarosz et al. [116], we use a cubic
interpolation kernel w(xk, x′) = 3d2 − 2d3 with d=1−‖x′− xk‖ R−1

k .
Since Equation (2.23) only interpolates from cache points which predict
a maximum error ε̂′ < ε at x′, the error of the weighted sum is equally
upper-bounded by ε. Note that, as opposed to Jarosz et al. [116] (2.4), we
interpolate in linear space, where the error is more accurately predicted
by our Hessian-based metric described in Equation (2.20).

2.6 results

In the following we illustrate the accuracy and benefits of our method.
We start showing our results in a two-dimensional world, and compare
it against a 2D version of the current state-of-the-art method [116].
We refer the reader to the supplementary material for the additional
expressions to compute two-dimensional occlusion-unaware gradients.
Then, we move to 3D, to demonstrate that our results are also consis-
tent in a more practical three-dimensional scenario. For comparison
purposes, all 3D insets show only single and multiple scattering in
media, discarding surface radiance. Unless it is explicitly mentioned,
we use isotropic points with the smallest principal axis of the Hessian.
This is the most costly scenario for our method in comparison to pre-
vious work, since we cannot adapt to the signal as faithfully as with
anisotropic points, and therefore require more points.

Implementation: We compute both radiance and derivatives at point
x by stratified sampling uniformly in the sphere, with equal solid an-
gle strata (in the case of 2D, this stratification is in the circle, using
equal angle stratification). This reduces variance compared to pure
uniform sampling. More importantly, it allows to very simply build
the subdivision using the angular samples, by just connecting samples
from adjacent strata [230]. This stratification is used for both media and
surfaces, including area light sources, while other direct light sources
(such as directional or point lights) must be handled separately. The
accuracy of the subdivision for computing the derivatives relies on
a dense sampling of the angular domain, and, as in any sampling
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problem, our sampling rate limits the amount of radiance changes that
we can recover. This is especially important when capturing fine details
such as small light sources, which are not computed using next event
estimation (NEE), but could also be important in high-frequency fluctu-
ations of radiance in media. However, in practice our method presents
much better convergence than previous work [116] with increasing
number of angular samples, as shown in Figure 2.2. Introducing a
NEE-aware subdivision combined with the standard angular one via
multiple importance sampling could significantly improve the perfor-
mance of the derivative computation, although we leave this to future
work. We perform the subdivision within the medium by uniformly
ray-marching the medium at discrete distances around x, and joining
adjacent angular samples within each marching step (see Figure 2.1e).

Unless stated otherwise, single scattering in all compared methods
refers to radiance emitted or reflected (first bounce) by surfaces. We
limit multiple scattering to the second bounce for all methods. We did
this mainly to reduce excessive variance when computing reference
derivatives with finite differences. Note that both occlusion-unaware
and occlusion-aware methods are equally applicable to higher number
of media bounces, although they usually require a high number of
samples to obtain noiseless solutions.

Following previous methods [116], we first pre-populate the cache
by uniformly sampling a ray from the camera, and ray-marching along
the media, placing cache points in case they do not fulfill our error
metric (Section 2.5). At render time, we evaluate Equation (2.23) at
ray-marched points x′ in the medium, extrapolating radiance from the
surrounding valid cache points. If no valid cache points are found for
x′ then we compute its radiance and derivatives, and add it to the
cache. As in previous methods [116], we separate single and multiple
scattering caches, each in a different octree for efficient cache query.

All results were computed on a desktop PC with an Intel Core i7 3.4
GHz CPU and 16GB RAM. Note that all methods used for rendering
comparisons of the complex 3D scenes Whiteroom and Staircase were
accelerated with Embree ray-tracing kernels [260], and therefore the
performance with respect to the other 3D scenes is higher.

2.6.1 Results in 2D

To evaluate the error introduced by our occlusion-aware computations
of derivatives in a clear, intuitive way, we rely on their two-dimensional
versions. In Figure 2.2 we showed the convergence of gradient compu-
tation with the number of angular samples. Previous approaches not
taking into account visibility changes fail to estimate the gradient. In
contrast, our derivative formulation converges to the actual gradient,
even in areas of penumbra for both single and multiple scattering. The
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Figure 2.5: Radiance gradients at discrete locations in 2D computed with occlu-
sion unaware, and our occlusion aware methods, compared against
reference gradients (bottom row) computed with path traced finite
differences using 4M samples/gradient. Left column, top and mid-
dle, show single scattering gradients computed with 256 angular
samples/gradient. Right column, top and middle, show multiple
scattering gradients computed with 65536 samples/gradient (256

angular × 256 ray samples).

quality of our estimated derivatives increases with the number of angu-
lar samples, since the approximations introduced by our assumptions
vanish as the strata size diminishes.

In Figure 2.4 we compare the evolution of single and multiple scat-
tering gradients across a penumbra region, computed with our method
and previous work. We illustrate them in polar coordinates (magnitude
and orientation) in a simple scene with a medium illuminated by an
area light on top, and a line acting as an occluder within the medium.
We compute reference gradients with path traced finite differences.
Our approach manages to correctly compute both gradients magni-
tude and orientation in the penumbra region. The right graphs show a
progression of gradients along the dotted line. The graphs show that
our method is able to match the ground-truth, while the occlusion-
unaware method both underestimates the magnitude of the gradient
and computes an incorrect direction.

Figure 2.5 shows a comparison of gradients (shown as a vector field)
with the occlusion-unaware method, our technique, and a ground-
truth solution computed with finite differences. Our method correctly
captures complex radiance changes, including strong changes near
occluder boundaries, closely matching the ground-truth reference.
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Scene diagram (top)
Reference (bottom)

[Jarosz et al. 2008]
13673 iso. points

Ours

13234 iso. points
Ours

9100 aniso. points

Figure 2.6: Single scattering in a 2D setup with four line lights and four occlud-
ers. Point distributions (top row) show how a occlusion-unaware
gradient metric [116] fails to estimate the correct radiance changes
in complex shadows, while tending to concentrate cache points near
reflecting geometry. In contrast, our algorithm distributes points
according to occlusion-aware, second-order derivatives of radiance,
capturing complex light patterns more accurately. Leveraging cur-
vature information in the Hessians enables anisotropic cache points
that further reduce the number of required cache points while
maintaining quality (see error maps).

Our error metric takes into account second-order derivatives to drive
sample-point density in the scene. Since we use the estimated occlusion-
aware Hessians as an oracle of the error, this allows us to place more
cache points in areas with higher frequencies. Additionally, our im-
proved gradients allow for a more accurate extrapolation within the
valid region of the cache points. Figure 2.6 (top) shows a scene with
overlapping shadows, created by four lights and four occluders (top-left
diagram indicates the shaded region in green). Previous work (second
column) drives point density based on the log-space gradient of radi-
ance; in practice this tends to drastically increase point density near
light-reflecting geometry, failing to efficiently sample shadowed regions.
This can only be mitigated by radius-clamping heuristics (in this case
based on the pixel size), thus breaking the principled properties of the
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Isotropic

(1725 points)

Anisotropic

(1388 points)
Eccentricity0 1

Figure 2.7: 2D point distributions in a medium illuminated by a square-shaped
light, using our Hessian-based error metric with isotropic and
anisotropic points (left) using the same relative error threshold.
Eccentricity of radiance curvature (right) determines anisotropy of
cache points (left, green), stretching circular points to ellipses along
the direction of lower change.

approach. In contrast, our method (last two columns) does not rely on
heuristics and manages to correctly capture shadows by placing more
points near shadow boundaries.

By computing principal components of radiance Hessians, we can
use the radiance eccentricity (i.e. the eccentricity of the ellipse defined
by the Hessian of the radiance) to stretch media cache points along
the components with lower radiance variation, obtaining elliptic (2D)
or ellipsoidal (3D) cache points. In Figure 2.6 (bottom) we compare
previous work with our isotropic and anisotropic cache distributions.
Even with a similar number of isotropic points (∼13k), our improved
derivatives manage to capture the overlapping shadows much better;
using our anisotropic technique, we manage to reduce cache size by
32%, while keeping the same error threshold. Figure 2.7 illustrates
eccentricity across a 2D scene with a square light emitter in the center.
By keeping the same error threshold, our anisotropic cache reduces the
number of cache points by up to 20%.

2.6.2 Results in 3D

Here we further analyze occlusion-unaware gradients and our occlusion-
aware Hessians on four 3D scenes: Strips, Statues, Patio and Cornell holes.
Unless stated otherwise, all renders are taken using 16 samples per
pixel, and performing uniform ray marching with a step size of 0.1.

The Statues scene shown in Figure 2.8 combines both surface-to-
media single scattering, and media-to-media (two-bounce) multiple
scattering. The scene includes distant and local light sources (side
windows and ceiling, respectively). Occlusion-unaware single and mul-
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Figure 2.8: Statues scene rendered with both single and multiple scattering.
Radiance at surfaces is excluded for illustration purposes (please
refer to the digital version for accurate visualization). PT1: Path
tracing, 2k samples/pixel, 2 hours. PT2: Path tracing, 500k sam-
ples/pixel, 500 hours. [116]: Occlusion-unaware, gradient-based
error metric, ∼19k cache points, 16k samples/cache, 155 minutes.
Ours: Occlusion-aware, Hessian-based metric, ∼19k cache points,
16k samples/cache, 154 minutes. Ignoring visibility derivatives fails
at representing high-frequency shadows from the windows (a, blue
and yellow) due to poor cache distribution, as well as other rapid
radiance changes (a, red) in areas with good cache distribution,
due to imprecise extrapolation during reconstruction. In contrast,
our occlusion-aware Hessian-based method correctly handles these
higher-frequency features by improving the sample distribution, as
well as the reconstruction.

tiple scattering gradients lead to big splotches on the boundaries of
light beams coming through the windows. In the case of light com-
ing through the ceiling, while the point distribution captures shadow
contours fairly well, extrapolation fails since occlusion-unaware gradi-
ents ignore light effects produced in the penumbra region. Moreover,
occlusion-unaware techniques concentrate most cache points near light
sources and reflecting surfaces (Figure 2.9, top-left), as seen previously
in 2D. Since the gradients are large in these areas, this results in very
small valid radii for the cache points. Histograms show how for pre-
vious work nearly 8000 points (Figure 2.9, top-right, leftmost bin of
the blue histogram) on single scattering reach the minimum radius,
which is close to a 40% of the total number of points. This implies that
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Figure 2.9: Cached point distributions of the results in Figure 2.8 as seen
from above for both single and multiple scattering. The occlusion-
unaware approach (top) concentrates the samples excessively near
the surfaces, usually reaching the cache minimum radius (see top-
right histograms), but ignoring occlusion changes throughout the
scene. Using occlusion-aware first- and second-order derivatives,
our method predicts the error introduced by gradient extrapolation
more robustly, increasing cache density in regions where gradients
change rapidly (bottom).
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Figure 2.10: Strips scene comparing single scattering for an increasing number
of cache points, and showing relative error with respect to the ref-
erence image. While occlusion-unaware gradients method requires
35k cache points to fairly capture occlusions, our occlusion-aware
Hessians produce similar results with just 3k points.

the performance of this approach is highly dependent on the value of
such minimum radius, which undermines the principled basis of its
error metric. In contrast our method generates better point distribu-
tions, which correctly capture light gradients while avoiding additional
heuristics to control oversampling in certain regions.

The Strips scene (Figure 2.10) shows surface-to-medium single scat-
tering, for an increasing number of cache sizes. Surface radiance is
excluded for illustration purposes. The occlusion-unaware method
needs an order of magnitude more cache points to get comparable
results to ours (see progression insets). This implies that we have to sig-
nificantly drop the tolerance parameter to create sufficiently fine point
distributions in occluded regions. As we can observe in Figure 2.10,
top row, our method yields better sampling density and extrapolation
from the sampled points, achieving similar results with an order of
magnitude less points.

Computing derivatives of surface-to-medium form factor involves
operating with 3×3 matrices (see Appendix 2.C). Including the cost
of scene subdivision, this introduces an overhead per cache point of
just 9%, compared to computing only point-to-point first derivatives
(see Table 2.2 for the Patio scene). Nevertheless, as we can see in Fig-
ure 2.11, our method yields better equal-time results with isotropic
points. Moreover, our anisotropic approach stretching spherical cache
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Figure 2.11: Patio scene with single scattering. Our method outperforms exist-
ing occlusion-unaware techniques on an equal-time comparison.
Moreover, our anisotropic cache manages to significantly reduce
total time under the same error tolerance ε = 1.5e−4 than our
isotropic cache, while still retaining shadow details on window
boundaries and near thin handrails as shown in the insets.

points along the principal components of radiance, allows to reduce
both the number of points and the total computation time by 30% for
the same error tolerance.

The Cornell Holes scene (Figure 2.12) shows how our method success-
fully resolves difficult, high-frequency occlusions due to light coming
out of the box. Our method provides a built-in mechanism to signifi-
cantly reduce error in two ways: additional samples reduce variance but
also create finer subdivisions, thus improving accuracy when detecting
occlusions.

We also demonstrate the benefits our method in scenes of higher
complexity. In the Staircase scene (Figure 2.13) we show an equal-time

4Note that Jarosz et al.’s metric (Equation (2.5)) is different from our Hessian-based
integrated error ε, thus tolerance values of both metrics have different meaning.
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Table 2.2: Computation data for the Patio scene. For the isotropic case, our
method yields better results in equal time. Using anisotropic points
provides a further 30% computation time reduction at the same low
error threshold due to the improved point distributions and larger
valid regions.

Method Error tol. 4 Cache gen. Time / point Total time

Jarosz et al. 2008 0.3 124 min / 36k pts 206 ms 136 min

Ours (isotropic) ε=1.5e−4 122 min / 32k pts 225 ms 135 min

Ours (anisotropic) ε=1.5e−4 81 min / 21k pts 225 ms 94 min
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Figure 2.12: Cornell Holes scene showing complex high-frequency shadows
handled by our method, compared against equal-time path traced,
and occlusion-unaware gradients solutions.

comparison with a render time of 90 minutes. Path tracing has not
fully converged to the reference solution in that time, and while the
point distributions of occlusion-unaware methods manage to capture
the main shadow boundaries, occlusion-unaware gradients still create
visible artifacts on the shadow patterns created by light coming from
different windows. Progressive photon beams [119] manages to capture
high frequency changes, but fails to densely sample the medium due
to distant lighting. In equal time, our method manages to get the
closest match to the reference by correctly capturing complex shadow
configurations. In Figure 2.14 we also illustrate convergence of our
occlusion-aware gradients in the same scene by analyzing the changes
on a XZ-aligned slice of the media crossing through the light shafts.
We compare our gradients against finite differences gradients on two



38 second-order occlusion-aware volumetric radiance caching

P
ath

 tracin
g

 (3
2

h
)

P
ath

 tracin
g

 (9
0

 m
in

)
[Jaro

sz 2
0

0
8

] (8
9

 m
in

)
O

u
rs (8

7
 m

in
)

P
P

B
 (8

8
 m

in
)

Figure
2.

1
3:Staircase

scene
show

ing
equal-tim

e
com

parisons
ofpath

tracing,progressive
photon

beam
s

(PPB),occlusion-unaw
are

gradients
[
1
1
6],

and
ou

r
second

-ord
er

occlu
sion-aw

are
solu

tion.W
e

inclu
d

e
a

fu
lly

converged
solu

tion
for

p
ath

tracing.E
ach

cache
in

both
ou

r
m

ethod
and

Jarosz
etal.is

com
puted

using
1
6k

stratified
angular

sam
ples,and

rendered
using

1
6

sam
ples

per
pixel.The

progressive
photon

beam
s

solution
w

as
obtained

using
the

publicly
available

Tungsten
rendering

engine
[
1
9].N

ote
how

the
occlusion

unaw
are

m
ethod

creates
visible

artifacts
in

the
patterns

created
by

the
shadow

s
crossing

from
different

w
indow

s,w
hile

our
m

ethod
correctly

cap
tu

res
those

d
etails

in
equ

al
tim

e.D
u

e
to

d
istant

lighting,p
rogressive

p
hoton

beam
s

fails
to

d
ensely

sam
p

le
the

light
shafts

com
ing

through
the

w
indow

s,resulting
in

visible
variance

after
4

0
0

iterations
of

1M
beam

s/iteration.



2.7 conclusions 39

-100

0

100

-200

0

200

-200

0

200

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Fluence Gradient

0

300

-500

-300

0

500

-200

0

200

x

y

z

x

y

z

× 10
4

-300

-200

-100

0

100

200

300

y (ref.)

z (ref.)

x (ref.)

# angular samples Ours Reference
0 1 2 3 4 5 6 7

XZ-aligned slice

G
ra

d
ie

n
t 

at

Figure 2.14: We demonstrate the convergence of our occlusion aware deriva-
tives in complex 3D scenarios like Staircase. We illustrate this
using an XZ-aligned slice of the media that captures the occlusion
changes produced by the light shafts through the windows. Right
graphs show our computed gradients across two orthogonal scan
lines of the slice, where we can observe how our method matches
the reference derivatives computed with finite differences. In the
bottom graph we also illustrate convergence at the white dot re-
spect to the number of angular samples. Higher number of angular
samples create finer scene subdivisions and increase the precision
of our derivatives, which provide a very good estimation of the
actual derivatives.

orthogonal scanlines that cross through the shadows, and demonstrate
how our method converges to the reference gradients by creating finer
subdivisions with higher number of angular samples.

Finally we perform comparisons up to equal-quality in the Whiteroom
scene (Figure 2.15), which presents high scattering due to bright white
walls and furniture. In a sequence of insets with increasing render time,
we show how our method manages to recover high-frequency shadows
in much less time than other methods, which also fail to capture thin
shadows near window boundaries.

2.7 conclusions

We have presented a new occlusion-aware method for efficiently com-
puting light transport in homogeneous isotropic media, including both
single and multiple scattering. At the core of our method lies an effi-
cient computation of radiance derivatives for both surface-to-medium
and medium-to-medium light transport. Our radiance derivatives, in-
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cluding visibility changes for single and multiple scattering, improve
both the placement of cache points, as well as their interpolation using
a Taylor expansion.

We have additionally formalized light transport in participating
media in a self-contained 2D world; we hope that this framework
becomes a valuable contribution for the graphics community as a
testbed for novel algorithms. Our results (2D and 3D) demonstrate
a significant improvement over the current state of the art, both in
equal-time and equal-error comparisons.

limitations & future work Our work shares some of the limita-
tions of traditional radiance caching algorithms, namely the assumption
of relatively low frequency transport with finite derivatives. High-
frequency illumination due to e.g. small light sources would require
a very fine-grained subdivision to accurately find shadow boundaries.
Other high-frequency effects such as caustics would additionally re-
quire departing from the assumption of constant angular radiance Lo
in Equation (2.10), which would in turn require computing its transla-
tional derivatives.

In our implementation we have assumed isotropic media, which
helps reduce the complexity and storage requirements of the cache
points. By using an angularly-resolved caching of radiance and its
derivatives (by using e.g. spherical harmonics [116, 154]) anisotropic
phase functions could be added. Incorporating heterogeneous media
would break the assumption of constant scattering term (i.e. ∇ f 6=
H f 6= 0) given the variability of µs and fs within the media. This would
require us to use the full radiance derivatives (Equations (2.11) and
(2.12)), instead of the simplified Equations (2.17) and (2.18). Moreover,
it would require changing our derivatives of transmittance Tr; given
our marching procedure for subdividing the media, a similar approach
to Jarosz et al.’s [116] for single scattering could be used. Finally, high-
frequency heterogeneity in the medium would require a very fine
subdivision, which would potentially make our approach impractical.

Our error metric assumes that the error is due to extrapolation
only, with perfect radiance samples and derivatives. However, both
are computed stochastically, which introduces variance (in the case of
radiance), and bias (on the derivatives). Developing new metrics taking
into account these additional sources of error, as well as accurately
characterizing them, are interesting avenues of future work. In this
regard, analyzing other consistent approaches to compute derivatives
(e.g. using photon mapping [137]) might be helpful. Evaluating whether
using our biased estimator of radiance (Equation (2.6)) instead of our
Monte Carlo estimate of Equation (2.1) would be interesting too, mak-
ing our cache points more robust by reducing variance (at the price
of additional bias). Finally, it may be possible to use our first- and
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second-order derivatives to accurately estimate the optimal kernel in
density estimation algorithms for participating media [86], as well as to
guide sampling in media or to improve quadrature-based ray-marching
methods [191].

appendices

In the following we summarize 2D and 3D expressions of translational
derivatives of transmittance and form factors needed for our method.
We box all relevant final expressions that to the best of our knowledge
are new to the literature. We define column vectors as ~v and row
vectors as ~vᵀ. Expressions such as~r1 ·~r2 denote dot (inner) products,
while expressions such as~r1~r

ᵀ
2 , ∇(. . .)∇ᵀ(. . .), and (. . .)(. . .)ᵀ denote

vector outer products.

2.a homogeneous transmittance derivatives

Homogeneous transmittance is modeled by the exponential decay due
to extinction,

Tr = e−µt‖ #�yx‖ (2.24)

where ‖ # �xy‖ denotes distance between source y and shaded point x. Its
gradient and Hessian with respect to a translation of x are

∇Tr = −µt

# �yx
r

Tr, (2.25)

HTr = −µt(
J( # �yx)

r
− 1

r3
# �yx # �yxᵀ − µt

r2
# �yx # �yxᵀ) Tr. (2.26)

2.b 2d segment-media form factor derivatives

The form factor between a 2D segment ` and a media point x (Fig-
ure 2.16, left) is defined as the integrated curve-media geometry term
along all segment points. This is equivalent to the angular ratio covered
by ` as seen from x

F`(x) =
1

2π

∫ y1

y0

cos θy

‖x− y‖d`(y) =
1

2π
arccos

(
# �xy0

r0
·

# �xy1

r1

)
.

where ri = ‖ # �xyi‖. The form factor gradient and Hessian become

∇F`(x) = −
1

2π

∇ cos θ′√
1− cos2 θ′

(2.27)
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Figure 2.16: Setups for segment-to-media (2D, left) and triangle-to-media (3D,
right) form factors.

HF`(x) = −
1

2π

(
J(∇ cos θ′)√

1− cos2 θ′

+
cos θ′

(1− cos2 θ′)3/2∇ cos θ′∇ᵀ cos θ′
)

(2.28)

where J is the Jacobian operator, and:

∇ cos θ′ =
cos θ′

r2
0

# �xy0 +
cos θ′

r2
1

# �xy1 (2.29)

− ( # �xy0 +
# �xy1)

r0r1
, (2.30)

J(∇ cos θ′) = −J
(

# �xy0

r0r1

)
− J

(
# �xy1

r0r1

)
+ J

(
cos θ′

r2
0

# �xy0

)
+ J

(
cos θ′

r2
1

# �xy1

)
, (2.31)

J
(

# �xyi
r0r1

)
=

J( # �xyi)

r0r1
+

# �xyi
# �xyᵀ

0

r3
0r1

+
# �xyi

# �xyᵀ
1

r0r3
1

, (2.32)

J

(
cos θ′

r2
i

# �xyi

)
=

cos θ′

r2
i

J( # �xyi) +
# �xyi

r2
i
∇ᵀ cos θ′

+
2 cos θ′

r4
i

# �xyi
# �xyᵀ

i . (2.33)

2.c 3d triangle-media form factor derivatives

The form factor between a 3D triangular face 4 and a media point
x (see Figure 2.16, right) is defined as the integrated surface-media
geometry term along all points in the triangle. Analogous to 2D, this
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has analytical solution equal to the ratio of solid angle covered by the
triangle as seen from x,

F4(x) =
1

4π

∫
y∈4

cos θy

‖x− y‖2 d4(y) =
Ω
4π

. (2.34)

Solid angle Ω of a triangle can be computed as [252],

Ω = 2 arctan
|A|
B

(2.35)

with

A =~r1 ·(~r2 ×~r3) (2.36)

B = r1r2r3 + (~r1 ·~r2) r3 + (~r2 ·~r3) r1 + (~r1 ·~r3) r2 (2.37)

where~ri =
#   �xyi, and ri = ‖~ri‖ (see Figure 2.16, right). Note that the

numerator A requires an absolute value to ensure positive vector order
(i.e. triangle winding) with respect to x. Also, when obtaining negative
arctangent values, π must be added to the obtained solid angle.

The gradient of the form factor with respect to a translation of x
becomes

∇F4(x) =
1

2π
∇ arctan

|A|
B

(2.38)

=
1

2π

B∇|A| − |A|∇B
|A|2 + B2 , (2.39)

and its Hessian yields

HF4(x) =
1

2π

(
∇(|A|)∇ᵀB−∇B∇ᵀ(|A|)

|A|2 + B2

+
BJ(∇(|A|))− |A|J(∇B)

|A|2 + B2

−
(B∇(|A|)−|A|∇B)

(
∇(|A|2) +∇(B2)

)ᵀ
(|A|2 + B2)

2

)
. (2.40)

Note that for computing the terms ∇(|A|) and J(∇|A|), we can
apply the derivatives of the absolute value of a vector function:

∇(|A|) = A
|A|∇A, (2.41)

J(∇|A|) = AJ(∇A) +∇A∇ᵀA
|A| − A2(∇A∇ᵀA)

|A|3 . (2.42)

The gradient of A becomes

∇A = J (~r2 ×~r3)~r1 + J (~r1) (~r2 ×~r3) . (2.43)
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By the Jacobi identity we have that

J (~r2 ×~r3) =~r2 × J(~r3)−~r3 × J(~r2) (2.44)

where any vector-matrix cross product #�v × J(•) can be expressed by
means of the matrix multiplication form

#�v × J(•) = 〈 #�v 〉J(•) (2.45)

#�v =

v(1)

v(2)

v(3)

, 〈 #�v 〉 =

 0 −v(3) v(2)

v(3) 0 −v(1)

−v(2) v(1) 0

. (2.46)

Since J(~r1)= J(~r2)= J(~r3)=−I3, we have that

∇A = (〈~r2〉J(~r3)− 〈~r3〉J(~r2))~r1 − (~r2 ×~r3)

= 〈~r3 −~r2〉~r1 − (~r2 ×~r3) . (2.47)

Note that 〈~r3 −~r2〉 = 〈y3 − y2〉 and therefore does not depend on
x, and 〈 #�v 〉ᵀ = 〈− #�v 〉 (see Equation (2.46)). As a result, the Jacobian of
∇A becomes a zero matrix

J (∇A) = J(~r1)〈~r3 −~r2〉ᵀ − J (~r2 ×~r3)

= 〈~r3 −~r2〉 − 〈~r3 −~r2〉
= 0. (2.48)

The gradient of B becomes

∇B = ∇(r1r2r3) +∇ ((~r1 ·~r2) r3)

+∇ ((~r2 ·~r3) r1) +∇ ((~r1 ·~r3) r2) (2.49)

where

∇(r1r2r3) = r2r3∇r1 + r1r3∇r2 + r1r2∇r3 (2.50)

∇
((
~ri ·~rj

)
rk
)
=
(
~ri ·~rj

)
∇rk − rk(~ri +~rj) (2.51)

∇r = −~r
r

. (2.52)

Jacobian of ∇B yields

J(∇B) = J(∇(r1r2r3)) + J (∇ ((~r1 ·~r2) r3))

+ J (∇ ((~r2 ·~r3) r1)) + J (∇ ((~r1 ·~r3) r2)) (2.53)
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where

J(∇(r1r2r3)) = r2r3J(∇r1) + r1(∇r3∇ᵀr2 +∇r2∇ᵀr3)

+ r1r3J(∇r2) + r2(∇r3∇ᵀr1 +∇r1∇ᵀr3)

+ r1r2J(∇r3) + r3(∇r2∇ᵀr1 +∇r1∇ᵀr2) (2.54)

J
(
∇
((
~ri ·~rj

)
rk
))

=
(
~ri ·~rj

)
J(∇rk) + 2rk I3

−∇rk(~ri +~rj)
ᵀ − (~ri +~rj)∇ᵀrk (2.55)

J(∇r) =
I3

r
−~r~rᵀ

r3 . (2.56)
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With the inclusion of computationally-intensive graphics units in mo-
bile devices, power consumption has be come a limiting constraint
for many real-time graphics applications. This chapter presents efforts
on this matter by proposing the first software-based power-optimal
framework for real-time rendering. Our framework efficiently finds
the optimal rendering settings that minimize image error for a chosen
power requirement based on pre-computed energy maps of virtual
scenarios. We demonstrate the benefits of this framework in desktop
and mobile platforms, running in our own OpenGL rendering engine,
and in the commercially available Unreal Engine [61].

This work was published in ACM Transactions on Graphics and
presented at SIGGRAPH 2016. My particular role as a third author of
this work was devising a practical real-time integration of NVIDIA
GPU power measurement libraries in Unreal Engine, and performing
energy consumption tests through parameter exploration within that
framework.

R. Wang, B. Yu, J. Marco, T. Hu, D. Gutierrez & H. Bao
Real-time Rendering on a Power Budget

ACM Transactions on Graphics, Vol.35(4) (Presented at SIGGRAPH 2016)

3.1 introduction

The increasing incorporation of GPUs on mobile, battery-powered de-
vices during the last years has led to the emergence of many real-time
rendering applications. These applications and the required computa-
tions, however, demand a high energy consumption. This has a signif-
icant impact on battery life, which becomes a limiting constraint for
mobile devices. As a consequence, lowering the energy requirements
on rendering applications has been recently identified as one of the
next challenges in computer graphics [210]. However, a generalized
methodology does not exist yet, and its possibilities remain largely
unexplored.

Among the explored strategies to reduce energy consumption for
graphics applications running on battery-powered devices, reducing
the number of computations on the rendering pipeline has proved to
be an effective solution (e.g., [9, 126, 217, 241, 275]). However, most
existing solutions are based on ad-hoc decisions, tailored to a particular
application. While previous works aiming to reduce computations

47
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in real-time rendering have relied on multi-objective cost functions
defined by visual error, rendering time, or memory consumption [89,
212, 238, 262], we introduce a new cost model based on visual quality
and power usage.

An ideal power-saving framework should have the following charac-
teristics: 1) It guarantees an optimal tradeoff between the quality of the
results and the target energy footprint; 2) The user can adjust both a
target quality or a target energy consumption to prolong battery life;
3) It is real-time, and transparent to the user; 4) It generalizes across
platforms and applications.

Finding the optimal settings from the usually huge set of rendering
parameters available in graphics applications is a very challenging task,
which requires an intelligent exploration of the large power-error space.
This is further complicated by the desired real-time and multi-platform
requirements. In this work, we address these challenges and present a
real-time, power-optimal rendering framework that automatically finds
the optimal tradeoffs between power consumption and image quality,
and adapts the required rendering settings dynamically at run-time.
We demonstrate how our adaptive exploration of the energy footprint
of a rendering application can be leveraged to reduce power usage
while preserving quality on the results. In particular our contributions
are:

• We formally formulate the power vs. error tradeoff as an optimiza-
tion problem, and present a multi-objective cost model defined in
a novel power-error space.

• Based on this model, we present a new two-stage rendering
framework that efficiently explores the power-error space, and
adaptively reduces rendering costs at run-time.

• We demonstrate the flexibility and effectiveness of our framework
using both a custom-built, OpenGL rendering system, tested on
a smartphone and a desktop PC, and the commercial renderer
integrated in the Unreal Engine, running on a desktop PC.

3.2 related work

Energy-aware devices and algorithms are becoming a prolific research
topic, with recent examples in fields like data management [15], systems
design [159], cloud photo enhancement [65], or display technology [183],
to name a few. This last one is maybe the field where energy consump-
tion has been more thoroughly researched, while power-efficient ren-
dering algorithms are increasingly drawing attention, largely motivated
by the widespread adoption of mobile devices.
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power saving for displays In the last decade or so, many ex-
isting works have focused on reducing energy consumption in dis-
plays [190, 233]. For back-lit LCD displays, most of the light is con-
verted to heat, a problem that is aggravated for HDR displays [183].
Dimming is the most common energy-saving strategy, e.g., simply
by reducing the intensity of the background light [201], darkening
inactive regions [105], or by concurrent brightness and contrast scal-
ing [31]. More modern OLED displays allow energy control at individ-
ual pixel level [40, 55], which enables more sophisticated strategies like
saliency-based dimming [29]. Energy-efficient color schemes have been
proposed, for instance as a set of distinguishable iso-lightness colors
guided by perceptual principles [33], or by finding a suitable color
palette by means of energy minimization [41]. Chen et al. [30] present
an optimization approach for volume rendering, optimizing color sets
in object space instead of image space. Vallerio and colleagues [251]
and Ranganathan et al. [221] explore energy efficiency for displays in
the context of designing user interfaces.

power saving for gpus With the establishment of GPUs and
mobile devices, several specific pipeline designs and hardware imple-
mentations have been developed to optimize resources and reduce
power usage during rendering (see for instance [217, 241, 275]). Möller
and Ström [3] presented a survey about GPU design, where power
consumption plays a key role, while the recent thesis by Johnsson [126]
offers for a more detailed discussion of hardware-related aspects con-
cerning power usage. Arnau et al. [9] reduce mobile GPUs energy
consumption by removing redundancy of fragment shaders operations
at hardware level. Instead, we present a purely software-driven power
optimization strategy, agnostic to the underlying hardware being used.

Tile-based deferred rendering (TBDR) [218] identifies the portions
of the scenes that can be ignored in the very early stages of rendering,
therefore saving GPU computation and power consumption. Johnsson
et al. [127] compared the power efficiency of three rendering and three
shadow algorithms on different GPUs, although they do not provide
new energy-efficient algorithms. Recently, Cohade and Santos [34]
presented their efforts on optimizing the power usage in the Lego
Minifigures game, and Mavridis and Papaioannou [184] reported energy
savings on GPU-implementation of coarse shading techniques [250].
Different from these works, our approach makes use of actual energy
consumption and error measurements, to drive a real-time power-
optimal rendering system.

Complementary to power optimization, other rendering resources
such as memory bandwidth or computation time have been the focus
of different optimization schemes [89, 262], aiming for a good tradeoff
between image quality and rendering budgets. Complementary to these
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Figure 3.1: Illustration of the power-optimal rendering. With Pareto-optimal
rendering settings, it is possible to obtain the optimal tradeoffs
between power and visual error. Two rendering settings, marked in
blue and green, are the optimal rendering settings with respect to
the error budget ebgt and the power budget pbgt. One achieves the
minimum power under the error budget, and the other obtain the
minimum visual error under the power budget.

works, we aim to find an optimal compromise between image quality
and a new challenging and constraining budget: energy consumption.

3.3 problem definition

In our context, it is useful to think about the rendering process as a
function f that performs multiple rendering passes1, and returns a
color image. Each rendering function takes as input, on the one hand,
the rendering settings s, defining the visual effects (shadow mapping,
screen-space ambient occlusion, etc) and the specific parameters used
for each one (such as map resolutions or kernel sizes); and on the
other hand, the camera parameters c (position and view). It is clear that
different rendering settings yield images with different quality for a
given camera.

Let sbest denote the rendering settings that generate the best quality
image. We can define the quality error e of any other image produced
by different rendering settings as

e(c, s) =
∫ ∫

xy
‖ f (c, sbest)− f (c, s) ‖ dxy (3.1)

where x, y define the pixel domain of the image, and ‖ · ‖ indicates the
chosen norm.

Rendering with different functions f (c, s) also has an impact on
power usage. We can denote the power consumed during rendering
of one frame as p(c, s). In general, higher-quality images require more
1Generalizing the rendering process as a function f allows us to include both forward
and deferred rendering frameworks.
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power, while rendering a minimum quality image can save over 50%
of the power compared to the maximum quality (see Table 3.3). It is
therefore possible to find suitable tradeoffs between quality and power
usage, to either obtain the best rendering quality under a given power
budget, or to ensure a minimal power consumption given a desired
rendering quality. We call this power-optimal rendering. The optimization
for a given power budget pbgt can be formulated as

s = arg min
s

e(c, s) subject to p(c, s) < pbgt, (3.2)

whereas given a target quality defined by the error budget ebgt, the
optimization becomes

s = arg min
s

p(c, s) subject to e(c, s) < ebgt. (3.3)

3.4 power-optimal rendering

We formulate our power-optimal rendering approach as a multi-objective
optimization in a visual quality and power usage space. In this section
we introduce our multi-objective cost model and the basic idea to solve
the power-optimal rendering problem.

3.4.1 Multi-objective Cost Model

Different from other works [89, 212, 238, 262], our novel multi-objective
cost model is based on visual quality and power usage. To optimize
the rendering settings s of a given camera c, we first introduce a
partial order to compare two different rendering settings si and sj, and
say that si is preferred over sj (written as si ≺ sj) if either e(c, si) <
e(c, sj) ∧ p(c, si) ≤ p(c, sj) or e(c, si) ≤ e(c, sj) ∧ p(c, si) < p(c, sj). That
is, one rendering setting is preferred over another if it improves in
quality or power usage, and is at least as good in the other.

Using our partial order, the Pareto frontier of all rendering settings
P(U) = {u ∈ U : ∀u′ ∈ U, u ⊀ u′}, can be regarded as the curve
defining all power-optimal rendering settings in our two-dimensional
cost space defined by (e, p). That is, the rendering settings in the Pareto
frontier are preferred over other settings. Working in the domain of
the Pareto frontier has one key advantage: given a power budget or
an error budget, finding the optimal rendering settings is reduced to
a 1D search on the Pareto curve. As we will see, this dimensionality
reduction is a crucial aspect which will allows us to select optimal
rendering settings at run-time. Figure 3.1 shows an example Pareto
frontier, from which two optimal rendering settings have been selected
(given a power budget and an error budget respectively). The resulting
images are shown on the right.
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3.4.2 Adaptive Partition of The Camera View-Space

By optimizing our multi-objective cost model, we have the solution of
Equations (3.2) and (3.3) for one particular camera. However, given the
high dimensionality of the camera view-space (composed of all possible
camera positions and views) it would be impractical to carry out all
Pareto-optimal optimization at run-time. Therefore, we introduce an
adaptive partition of the camera view-space to store precomputed,
optimized Pareto frontiers at given positions and views, which will
later enable real-time optimal rendering. Such an adaptive partition is
based on the observation that at some regions in the camera view-space,
the rendering settings on the Pareto frontiers are quite different, but at
other regions they are similar.

In particular, we use an octree structure, where one corner of octree
node defines a camera position, and defines a discrete set of six views
at each position, forming a view cube. Each position-view pair (oi, vj)
thus describes one camera sample, c = (oi, vj). For the sake of clarity, a
simplified 2D version is shown in Figure 3.2a. At each position-view, we
compute the Pareto frontier representing the optimal tradeoffs between
power usage and rendering quality. The differences between these
frontiers for adjacent (oi, vj) pairs will guide the adaptive partition of
the space. In practice, we found that adaptive spatial subdivision along
with six view orientations maintains a good tradeoff between structure
complexity, temporal smoothness, and computational cost. A complete
description of this process is described in Section 3.5.

3.4.3 Algorithm Overview

Figure 3.3 shows an overview of our algorithm, based on our multi-
objective cost model, and our adaptive partition of the camera view-
space. Our input is a 3D scene and a set of rendering effects and
parameters (see Table 3.1 for the set used in our implementation). The
entire algorithm is split into two main stages: the adaptive subdivision
stage and the run-time rendering. As a preprocess, from our initial
octree node, we measure the error in visual quality e and the power
usage p for each camera c, exploring the space of all possible rendering
settings s through Genetic Programming; this yields the Pareto frontier
for such camera. We then compare the Pareto frontiers of each pair of
adjacent cameras sharing the same view direction, and subdivide the
octree if the difference is too large. We iteratively repeat this process
until no more subdivisions are needed. At run-time, novel views can be
rendered under the given quality or power budget by interpolating the
optimal rendering settings at the nearest sample positions and views
during user exploration of the scene. The following sections offers
details on each of the main steps.
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Interpolate the 
optimal setting

Runtime Rendering

Find nearest Pareto 
frontiers in octree

Compute optimal 
settings 

Compare differences between views

Adaptive Subdivision

Adaptively subdivide octree node when necessary;

 Decide next views to be measured

Pareto-optimal optimization at one view 

Measure e (error) and p (power) 
of one rendering setting

Optimize in the (e, p) space to 
compute Pareto frontier

3D Scene Rendering Settings

Image

Figure 3.3: Our algorithm is split up into two main stages: the adaptive mea-
surement stage (described in Section 3.5) followed by the runtime
rendering stage (described in Section 3.6).

3.5 adaptive subdivision

As a preprocess, the adaptive subdivision partitions the camera view-
space and stores Pareto-frontiers at sampled camera positions and
views. It mainly takes following three steps.

3.5.1 Pareto-Optimal Optimization at One Camera

3.5.1.1 Error and Power Measurement

Given a camera c, we first render its reference image using the max-
imum quality settings. This image will then be used to compare the
output of all other rendering settings, according to Equation (3.1). In-
stead of relying on pixel-wise error metrics such as the L2 norm, we use
the Structural Similarity Index (SSIM) [264] to measure the similarity
and use one minus the similarity to obtain the error, i.e e = 1− SSIM,
which yields results that better predict human perception.

To measure power usage, we use two different approaches, depend-
ing on the target platform (desktop PC or mobile device). For the
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desktop PC, we use specific APIs provided by GPU vendors to access
the hardware’s internal power readings, and read back power consump-
tion. For the mobile device we measure it directly instead, since we did
not find any reliable APIs to measure power; we remove the battery
and use an external metered power source to read power usage. More
details are provided in the supplementary document2.

3.5.1.2 Exploring Potentially Optimal Settings

For each camera c, the space of all possible rendering settings s is large.
For an efficient exploration of such space, we rely on Genetic Program-
ming (GP), inspired by recent works on shader simplification [238, 262].
Given its speed, we adapt the algorithm proposed by Deb et al. [39],
which fits our multi-objective optimization in error and power space
well.

First, we randomly combine parameters of rendering settings to
generate the initial population. During partition, after every subdivision
of the octree, children nodes are initialized by inheriting the optimal
rendering settings of the parent nodes. This greatly accelerates the
optimization process. To keep the diversity of the population while
guiding the selection process towards a good spread of solutions on the
Pareto curve, we use similar crowding heuristics to previous work [39].
We use crossover to combine partial solutions from high-fitness variants,
along with mutation to avoid local optima. In particular, two rendering
settings swap their parameter values to generate two offspring. Newly
generated variants are considered and compared together with all
preferred variants using our partial order. Newly preferred variants are
selected to form the incoming population for the next iteration. The
result of this process is a Pareto frontier defined for each camera.

3.5.2 Comparing Pareto Frontiers

The next step is to compare the Pareto frontiers of adjacent cameras
sharing the same view direction, and evaluate the numerical difference
between them, to decide whether the node should be subdivided. Our
observation is that these adjacent cameras will cover a similar portion
of the scene and produce a similar image, thus having similar Pareto-
optimal rendering settings.

Suppose we already have two Pareto frontiers Pc0 and Pc1 taken from
two different cameras c0 and c1. We separately measure their difference
under both the error and power metrics:

De(Pc0 , Pc1) = de(Pc0 , Pc1) + de(Pc1 , Pc0) (3.4)

Dp(Pc0 , Pc1) = dp(Pc0 , Pc1) + dp(Pc1 , Pc0) (3.5)

2http://www.cad.zju.edu.cn/home/rwang/projects/power-optimization/16power_supp.pdf

http://www.cad.zju.edu.cn/home/rwang/projects/power-optimization/16power_supp.pdf
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Figure 3.4: Illustration of the distance from the Pareto frontiers Pc0 (left, or-
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(es0 j, ps0 j) of projected points s0j to nearest point (e′s0 j, p′s0 j) is visual-
ized in green dash line (right). The total distance is averaged by all
point-wise distance (black dashed lines) to the projected Pp

c0 (right,
orange).

where de(Pc0 , Pc1) and dp(Pc0 , Pc1) are half-distance functions comput-
ing error and power differences, respectively, and De(Pc0 , Pc1) and
Dp(Pc0 , Pc1) are the two full distance functions of error and power.

Figure 3.4 shows the process of comparing Pareto curves: To compute
the half distance from Pc0 to Pc1 , we project Pc0 to the two-dimensional
cost space of Pc1 . This can be done by using rendering settings of Pc0 to
render scenes with camera c1. Note that both error and power change
in the projected curve Pp

c0 , since it is now related to a different view.
Then we compute the distance between Pp

c0 and Pc1 ; for efficiency, we
compute the point-wise distances and average them to obtain the total
distance. Specifically, given a projected rendering setting sp

0j defining
a point (psp

0j
, esp

0j
), we find the nearest 2D point on Pc1 , defined as

n(c1, sp
0j) = (p′

sp
0j

, e′
sp

0j
). The error and power distances between these

two points are de(s
p
0j, n(c1, sp

0j)) = |esp
0j
− e′

sp
0j
|, and dp(s

p
0j, n(c1, sp

0j)) =

|psp
0j
− p′

sp
0j
|, respectively. The total error and power distance function

from the projected Pareto frontier Pp
c0 to Pc1 is given by:

de(Pc0 , Pc1) =
1
N

N

∑
j

de(s0j, Pc1) ≈
1
N

N

∑
j
|es0j − e′s0j

| (3.6)

dp(Pc0 , Pc1) =
1
M

M

∑
j

dp(s0j, Pc1) ≈
1
M

M

∑
j
|ps0j − p′s0j

| (3.7)

where N and M are numbers of rendering settings on Pc0 and Pc1

respectively (we have removed the super-index p in s0j to simplify no-
tation). If the distances of either the error or power between two Pareto
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frontiers are larger than a given threshold, we adaptively subdivide
our space, as explained in the following subsection.

3.5.3 Adaptive Space Subdivision

Since computing and comparing all the Pareto curves in the entire
camera view-space is intractable, we adaptively partition this space
into an octree, storing a set of discrete position-view pairs, according to
the distance between Pareto frontiers. Let us consider the position-view
pairs, i.e. two cameras (o1, v2) and (o2, v2) illustrated (as a 2D quadtree)
in Figure 3.2.a, right. If either the error or the power difference between
their Pareto frontiers is larger than a given threshold, this indicates
that the current sampling of v2 for adjacent camera positions o1 and
o2 is insufficient to obtain all power-optimal settings in the space in-
between, and the node needs to be subdivided. At the newly generated
corner point (o7 in Figure 3.2.a, right), we take (o7, v2) (blue) as a new
camera and compute a Pareto frontier on it, iteratively repeating the
comparison-subdivision steps until no more subdivision is required
(adjacent Pareto curves are similar). Note that for other views at the
corner point o7, new optimization are only required on the views whose
parent views differ above the given threshold; the rest of the views
simply inherit one of the Pareto curves of their parent nodes. For views
of corners at the center of node faces or at the node center that have
more than two adjacent corners, e.g. o5 and o10 in Figure 3.2.a, we pair
their adjacent corners along axes and calculate the corresponding error
or power difference. If the difference is larger than the threshold, we
then perform optimization on it to compute new Pareto frontier.

3.6 runtime rendering

At run-time, we leverage our adaptively partitioned camera view-space
with the corresponding optimal rendering settings to ensure rendering
power-optimal images. Observe a 2D quadtree example in Figure 3.2b.
First, given a new camera position and user view, we traverse the
octree to obtain the leaf node where it is located. We project the user’s
frustum onto the cubemap formed by the sides of the leaf, and select
the side with the largest projected portion of the view frustum v2 (see
Figure 3.2b left, green). The corner closest to the camera position o7, and
the selected view v2 determine a position-view camera sample (o7, v2),
from which we fetch the precomputed Pareto frontier (see Figure 3.2b,
right). Finally, given a power or error budget, and the selected Pareto
frontier, we perform binary search along the frontier and obtain the
optimal settings that are used to render the image.
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temporal filtering of rendering settings To avoid visible
sudden changes in quality when choosing different cameras during
real-time navigation of the scene, we apply a smoothing strategy based
on temporal filtering. The filtered rendering settings are computed as

soptimal = [(1− t
T
)sold +

t
T

snew] (3.8)

where the brackets denote the closest integer, sold and snew are the
previous and current optimal rendering settings, respectively, t is time
after applying a new rendering setting, and T is the time used for
interpolation (T = 2 seconds as default).

3.7 implementation

We have implemented an OpenGL-based rendering system, and tested
it on two different platforms: One is a desktop PC with Intel Xeon
E3-1230 CPU and an NVIDIA Quadro K2200 graphics card, running
Microsoft Windows 7. The other is a smartphone with 2.2 GHz 8-core
ARM Cortex-A53 CPU and PowerVR G6200 GPU, running Android
5.0.2. Additionally, we also validate our approach on a commercial
rendering engine by integrating it into the Unreal Engine [61] on the
desktop PC. Please refer to the supplementary material2 for more
details not covered in this section. Our code will be made available
through our website.

3.7.1 Power Measurement

We first set our rendering system to a fixed frames-per-second rate,
to guarantee comparable measurements where the only variable are
the rendering settings. Then, we combine rendering settings from
different cameras, following two different strategies according to the
given platform.

desktop pc To measure the power usage of the Quadro graphics
card, we use the C-based API, NVIDIA Management Library (NVML)
[193], to directly access the power usage of the GPU and its associated
circuitry. According to the documentation, measurements are accurate
to within ±5% of the current power draw. We average power measure-
ments over a given time period to reduce variance: we generally take
10 seconds to measure the power and read back 10 times per second.
Between two different rendering settings, we wait for 3 seconds without
measurements to avoid any residual influence of the previous setting.

mobile device For the smartphone, we use an external source
meter to directly supply the power of the device. The source meter
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Figure 3.5: Preprocess and runtime workflow of our system. Please refer to the
text in Section 3.7 for details.

that we are using is a Keithley A2230-30-1, which allows direct cable
connection and provides APIs to access the instantaneous voltage
and current consumption. In practice, we set a constant voltage and
read back the current, from which we obtain power. Note that in this
case, both the CPU and GPU power usages are measured. Before the
measurement, we close all unnecessary applications and services to
reduce the unpredictable power consumptions of CPU. Since the power
measurement of the mobile device has bigger variance than the desktop
PC, we average over 25 seconds, and read back 10 times per second.
The interval between the measurements of two rendering settings is 5

seconds.

3.7.2 Rendering Systems

3.7.2.1 OpenGL-based Rendering System

Figure 3.5 shows the architecture and the workflow of our rendering
system. It consists of a renderer and a server, connected through sockets.
The renderer is developed in C++ and OpengGL ES, to be easily used
on different platforms. The server is implemented in C++ and only
executed on the desktop PC. Our system has two rendering modes: In
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the subdivision mode, the renderer receives information from the server
about the camera position and view to render scenes, to perform the
adaptive partition of the view space. After the preprocess, all measured
and sampled data are then transferred from the server to the renderer.
The rendering mode is active during free navigation of the scene. The
renderer automatically searches in the stored hierarchy to find the
power-optimal rendering settings at run-time.

rendering settings Our OpenGL rendering framework supports
GPU-based importance sampling [35], shadow mapping, screen-space ambi-
ent occlusion (SSAO) [132], and morphological antialiasing (MLAA) [125].
For each, we can choose between different parameters and values to
adjust the rendering quality, resulting in a varying power consumption.
The combination of all these makes up the space of all rendering set-
tings. For GPU-based importance sampling, the parameter we use is
the number of samples generated at run-time; for shadow mapping,
we choose the shadow map resolution as parameter; for SSAO, the
parameter is the number of sample rays to compute the visibility; last,
for MLAA, we vary the steps of the search to find edges in the pixel
shader. The complete set of values is given in Table 3.1. To store these
settings we use a 32-bit integer, where the index value of each effect
takes up eight bits.

adaptive subdivision In subdivision mode, the server sends
camera information and rendering settings to the renderer, to sample
the camera view-space. For each sample, the server first requests the
renderer to render the scene with maximum quality and store the
image as a reference, to be used to compute quality errors. Then, the
server runs the Genetic Programming algorithm to optimize the Pareto
frontier. The server sends each of the candidate rendering settings to
the renderer, and let the renderer use it to render the scene. The power
usage is measured by the server, and the image error is measured by
the renderer and sent back to the server. In the next step, the server
compares the Pareto frontiers and selects the next camera sample. The
process is repeated iteratively until no more subdivisions are needed.
Last, the server stores all the Pareto frontiers at the views of corners of
the final octree.

runtime rendering In the real-time rendering mode, the position
and view of the camera are used to guide the search in the octree. Then,
the power-optimal rendering setting is retrieved and used to render
the scene.
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Table 3.1: List of parameters and values forming the space of rendering settings
for our two renderers. For details in the Unreal Engine parameters,
refer to the supplementary material2.

Parameters Values

In-house renderer

Sample number in GPU sampling 8, 16, 32

Shadow map resolution 256, 512, 1024, 2048

Sample number in SSAO 4, 8, 16, 32

Search steps in MLAA 4, 8, 16, 32, 64

The renderer in Unreal Engine

Anti aliasing 0, 2, 4, 6

Post processing quality 0, 1, 2, 3

Shadows quality 0, 1, 2, 3

Textures quality 0, 1, 2, 3

Effects quality 0, 1, 2, 3

Resolution scale 70%, 80%, 90%, 100%

View distance 0.1, 0.4, 0.7, 1.0

3.7.2.2 Rendering System Using the Unreal Engine

To test how well our framework generalizes to other rendering plat-
forms, we implement it on the Unreal Engine. This framework also
consists of two sub-systems, the renderer and the server, with similar
roles as before. To integrate our rendering in the Unreal Engine, instead
of defining two modes of operation, we develop two plug-ins for the
subdivision and rendering tasks, respectively, adapting our in-house
code to the Unreal architecture.

rendering settings The Unreal Engine provides a set of prede-
fined settings to allow users to adjust the quality of several features.
These can be tweaked at run-time, thus they fit well in our system.
We select seven features (Table 3.1): resolution scale, view distance, anti-
aliasing, post-processing quality, shadows quality, textures quality, and the
effects. The complete set of values is given in Table 3.1, defining the
space of all rendering settings. To store these settings we also use a
32-bit integer, where the index value of each effect takes up four bits.

3.8 results

We performed a series of experiments in order to demonstrate the
effectiveness of our rendering framework on four different scenes. Our
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in-house renderer runs on a desktop PC and a smartphone, and the
renderer integrated in the Unreal Engine runs on the desktop PC. In
Table 3.2, we summarize the statistics of the demo scenes. The FPS is set
to 30 in all our experiments on desktop PC, and 10 on the smartphone
due to the limited computational power.

valley We use our in-house renderer to render the scene with
four different effects on the PC. We set an environment light and a
directional light, with GPU-based importance sampling. The directional
light casts shadows, with the shadow map resolution as one of the
parameters in our optimization. The screen-space ambient occlusion
(SSAO) and morphological anti-aliasing (MLAA) are computed as
post-processes.

hall Each polygon has a diffuse map and a specular map. We use
our in-house renderer to render the scene on the smartphone. Since the
GPU-based importance sampling effect requires environment lighting,
we initially render the scene onto a cubemap centered in the hall, and
use it as the environment map. A directional light is set to illuminate
the scene through the door. As in the previous scene, SSAO and MLAA
are all computed in screen space as post-processes.

elven ruins This demo is modified from an example scene shipped
with the Unreal Engine. We use the plug-in that we developed in the
Unreal Engine to render the scene.

sun temple This demo is another example scene shipped with the
Unreal Engine. We also use our Unreal Engine plug-in to render it.

3.8.1 Adaptive Subdivision and Pareto Frontier

Power and error thresholds used to trigger subdivision of the octree are
shown in Table 3.2. Note that since the parameter space is different for
our in-house renderer and Unreal Engine, while power consumption
also varies on each platform, we set different initial parameters for each
platform-renderer pair. For the Genetic Programming (GP) algorithm,
we set the maximum iterations to 25 in our in-house renderer. In
Unreal Engine, we increase the maximum iterations to 40 due to the
higher complexity of the parameter space. As Table 3.2 shows, the extra
memory overhead is negligible in both cases, in the order of a few KB.

Figure 3.7 shows two example plots of our entire power-error cost
space for one view in the Valley and Elven Ruins scenes. The Pareto
frontiers optimized by our GP algorithm are shown in orange. The
combinations of all different rendering settings are shown in dark grey.
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(a) One view in Valley demo (b) One view in Elven Ruins demo

Figure 3.7: The entire power-error cost spaces and Pareto frontiers optimized
by our GP algorithm at two example views. Grey dots are rendering
settings and the orange line is the Pareto frontier. (a) One view in
the Valley demo with 300 rendering settings. (b) One view in the
Elven Ruins demo with 16384 rendering settings.

(a) Average visual error (b) Energy consumption

Figure 3.8: Average visual error and total energy consumption under different
rendering settings in our four demos.

3.8.2 Runtime Power-Optimal Rendering

Although our approach supports run-time free exploration, for compar-
ison purposes we record a camera path and repeat the motion while
testing different power or error budgets. To obtain stable reliable mea-
surements, all paths last between 50 and 60 seconds. The maximum
quality and the minimum rendering settings are regarded as the base-
lines. Then, for the different demos, we use different power or error
budgets to guide our run-time power-optimal rendering. Figure 3.8
shows the average visual error and total energy consumption we mea-
sured. It can be seen how our framework drastically minimizes visual
error, while keeping power consumption very close to the minimum-
quality settings. We describe our demos in this section, and refer the
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Figure 3.10: Hall real-time demo using our in-house render engine on a smart-
phone. Top-left image shows the maximum settings render. We
compare insets (top-right) of minimum and maximum quality set-
tings against our power-optimal rendering framework, selecting a
power threshold of 2.2W, close to consumption at the minimum
quality settings. Plots on the bottom show power usage and error
during a 50-second camera path. Our optimized settings maintain
a power usage below the given budget, while providing a quality
close to the maximum settings. Please refer to the supplementary
video for the full demo.

reader to the supplemental video3 for the animations and the details of
all the rendering settings.

Figure 3.6 shows the Sun Temple scene running on the Unreal Engine,
under a power budget p = 7W. From the zoomed-in insets, it can be
clearly seen how the quality produced with our framework is very
close to the maximum quality, while the minimum rendering settings
introduce visible artifacts such as wrong shadows, over-blurred areas,
or missing reflections. The plots on the right show a lower power usage
than maximum quality, with negligible error.

Figure 3.9 shows the Valley scene rendered on a desktop PC. During
navigation under a visual error budget ebgt = 0.01, our system automat-
ically retrieves the optimal rendering settings to produce the image in

3http://www.cad.zju.edu.cn/home/rwang/projects/power-optimization/16power_

video.mp4

http://www.cad.zju.edu.cn/home/rwang/projects/power-optimization/16power_video.mp4
http://www.cad.zju.edu.cn/home/rwang/projects/power-optimization/16power_video.mp4
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Elven Ruins

Ours Max Max-Mid Mid-Min Min

Avg. Power (W) 7.87 15.87 11.80 8.88 6.11

Avg. Error (e) 0.018 0 0.013 0.046 0.151

Sun Temple

Ours Max Max-Mid Mid-Min Min

Avg. Power 7.09 10.73 8.51 6.00 4.90

Avg. Error 0.0145 0 0.0158 0.068 0.236

Table 3.3: Average power consumption and error for the Elven Ruins and Sun
Temple demos, using different rendering settings. Our power optimal
framework (Ours), achieves the best tradeoff, producing images
almost identical to the maximum quality settings while reducing
power between 30% and 50% approximately.

real-time. We measure and compare, for the maximum and minimum
rendering settings, the power usage and the error curves, plotted in
Figure 3.9, right. Since this scene is relatively simple, the error between
the maximum and minimum rendering settings is not extremely large.
But even in this case, our method is able to find the optimal tradeoffs
that keep the error within budget, while significantly reducing power
usage.

Figure 3.10 shows a detail of the Hall demo running on the smart-
phone. We set a power budget p = 2.2W. Three power usage curves
and error curves are plotted in Figure 3.10, bottom. Our method stays
within the power budget, offering a good tradeoff between power and
error.

Figure 3.11 shows the Elven Ruins demo, running on the Unreal
Engine. Here we set two different budgets, a power budget p = 10W,
and a visual error budget e = 0.02. Our system takes these two budgets
into account during navigation, and selects power-optimal rendering
settings accordingly. The plots on the right show how, if we use the
power budget to guide the rendering, power consumption is more
stable than using the error budget. In this case, our framework dynam-
ically finds some rendering settings that dramatically reduce power
consumption, bringing it close to the minimum consumption (at 25-32s
and 48-60s), while maintaining a very low quality error. This is because
our system automatically identifies which rendering parameters have a
larger impact on quality for the current view, while still maintaining
low power consumption.
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Figure 3.12: The influence of the different parameters is highly dependent on
the particularities of the scene and view being rendered. Shown
are two views of the Elven Ruins demo. For each view, we first set
all parameters to produce the maximum rendering quality, and
use it as the base setting. Then, we individually change only one
parameter, from minimum to maximum value (shown as 0..3 in
the figure), while keeping the others at maximum level. From the
power consumption plots, it can be seen that in this case Resolution,
Effects and Post-Process are the most dominant. However, the error
is inversely correlated with Texture quality for the first view, while
Resolution has an insignificant impact.

3.8.3 Analysis of Different Settings

A key advantage of our optimization framework is its flexibility, being
agnostic to the particular choice of parameters and settings. This is a
key feature, since we have not found a predictable correlation between
the values for the different parameters and their effect on power saving
and error. This impact is instead highly dependent on the particularities
of the scene and view being rendered. For instance, Shadow Quality
will only have a measurable effect when shadows are clearly visible
in the frame (see for instance Figure 3.9). The only exceptions to this
for our parameter space are Resolution Scale, which has a direct cor-
relation with power consumption, and Texture Quality, which in our
tests seemed to impact image quality the most. However, even these
two parameters have a very different influence on power and error de-
pending on the rendered view, as Figure 3.12 shows. Given the entire
camera view-space of a scene, it would obviously be impractical to
manually preset all optimal rendering settings. Our framework allows
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Figure 3.13: Elven Ruins scene with and without our temporal filtering, for
a parameter change at frame #34. To illustrate the benefits, we
propagate the settings at frame #34 to 200 frames, and compute the
error of each frame with respect to the filtered (on) and non-filtered
(off) versions. Notice how temporal filtering improves consistency,
avoiding visible popping artifacts (sudden jump in the orange
curve) by providing a smoother transition between settings. This
is also shown in the insets comparing frames #34 and #35.

us to automatically select optimal power and error settings at runtime,
without human intervention of prior knowledge about the scene.

We have also conducted a comparison with manually set tradeoffs
between power and quality. In the Unreal Engine, some settings can
be manually tweaked, allowing users to adjust the quality of various
features. We set settings for four quality levels: maximum (all values set
to maximum), maximum-middle, middle-minimum, and minimum (all
values set to minimum). For this test we use the Elven Ruins and the Sun
Temple scenes. Figure 3.11 compares one view under different settings
and the corresponding plots for power and error in the Elven Ruins
scene. The statistics of average power usage and errors are shown in
Table 3.3. As can been seen, our method provides an excellent balance
between visual error and power consumption: In the Elven Ruins demo,
our method only consumes 7.87 W, which represents a saving of 50.4%
of power compared to the maximum setting, and the visual quality
is an order of magnitude better than the minimum setting. Similar
conclusions can be inferred for the Sun Temple demo, with about 30%
less power consumed. These results clearly demonstrate that our power-
optimal framework is capable of automatically balancing optimal power
consumption and quality, which would be very challenging to achieve
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by manually adjusting settings. Moreover, our framework provides
dynamic optimal settings, while manually-set parameters in Unreal
remain fixed throughout the demo.

3.8.4 Temporal Filtering

As described in Section 3.6, to reduce sudden changes in quality due
to the runtime optimization of rendering settings, we apply a temporal
filtering strategy. Despite this filtering being a discrete interpolation,
our simple smoothing strategy improves the rendering quality in many
cases. Figure 3.13 shows an example of 200 frames, including a runtime
change of parameters with and without temporal filtering. We use the
parameters before this change to render 200 frames, and regard them
as reference to compute visual error. As shown in the plot, our tem-
poral filtering provides a smoother transition, gradually modulating
the visual error after a parameter change at frame #35, successfully re-
ducing visible popping artifacts (refer also to the supplemental video3).
The zoomed insets of frame #34 and #35 clearly demonstrate better
consistence when applying the temporal filtering.

3.9 discussion and future work

In some cases, the power or error curves may deviate slightly from the
given budgets. This is due to the following reasons: First, at each view,
the Pareto-optimal settings are discretely distributed in the power-error
space. Therefore, the optimal setting computed under a budget may not
exactly match the budget. Second, during the adaptive subdivision, the
camera view-space is partitioned by thresholds until a fixed number
of octree levels is reached. Therefore, in some local regions, using the
optimal rendering setting at the closest sample camera may induce a
slight deviation. In any case, as shown in Figure 3.11, the error and
power curves remain very stable.

Since we focused on optimizing GPU consumption, we explicitly
measured GPU power on desktop PC, and minimized CPU impact
on mobile devices by deactivating as many external CPU sources as
possible. While some rendering aspects may influence CPU power
usage, in practice we found this variation negligible for the parameters
we used. Nevertheless, it remains an interesting topic of future work
to analyze the influence of a wider set of parameters on CPU power
usage.

Our framework is not free of limitations and potential avenues of
future work. First, it does not take into account dynamic changes in
geometry or lighting. However, predicting the full space of all possi-
ble situations that may arise when dynamic changes area allowed is
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obviously intractable. One possibility to incorporate such changes in
our optimization would be to precompute some of them, for instance
the same view under different illuminations, and smoothly interpolate
between settings at runtime. Our framework allows for such extensions
of the power-error cost space, at the cost of longer preprocessing times.
Nevertheless, this would only need to be done once; at run-time, the
system would still be able to optimize in real-time, given our strategy
of reducing the search for optimal settings to a one-dimensional Pareto
curve.

Second, the capability to explore the full space of all possible com-
binations of rendering settings is limited by our GP optimization. Dif-
ferent strategies may yield slightly different Pareto frontiers, although
we do not expect the final results to vary much in terms of power
consumption or visual quality during navigation. Similarly, we have
set our thresholds for the adaptive subdivision heuristically: although
they provide a good balance between complexity of the subdivision
and performance, we did not thoroughly explore the possibilities of
other subdivision thresholds or schemes.

While the results in this work are strictly valid for the specific hard-
ware configuration we used, our proposed framework is equally ap-
plicable to any other configurations. Moreover, we believe that the
resulting optimization for a particular hardware setup will allow for
a certain degree of transferability across similar configurations, by
abstracting some of the dependencies. Finally, although the required
precomputation time is not significant for large-scale productions, it
would be interesting to find novel ways to reduce it, for instance by
learning relationships among scene properties, rendering parameters
and power usage, or acquiring higher-level knowledge about parame-
ters.

To summarize, we hope that our power-saving rendering framework
inspires future work in this direction. Our current implementation sat-
isfies four key ideal characteristics: it produces optimal results between
energy consumption and quality; it allows the user to fix either a power
or a quality target; it is real-time; and it generalizes across different plat-
forms. We have shown results on four different scenes, running on two
different platforms, including a commercial one. Additionally, we have
validated that our framework outperforms manually-set parameters,
available in the Unreal Engine environment.
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4T R A N S I E N T L I G H T T R A N S P O RT: B A S I C P R I N C I P L E S
A N D E X I S T I N G A P P R O A C H E S

In the following chapter we first give an overview of light transport
in transient state from a simulation perspective, and discuss existing
reconstruction approaches and simulation algorithms. We then describe
Time-of-Flight imaging, one of the paradigms for capturing transient
light transport, and the different works that have addressed it. We
finally summarize the existing approaches to tackle multipath interfer-
ence, one of the main problems in transient imaging, which is specially
aggravated in Time-of-Flight based applications.

This chapter is an adaptation of selected excerpts from the article
Recent Advances in Transient Imaging: A Computer Graphics and Vision
Perspective, which was published at Visual Informatics. As a third author
of that work, my main role was covering the literature on Time-of-
Flight imaging, and the different works on resolution of multipath
interference in range imaging.

A. Jarabo, B. Masia, J. Marco & D. Gutierrez
Recent Advances in Transient Imaging:

A Computer Graphics and Vision Perspective

Visual Informatics, Vol.1(1), 2017

4.1 transient light transport simulation

Light transport, described using either Maxwell’s equations [22], or
the more practical radiative approximation [28], is defined in a time-
resolved manner. However, since the final goal is usually to compute
light transport in steady-state, the practical assumption that the speed
of light is infinite becomes a reasonable approximation from a simula-
tion (rendering) perspective. See e.g. [81, 156, 205, 292] for an overview
on steady-state rendering.

With the establishment of transient imaging in graphics and vision,
the simulation of time-resolved light transport is becoming an increas-
ingly important tool. Smith et al. [239] developed the first framework
in the context of the traditional rendering equation [133]. This was later
formalized by Jarabo et al. [111], extending the path integral [254] to
include time-resolved effects such as propagation and scattering delays.

Transient rendering has been used to synthesize videos of light in
motion [111], but is also a key tool to provide ground truth information
to develop novel light transport models [1, 206], or benchmarking [198,

77



78 basic principles and existing approaches

216]. It can also be used as a forward model for solving inverse prob-
lems [57, 58, 102, 123, 124, 142, 143, 148].

The key differences with respect to steady-state simulation are:

• The speed of light can no longer be assumed to be infinite, so
propagation delays need to be taken into account. Note that
some works in steady-state rendering also need to account for
propagation delays (e.g. rendering based on wave-optics [189,
192], or solving the Eikonal equation for non-linear media [80,
104]), although their final goal is to obtain a steady-state image
integrated in time.

• Scattering causes an additional delay, due to the electromagnetic
and quantum mechanisms involved in the light-matter interaction.
These give rise to effects such as fluorescence, or Fresnel phase
delays. In the following Chapter 5, Figure 5.11 we show a few of
these effects in a time-resolved manner.

• The temporal domain must be reconstructed; however, naive
reconstruction strategies (i.e. frame-by-frame) are extremely inef-
ficient.

• Motion in the scene (e.g. camera movements) brings about the
need to include relativistic effects.

As we discuss in Chapter 5, rendering each transient frame inde-
pendently is highly impractical, given the extremely short exposure
times: sampling paths with a given temporal delay is almost impossible,
while randomly sampling paths would be extremely inefficient. The
most straightforward way to solve this issue and render effectively
transient light transport is to reuse the samples for all frames, binning
them in the temporal domain [1, 5, 108, 178, 206, 216]. This is equiv-
alent to a histogram density estimation; although easy to implement,
it has a slow convergence of O(N−

1
3 ), with N being the number of

samples. In Chapter 5 [111] we present a better alternative, proposing a
reconstruction method based on kernel density estimation [237], which
leads to faster convergence (O(N−

4
5 )). Interestingly, rendering each

frame independently, and using the histogram in the temporal domain,
are equivalent to gate imaging [25, 165, 166, 170] and streak imaging
techniques [62, 96, 259].

If the goal is not to generate the full transient profile, but just the
modulated response at the sensor as if it were captured by a correlation-
based sensor (see following Section 4.2.1), the problem is reduced to
generating a single image modulating each sample according to its
delay and the sensor response. Thus, while we still need to keep track
of the path propagation delays, it can be done within the framework of
the traditional path integral, where the sensor response is a function
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of time. For depth recovery, Keller and colleagues [142, 143] proposed
a GPU-accelerated rendering system modeling such response. The
system is limited to single-bounce scattering, so it assumes no MPI. The
sensor response needs accurate sensor modulation models, including
temporal behavior and noise. Gupta et al. [77] introduced a noise model
for AMCW imaging devices, while Lambers et al. [160] presented other
physically-based models of the sensor and the illumination, including
high-quality noise and energy performance.

Depending on the application domain, existing algorithms to simu-
late transient light transport trade off accuracy for speed. As a forward
model for efficient reconstruction of the geometry of occluded objects,
Hullin [102] and Klein et al. [148] extended Smith et al.’s [239] transient
version of the radiosity method [73] on the GPU. This method is limited
to Lambertian surface reflections, and second-bounce interactions.

On the other hand, most works aiming at generating ground truth
data have used transient versions of Monte Carlo (bidirectional) path
tracing (BDPT) [1, 108, 111, 216]. These are unbiased methods, and
support arbitrary scattering functions, including participating media.
However, they are in general slow, requiring thousands of samples to
converge. To accelerate convergence, in Chapter 5 [111] we introduce
three techniques for uniform sampling in the temporal domain targeted
to bidirectional methods. Lima et al. [171] and Periyasamy and Pra-
manik [213] proposed importance sampling strategies in the context of
Optical Coherence Tomography. These techniques are designed to work
in the presence of participating media; this is a particularly interesting
case for transient imaging, since one of its key applications is seeing
through such media (fog, murky water, etc). Camera movements at this
temporal resolution bring about the need to simulate relativistic effects
in transient light transport. These were simulated by Jarabo and col-
leagues [110, 112], including time dilation, light aberration, frequency
shift, radiance accumulation and distortions on the camera’s field of
view. The system considered linear motion, as well as acceleration and
rotation of the camera.

Other algorithms aiming to produce ground truth data robustly rely
on a photon tracing and gathering approach [86, 121]. Meister and col-
leagues [186, 187] used a transient version of photon mapping, resulting
into a robust estimation of light transport, and allowing to render caus-
tics in the transient domain. Ament et al. [5] also used transient photon
mapping to solve the refractive RTE. However, these techniques are
intrinsically biased, due to the density estimation step at the core of the
photon mapping algorithm. Our method proposed in Chapter 5 [111]
reduces this bias by applying progressive density estimations along the
temporal domain. Later, in Chapter 6 we introduce a transient version
of the photon beams algorithm, providing optimal convergence rates
for progressive reduction of bias and variance.
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4.2 transient imaging

From a capture perspective, transient imaging is usually interested in
computing a transient image i(t), defined by the transient form of the
light transport equation [206] as

i(t) =
∫ ∞

−∞
T(τ)p(t− τ)dτ (4.1)

where i(t) stores the light arriving at time t, p(t) is the time-resolved
illumination function at instant t, and T(t) is the transport matrix
describing the light transport with a time-of-flight of exactly t. In
practice, the transient image cannot be captured at instant t directly,
given physical limitations of the sensor. Instead, the signal is also
convolved by the temporal response of the sensor s(t) centered at t as:

i(t) =
∫ ∞

−∞
s(t− τ)(T ∗ p)(τ)dτ (4.2)

In order to capture the impulse response T, there are several ap-
proaches depending on the type of illumination and sensor response
used. If we focus only on illumination, the main lines of work have used
either impulse illumination, or coded illumination. In the following we
focus on the latter, where the coded illumination has been usually cor-
related with the coded sensor response, and the time-resolved response
is computed by means of post-capture computation, as we show in the
following.

4.2.1 Time-of-Flight Imaging

Phase-based time-of-flight (P-ToF) imaging, also called correlation-
based time-of-flight (C-ToF) imaging or simply ToF imaging, cross-
correlates emitted modulated light with frequency gωT , and the impulse
response of a pixel αp, modulated and integrated at the sensor with
frequency fωR (see Figure 4.1). In its most typical continuous form (also
known as amplitude modulated continuous wave (AMCW) systems1), the
camera computes the cross-correlation as:

c(t) = s(t) ∗ p(t), (4.3)

with s(t) the radiance received at the sensor, and p(t) the emitted
signal. These are in general modeled as:

s(t) = αp cos( fωR t + φ) + β, (4.4)

p(t) = cos(gωT t), (4.5)

1Note that we use the term AMCW when referring to these specific sensors, whereas we
use ToF for general phase-based time-of-flight sensors.
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Illumination

Sensor

Figure 4.1: Basic operation principle of a time-of-flight emitter-sensor setup.
Light is amplitude-modulated at the source, constantly emitted
towards the scene, and each pixel modulates the impulse response
of the observed scene point. By performing cross correlation (in-
tegration) of both modulated emitted and received signals, phase
differences can be estimated to reconstruct light travel time (image
from [93]).

where φ is the phase shift at the sensor, and β the ambient illumination.
Capturing a set of different phase shifts φ allows to retrieve phase
differences between the emitted and the received signals. These per-
pixel phase differences correspond to light travel time, thus encoding
distance (depth), and other possible sources of delay.

Early works demonstrated the applicability and performance limita-
tions of this principle for range imaging in robotic environments [2, 90].
Due to hardware characteristics, these approaches were limited to a sin-
gle range detection per shot, requiring systematic and time-consuming
scanning of the scene to obtain a full depth map. The first prototype
that allowed simultaneous scene capture with modulated array sensors
was introduced by Schwarte et al. [229], coined under the denomination
of photonic mixer device (PMD). Lange and colleagues [161, 162] indepen-
dently introduced a new type of ToF devices based on demodulation
“lock-in" pixels, operating on CCD technology with modulation frequen-
cies of a few tens of MHz, and allowing real-time range measurements.
These technologies opened new avenues of research on applications
and challenges imposed by hardware characteristics.

An important operational aspect of ToF setups resides in how the
emitter and sensor frequencies are paired. Homodyne configurations
use the same frequency at both emitter and sensor ( fωR = gωT ),
while heterodyne ones use slightly different frequency pairs. While
being more complicated computationally, heterodyne setups have been
demonstrated to provide better ranging precision [36], allowing up to
sub-millimeter resolution [42]. Additionally, proper calibration of ToF
cameras was demonstrated to play a significant role when mitigating
systematic errors on range estimation [58, 174].
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Beyond traditional range imaging, Heide and colleagues [92] demon-
strated that by correlating a set of sensor measurements with different
modulation frequencies and phase shifts, a discrete set of per-pixel
light travel times and intensities could be reconstructed through opti-
mization, leading to an inferred transient image of the scene. However,
the number of frequencies and phases required for this reconstruction
is significantly higher than the default set provided by ToF devices
(a few default frequencies and phases vs. hundreds of them). They
work around this issue by substituting the built-in light source, sig-
nal generator and phase triggering by external elements. This ToF-
based setup is much cheaper than femto-photography [259]; however,
it only reaches nanosecond resolution (compared to picoseconds in
femto-photography), the signal is reconstructed as opposed to directly
captured, and tweaking the off-the-shelf devices requires a significant
amount of skilled work2.

Successive works aimed to overcome different ToF devices limitations
that affect the viability of subsequent reconstruction methods. Kadambi
et al. [130] reconfigured the emitter modulation with custom-coded
illumination, which improved conditioning on the optimization by
supporting sparsity constraints. This allowed them to recover per-pixel
transient responses using a single frequency, instead of hundreds. Re-
cent work by Peters and colleagues [215] introduced a way to generate
robust sinusoidal light signals, which allowed them to obtain up to
18.6 transient responses per second using a closed-form reconstruction
method.

ToF sensor noise, together with limited emitted light intensity due to
safety and energy issues, make sensor exposure time and lens aperture
the two main factors to achieve an acceptable SNR. To support real-
time applications, exposure times must be kept short, so the aperture
is usually large to capture as much available light as possible. This
introduces a shallow depth of field that blurs scenarios with significant
depth changes. Additionally, the low resolution of these sensors (e.g.
200x200 for PMDs) affects the spatial precision of the captured data.
Godbaz and colleagues [69] provided a solution to the shallow depth
of field by using coded apertures and explicit range data available in
the ToF camera in order to perform defocus, effectively extending the
depth of field. Xiao et al. [281] leveraged the amplitude and range
information provided by the ToF devices to recover the defocus blur
kernel and regularized the optimization in those amplitude and range
spaces, allowing for defocus and increased resolution.

Regardless of wide apertures, exposure times need to be much longer
than a single modulation period TωR = 1/ fωR , in order to mitigate
sensor noise. This causes a pathological problem known as phase wrap-
ping. Since light travel time is encoded in the phase shift between
2http://www.pulsr.info/
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emitted and received light, the modulation period TωR determines the
maximum light path length c TωR that can be disambiguated, with c
the speed of light. Any light path starting at the emitter that takes
longer than this distance to reach a pixel in the sensor will phase-wrap
TωR , falling into the same phase shift than shorter paths within subse-
quent modulation periods. These phase-wrapped light paths produce
interference in the measured data, leading to errors in the reconstruc-
tion. A straightforward way to solve this is to lower the modulation
frequency, thus increasing the maximum unambiguous path length.
However, this decreases the accuracy obtained for the reconstructed
path lengths, leading to less precise depth measurements. Jongenelen
et al. [129] demonstrated how to extend unambiguous maximum range
while mitigating precision degradation, by exploring different dual
combinations of simultaneous high and low modulation frequencies.
Recently, the work by Gupta and colleagues [77] generalized the use of
multiple high frequencies sequentially for this purpose in what they de-
nominate micro-ToF imaging. Phase-wrapping is closely related to the
widely-studied problem of MPI, where light from multiple light paths
is integrated in the sensor resulting in signal interference and thus
reconstruction errors. However, this is related to how some physical
phenomena (e.g. interreflections, scattering) affect certain applications
—actually affecting other capture methods too—, rather than to oper-
ational limitations of the ToF devices themselves. We provide a more
detailed discussion of this problem in Section 4.2.2.

Recent works explore novel hardware modifications: Tadano and
colleagues [247] increased temporal resolution beyond the limit of
current ToF devices (around 100 picoseconds), by using arrays of LED
emitters spatially separated by 3mm. This effectively corresponds to
time shifts of 10 picoseconds. Shrestha and colleagues [234] explored
imaging applications synchronizing up to three multi-view ToF cameras.
To achieve this, they addressed interference problems between the
light sources of the cameras, showing how they can be mitigated by
using different sinusoidal frequencies for each sensor/light pair. The
authors demonstrated applications such as improved range imaging
for dynamic scenes by measuring phase images in parallel with two
cameras, doubling single-camera frame rate, and mitigating motion
artifacts.

4.2.2 The multipath interference problem

The multipath interference (MPI) problem is common for most tran-
sient imaging devices, specially in those with long exposure times:
for example, in the context of gated-based LIDAR systems, where a
modulated sensor response [165, 166] is used to robustly acquire depth.
However, it is in ToF cameras where the problem is more noticeable.
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Figure 4.2: Given a scene with transparent objects (a), regular time of flight
cameras fail at reconstructing their depth (b). Kadambi and col-
leagues’ method, assuming that light transport is modeled as a
sparse set of Dirac deltas, can correctly recover the depth of the
unicorn (c and d). Figure from [130].

a) b) c) d) e)

Figure 4.3: a) Range imaging using a ToF sensor, where the phase delay of
the emitted modulated radiance encodes light time of flight. This
formulation works for direct reflection, but presents problems when
light from multiple paths is integrated in the sensor, as happens
in the presence of specular reflections (b) or transmission (c). This
problem gets even more complicated in the presence of diffuse
transport, due to scattering in media (d) or Lambertian diffuse
interreflections (e). Image after [18].

Some early approaches to solving the MPI problem in ToF cameras tar-
geted in-camera light scattering [139, 227]; others targeted also indirect
illumination but require placing tags in the scene [52], or made severe
assumptions on scene characteristics [107]. For an in-depth discussion
about the MPI problem from a signal processing perspective, we refer
the reader to a recent article by Bhandari and Raskar [17].

The work of Fuchs [57] provided a model of MPI for the case in
which all distracting surfaces are Lambertian, based on explicitly com-
puting indirect illumination on the estimated depth map and iteratively
correcting it. Follow-up works aimed at a more general solution tar-
geting the source of the problem: the separation of the individual
components when multiple returns are present [67, 68], also called
Mixed Pixel Restoration. These techniques, however, cannot be used
with off-the-shelf cameras, since they require measuring multiple phase
steps per range measurement (as opposed to the usual four). Of large
relevance is the work of Dorrington et al. [43], in which the authors
proposed a numerical solution that can be employed in off-the-shelf
ToF cameras. Shortly after, Godbaz et al. [70] proposed two closed-
form solutions to the problem. These two works assume, however, that
there are two return components per pixel, and work with two or up
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to four modulation frequencies. This two-component, dual-frequency
approach was generalized by Bhandari et al. [18]. Kirmani et al. [147]
targeted simultaneously phase unwrapping and multipath interference
cancellation, using a higher number of frequencies (five or more), but
at a lower computational cost than previous approaches, thanks to
a closed form solution. Still, they assumed sparsity in the recovered
signal, and again restricted their model to two-bounce situations.

The use of multiple modulation frequencies was also leveraged by
Heide and colleagues [92]. In their case, they used hundreds of mod-
ulation frequencies, and proposed a model that includes global illu-
mination. Freedman et al. [56] also required multiple frequencies, and
proposed a model (not limited to two bounces) which assumes com-
pressibility of the time profile; they solved the problem iteratively via
L1 optimization. Kadambi et al. [130] reduced the number of frequen-
cies required to recover a time profile (and thus depth information) to
one, by using custom codes in the emission in combination with sparse
deconvolution techniques, to recover the time profiles as a sparse set of
Dirac deltas. This technique allowed to recover depth in the presence
of interreflections, including transparent objects (Figure 4.2).

All these works assumed a K-sparse transport model3. It is worth
noting, however, that in the case of scattering media being present, a
sparse formulation of the time profile is no longer possible. A slightly
different approach was taken by Jiménez et al. [124], who proposed
an optimization framework to minimize the difference between the
measured depth, and the depth obtained by their radiometric model.
Convergence to a global minimum was not guaranteed, but a number
of examples including real scenes were shown. Hardware modifications
are not required.

A different means of eliminating or separating global light transport
in a scene was presented by O’Toole et al. [206], who made the key
observation that transient light transport is separable in the temporal
frequency domain. This allowed them to acquire and process only the
direct time-of-flight component, by using a projector with light mod-
ulated in space and time (note that they do not use correlation-based
ToF). Gupta et al. [77] built on this idea, and proposed a framework
termed phasor imaging. A key observation is that global effects vanish
for frequencies higher than a certain, scene-dependent, threshold; this
allowed the authors to recover depth in the presence of MPI, as well as
to perform direct/global separation, using correlation-based time-of-
flight sensors. Neither Gupta et al.’s work, nor O’Toole et al.’s, imposed
the restriction of sparsity of the multipath profile. Neither did Naik et
al. [197], who also attempted direct/global separation to obtain correct
depth in the presence of MPI. A similar approach was followed by
Whyte et al. [272].
3Please refer to the full article [113] for a complete review on these models.
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Efficient simulation of time-resolved light transport is of key importance
in many applications within transient imaging. Motivated by this, this
chapter presents a formalized framework for simulating light transport
in transient state, and identifies and addresses the main problems that
arise when accounting for light propagation time in simulation. For
that purpose we introduce the transient path integral framework. Under
this framework, we address variance issues by proposing a progressive
technique based on density estimation to reconstruct temporal profiles
of radiance. Additionally, we introduce several sampling methods for
participating media to achieve uniform distributions of samples in the
temporal domain.

This work was published in ACM Transactions on Graphics and pre-
sented at SIGGRAPH Asia 2014. Many of the final formulas provided in
this chapter are fully derived in the supplemental document associated
to this publication. Reference to this document and its corresponding
sections are placed throughout the chapter when appropriate. My role
as a second author of this work was the investigation and implemen-
tation of time-resolved density estimation algorithms in participating
media, and the analysis of time-resolved light transport under different
media configurations.

A. Jarabo, J. Marco, A. Munoz, R. Buisan, W. Jarosz & D. Gutierrez
A Framework for Transient Rendering

ACM Transactions on Graphics, Vol.33(6)
(Presented at SIGGRAPH Asia 2014)

5.1 introduction

One of the most general assumptions in computer graphics is to con-
sider the speed of light to be infinite, leading to the simulation of light
transport in steady state. This is a reasonable assumption, since most
of the existing imaging hardware is very slow compared to the speed
of light. Light transport in steady state has been extensively investi-
gated in computer graphics (e.g. Dutré et al. [47], Gutierrez et al. [81],
Křivánek et al. [156]), including for instance the gradient [120, 220] or
frequency [46] domains. In contrast, work in the temporal domain has
been mainly limited to simulating motion blur [125] or time-of-flight
imaging [151].
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In this work we introduce a formal framework for transient render-
ing, where we lift the assumption of an infinite speed of light. While
different works have looked into transient rendering [5, 108, 239], they
have approached the problem by proposing straight forward exten-
sions of traditional steady-state algorithms, which are not adequate for
efficient transient rendering for a variety of reasons. Firstly, the addi-
tion of the extra sampling domain given by the temporal dimension
dramatically increases the convergence time of steady state rendering
algorithms. Moreover, by extending the well-accepted path integral for-
mulation [254], we observe that paths contributing to each frame form
a near-delta manifold in time, which makes sampling almost impossible.
We solve this issue by devising new sampling strategies that improve
the distribution of samples along the temporal domain, and a new density
estimation technique that allows reconstructing the signal along time
from such samples.

Our work presents valuable insight apart from rendering applica-
tions. Recent advances in time-resolved imaging are starting to provide
novel solutions to open problems, such as reconstructing hidden geom-
etry [257] or BRDFs [195], recovering depth of transparent objects [130],
or even visualizing the propagation of light [259]. Despite these break-
throughs in technology, there is currently a lack of tools to efficiently
simulate and analyze transient light transport. This would not only
be beneficial for the graphics and vision communities, but it could
open up a novel analysis-by-synthesis approach for applications in
fields like optical imaging, material engineering or biomedicine as well.
In addition, our framework can become instrumental in teaching the
complexities of light transport [120], as well as visualizing in detail
some of its most cumbersome aspects, such as the formation of caustics,
birefringence, or the temporal evolution of chromatic dispersion.

In particular, in this work we make the following contributions:
• Establishing a theoretical framework for rendering in transient

state, based on the path integral formulation and including prop-
agation in free space as well as scattering on both surfaces and in
media. This allows us to analyze the main challenges in transient
rendering.

• Developing a progressive kernel-based density estimation tech-
nique for path reuse that significantly improves the reconstruction
of time-resolved radiance.

• Devising new sampling techniques for participating media to
uniformly sample in the temporal domain, that complement
traditional radiance-based sampling.

• Providing time-resolved simulations of several light transport
phenomena which are impossible to see in steady state.
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5.2 related work

transient radiative transfer . With advances in laser tech-
nology, capable of producing pulses of light in the order of a few
femtoseconds, transient radiative transfer gained relevance in fields like
optical imaging, material engineering or biomedicine. Many numerical
strategies have been proposed, including Monte Carlo simulations,
discrete ordinate methods, integral equation models or finite volume
methods [188, 289, 291]. Often, these methods are applied on simpli-
fied scenarios with a particular application in mind, but a generalized
framework has not yet been adopted.

ultra-fast imaging . Several recent advances in ultra-fast imag-
ing have found direct applications in computer graphics and vision.
Raskar and Davis [222] introduce the basic theoretical framework in
light transport analysis that would later lead to a number of practical
applications, such as reconstruction of hidden geometry [146, 257]
or reflectance acquisition [195]. Velten et al. [258, 259] have recently
presented femto-photography, a technique that allows capturing time-
resolved videos with an effective exposure time of one picosecond per
frame, using a streak camera. Heide et al. [92] later propose a cheaper
setup using Photonic Mixing Devices (PMDs), while sacrificing tem-
poral and spatial resolution. Kadambi and colleagues [130] address
multi path interference in time-of-flight sensors by recovering time
profiles as a sequence of impulses, allowing them to recover depth
from transparent objects.

analysis of time-resolved light transport. Wu et al. [277]
analyze the propagation of light in the frequency domain, and show
how the cross-dimensional transfer of information between the tem-
poral and frequency domains can be applied to bare-sensor imaging.
Later, Wu et al. [276] used time-of-flight imaging to approximately de-
compose light transport into its different components of direct, indirect
and subsurface illumination, by observing the temporal profiles at each
pixel. Lin and colleagues [173] perform a frequency-domain analysis
of multifrequency time-of-flight cameras. Recently, O’Toole and col-
leagues [206] derived transient light transport as a linear operator, as
opposed to our formulation in ray space, and showed how to combine
the generation and acquisition of transient light transport for scene
analysis. In this regard, our work can be seen as complementary: we
provide a simulation (rendering) framework, suitable for an analysis-
by-synthesis approach to exploring novel ideas and applications, and
to help better understand the mechanisms of light transport.



90 a framework for transient rendering

transient rendering . The term transient rendering was first
coined by Smith et al. [239]. In their work, the authors generalize
the rendering equation as a recursive operator including propagation
of light at finite speed. The model provides a solid theoretical back-
ground for time-of-flight, computer vision applications, but does not
provide a practical framework for transient rendering of global illu-
mination. Keller et al. [142] develop a time-of-flight sensor simulation,
modeling the behavior of PMDs. These works are again geared towards
time-of-flight applications; moreover, they are limited to surfaces, not
taking into account the presence of participating media. Simulation
of relativistic effects [110, 269] could also potentially benefit from our
transient rendering framework.

Some recent works in computer graphics make use of transient state
information: d’Eon and Irving [38] quantize light propagation into a set
of states, and model the transient state at each instant using Gaussians
with variance proportional to time. These Gaussians are then integrated
into the final image. The wave-based approach by Musbach et al. [192]
uses the Finite Difference Time Domain (FDTD) method to obtain
a solution for Maxwell’s equations, rendering complex effects like
diffraction. In all these cases, however, the main goal is to render steady
state images, not to analyze the propagation of light itself. Jarabo [108]
showed transient rendering results based on photon mapping and time-
dependent density estimation, but limited to surfaces in the absence
of participating media. Last, Ament et al. [5] include time into the
Radiative Transfer Equation in order to account for a continuously-
varying indices of refraction in participating media, though they do
not introduce efficient techniques for transient rendering.

acoustic rendering . Our work is somewhat related to the field
of acoustic rendering [60]. Traditional light rendering techniques have
been adapted to sound rendering, such as photon (phonon) mapping [16]
or precomputed acoustic radiance transfer [6]. Closest to our approach,
the work by Siltanen et al. [236] extends the radiosity method to include
propagation delays due to the finite, though much slower, speed of
sound. As opposed to us, they use finite elements methods to compute
sound transport, do not handle participating media and do not propose
sampling techniques for uniform temporal sample distribution.

5.3 transient path integral framework

We first extend the standard path integral formulation to transient
state. This will allow us to formalize the notion of transient rendering,
understand how to elevate steady state rendering to transient state,
and, most importantly, identify the unique challenges of solving this
more difficult light transport problem.
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In the path integral formulation [254], the image pixel intensity I is
computed as an integral over the space of light transport paths Ω. For
transient rendering, in addition to integrating over spatial coordinates,
we must also integrate over the space of temporal delays ∆T of all
paths:

I =
∫

Ω

∫
∆T

f (x, ∆t)dµ(∆t)dµ(x), (5.1)

where x = x0 . . . xk represents the spatial coordinates of the k + 1 ver-
tices of a length-k path with k ≥ 1 segments. Vertex x0 lies on a light
source, xk lies on the camera sensor, and x1 . . . xk−1 are intermediate
scattering vertices. The differential measure dµ(x) denotes area inte-
gration for surfaces vertices and volume integration for media vertices.
∆t = ∆t0 . . . ∆tk defines a sequence of time delays and dµ(∆t) denotes
temporal integration at each path vertex.

We define the path contribution function f (x, ∆t) as the original, but
with the emission Le, path throughput T, and sensor importance We
additionally depending on time:

f (x, ∆t) = Le(x0→x1, ∆t0)T(x, ∆t)We(xk−1→xk, ∆tk). (5.2)

The temporal sensor importance We now defines not only the spatial
and angular sensitivity, but also the region of time we are interested
in evaluating. This could specify a delta function at a desired time, or
more commonly, a finite interval of interest in the temporal domain
(analogous to the shutter interval in steady state rendering, though at
much smaller time scales). Likewise, the time parameter of the emission
function Le can define temporal variation in emission (e.g. pulses). The
transient path throughput is now defined as:

T(x, ∆t)=

[
k−1

∏
i=1

ρ(xi, ∆ti)

][
k−1

∏
i=0

G(xi, xi+1)V(xi, xi+1)

]
. (5.3)

Since we assume that the geometry is stationary (relative to the speed
of light), the geometry and visibility terms depend only on the spa-
tial coordinates of the path, as in steady state rendering. However,
we extend the scattering kernel ρ with a temporal delay parameter
∆ti to account for potential time delays at each scattering vertex xi.
Such delays can occur due to e.g. multiple internal reflections within
micro-geometry [270], electromagnetic phase shifts in the Fresnel equa-
tions [71, 226], or inelastic scattering effects such as fluorescence [81,
273].

time delays . A transient light path is defined in terms of spatial
and temporal coordinates. The temporal coordinates at each path vertex
xi are t−i , the time immediately before the scattering event, and ti, the
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Figure 5.1: Spatio-temporal diagram of light propagation for a path with k = 2.
Light is emitted at time t0, and reaches x1 at t0 + t(x0↔x1). After
a microscopic temporal delay ∆t1, light emerges from x1 at t1 and
takes t(x1↔x2) time to reach x2. The sensor may include a further
temporal delay ∆t2.

time immediately after (see Figure 5.1). Both time coordinates can
be obtained by accounting for all propagation delays between vertices
t(xi↔xi+1) and scattering delays ∆ti at vertices along the path:

t−i =
i−1

∑
j=0

(
t(xj↔xj+1) + ∆tj

)
, ti = t−i + ∆ti, (5.4)

where t0 and tk denote the emission and detection times of a light path.
The transient simulation is assumed to start at t−0 = 0. In the general
case of non-linear media [5, 80, 104], propagation time along a path
segment is:

t(xj↔xj+1) =
∫ sj+1

sj

η(xr)

c
dr, (5.5)

where r parametrizes the path of light between the two points, sj and
sj+1 are the parameters of the path at xj and xj+1, respectively, c is the
speed of light in vacuum and η(xr) represents the index of refraction
of the medium at xr. In the typical scenario where η is constant along
a path segment, Equation (5.5) reduces to a simple multiplication:
t(xj↔ xj+1) = ‖xj − xj+1‖η/c. Figure 5.1 illustrates both the spatial
and temporal dimensions of a path for the case of k = 2.

numerical integration. Similar to its steady state counterpart,
the the transient path integral (5.1) can be numerically approximated
using a Monte Carlo estimator:

〈I〉 = 1
n

n

∑
j=1

f (xj, ∆tj)

p(xj, ∆tj)
, (5.6)
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Figure 5.2: Left: The probability of finding a sample at a specific time instant (tp
or tq) is nearly zero (Section 5.3). Middle: Density estimation on the
temporal domain (Section 5.4) allows us to reconstruct radiance at
any instant, although with varying bias and variance in time. Right:
A more uniform distribution of samples in the temporal domain
leads to more uniform bias and better reconstructions (Section 5.5).

which averages n random paths xj, ∆tj drawn from a spatio-temporal
probability distribution (pdf) p(xi, ∆ti) defined by the chosen path and
time delay sampling strategy. In steady state, the pdf only needs to
deal with the location of path vertices xi.

5.3.1 Challenges of sampling in transient state

Equation (5.1) shows a new domain of scattering delays ∆T that must
be sampled. Most existing path sampling techniques generate random
paths incrementally, vertex-by-vertex, by locally importance sampling
the scattering function ρ at each bounce, and optionally making de-
terministic shadow connections between light and camera subpaths.
We could in principle elevate any such algorithm to transient state by
simply sampling the transient scattering function ρ(xi, ∆ti), instead of
the steady state scattering function ρ(xi).

Unfortunately, transient rendering poses hidden challenges, since
propagation delays between vertices t(xi↔xi+1) are fundamentally dif-
ferent than scattering delays ∆ti defined at the light, sensor, and interior
vertices. While scattering delays reside on a separate sampling domain
∆T, propagation delays are a direct consequence of the spatial posi-
tions of path vertices sampled from Ω. Hence, if spatial positions are
determined by a steady state sampling routine ignorant of propagation
delays, control of the propagation time in a path’s total duration tk is
lost, leaving only the scattering delays ∆ti to control tk.

Other factors resulting from the temporal structure of light transport
make any naïve extension to transient rendering extremely inefficient:
to visualize transient effects, the time window of both the sensor and the
light source needs to be small (≈ 10 picoseconds); moreover, scattering
events result in femtosecond temporal delays. The temporal domain
of the path contribution thus becomes a near delta manifold (i.e. a
caustic in time), which is virtually impossible to sample by random
chance. Since the total path duration tk cannot be directly controlled,
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deterministic shadow connections are rendered useless, having little
chance of finding a non-zero contribution in both the light Le and the
sensor We. In general, the probability of randomly finding non-zero
contribution for a specific time decreases as either ∆ti, Le or We get
closer to delta functions in the temporal domain, which are precisely
the cases of interest in transient light transport.

When several distinct measurements of the path integral have to
be computed, a common optimization strategy is to share randomly
sampled paths to estimate all measurements simultaneously. This tech-
nique (path reuse) is utilized in the spatial domain in light tracing and
bidirectional path tracing to estimate all pixels in the image plane at
once. A similar situation occurs in the transient domain, where each
frame f defines a specific sensor importance function W f

e (xk−1→xk, tk)
and the time window covered by all frames is significantly larger than
the per-frame time window. We could therefore leverage temporal path
reuse to improve the efficiency of steady state path sampling methods
when applied to rendering transient light transport. In practice, for
every generated random path in Equation (5.6), we could evaluate
the contribution functions for every frame f , which differ only in the
temporal window of the sensor importance function W f

e .
This path reuse technique is equivalent to histogram density estima-

tion [237] in the temporal domain of the sensor, where each bin of the
histogram represents one frame, and the bin’s width h is the frame
duration. Unfortunately, this type of density estimation produces very
noisy results, especially for bins with very small width (i.e. exposure
time). This results in a low convergence rate of O(n−1/3) [231], where
n is the number of samples. This is illustrated in Figure 5.3: although
obviously better than not reusing paths, results are still extremely noise
even with a large amount of samples. Still, this suggests that more elab-
orated density estimation techniques may lead to better convergence
rates and/or less noisy reconstructions.

In the following, we first show how kernel-based density estimation
techniques in the temporal domain allow us to reconstruct radiance
along time from a sparse set of samples (see Section 5.4 and Figure 5.2,
middle). Then, we show how a skewed temporal sample distribution
affects radiance reconstruction, and develop a set of sampling strategies
for participating media that enable some control over propagation
delays, leading to a more uniform distribution of samples in time and
therefore more accuracy (see Section 5.5 and Figure 5.2, right).

5.4 kernel-based temporal density estimation

Kernel-based density estimation is a widely known statistical tool to
reconstruct a signal from randomly sampled values. These techniques
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Figure 5.3: Time-resolved irradiance computed at pixel (a) in the scene on
the left using, no path reuse (green), histogram-based path reuse
(red), and kernel-based path reuse (blue), for the same number of
samples. Without path reuse it is extremely difficult to reconstruct
the radiance, since the probability of finding a path arriving at the
specific frame is close to zero. This is solved using path reuse, al-
though with different levels of improvement: while histogram-based
density estimation shows a very noisy result, our proposed pro-
gressive kernel-based estimation shows a solution with significantly
lower variance, while preserving high-frequency features due to the
progressive approach.

significantly outperform histogram-based techniques (like the path
reuse described above), especially for noisy data [237]. A kernel with
finite bandwidth is used to obtain an estimate of the value of a signal
at a given point by computing a weighted average of the set of random
samples around such point. We thus introduce a temporal kernel KT
with bandwidth T to estimate incoming radiance I at the sensor at
time t as a function of n samples of I:

〈In〉 =
1
n

n

∑
j=1

KT (‖t− tk,j‖) Îj, (5.7)

where Îj = f (xj, ∆tj)/p(xj, ∆tj) is the contribution of path xj in the
measured pixel, and tk,j is the total time of the path (5.4). Using this
temporal density estimation kernel reduces variance, but at the cost of
introducing bias (see Figure 5.2, middle). This can be solved by using
consistent progressive approximations [83, 149], which converge to the
correct solution in the limit.

Inspired by these works, we model our progressive density esti-
mation along the temporal domain, for which we rely on the proba-
bilistic approach for progressive photon mapping used by Knaus and
Zwicker [149]. We compute the estimate 〈In〉 in n steps, progressively re-
ducing bias while allowing variance to increase; this is done by reducing
the kernel bandwidth T in each iteration as Tj+1/Tj = (j + α)/(j + 1).
The variance of our temporal progressive estimator vanishes with
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O(n−α) as expected, since the shrinking ratio is inversely proportional
to the variance increase factor. Bias, on the other hand, vanishes with
O(n−2(1−α)). Note that the parameter α defines the convergence of
both sources of error (bias and variance). To find the optimal value
that minimizes both, we use the asymptotic mean square error (AMSE),
defined as:

AMSE(〈In〉) = Var[In] + E[εn]
2. (5.8)

Using the convergence rate for both bias and variance, we find that
the optimal α that minimizes the AMSE is α = 4/5, which leads to
a convergence of O(n−4/5). This is significantly faster than using the
histogram method, O(n−1/3), which we illustrate in Figure 5.3. The
detailed derivation of the behavior of the algorithm can be found in
the Section B of the supplemental document1.

5.4.1 Transient progressive photon mapping

Our approach above is agnostic to the algorithm used to obtain the sam-
ples (e.g. samples in Figure 5.3 have been computed using path tracing).
This means that it can be combined with biased density estimation-
based algorithms such as (progressive) photon mapping [82, 83, 121],
which is well suited for complex light paths such as spatial caustics.
However, although using progressive photon mapping as the source
of samples for our temporal density estimation is consistent in the
limit, it results in suboptimal convergence due to the coupling of the
bias and variance between the spatial and temporal kernels. Instead,
we introduce the temporal domain into the photon mapping frame-
work, by adding the temporal smoothing kernel KT in the radiance
estimation [26]. Radiance L̂o(x, t) is estimated using M photons with
contribution γi as

L̂o(x, t) =
1
M

M

∑
i=1

K(‖x− xi‖, ‖t− t−i ‖)γi. (5.9)

Combining both kernels into a single multivariate kernel allows
controlling the variance increment in each step as a function of a single
α, so that it increments at a rate of (j + 1)/(j + α), while reducing
bias by progressively shrinking both the spatial and temporal kernel
bandwidths (R and T respectively). These are reduced at each iteration
j following:

Tj+1

Tj
=

(
j + α

j + 1

)βT
,

R2
j+1

R2
j

=

(
j + α

j + 1

)βR

, (5.10)

1http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/downloads/Jarabo_siga14_

Supplementary_Material.pdf

http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/downloads/Jarabo_siga14_Supplementary_Material.pdf
http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/downloads/Jarabo_siga14_Supplementary_Material.pdf
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where βT and βR are scalars in the range [0, 1] controling how much
each term is to be scaled separately, with βT + βR = 1. Please refer to
Section C of the supplemental document 1 for the complete derivation.
The convergence rate of the combined spatio-temporal density estimation
is O(n−4/7)2. Using this formulation allows us to handle complex light
paths in transient state, while still progressively reducing bias and
variance introduced by both progressive photon mapping and our
temporal density estimation, in the spatial and temporal domains
respectively. In Section C of the supplementary material1 can be found
a detailed description of the algorithm, including the full derivation of
the error and convergence rate.

5.5 time sampling in participating media

As we mentioned earlier (Section 5.3.1), the performance of our tran-
sient density estimation techniques can be further improved by a more
uniform distribution of samples in time. This makes the relative er-
ror uniform in time and optimizes convergence (see Figure 5.2, right).
Steady state sampling strategies aim to approximate radiance (path
contribution). Since more radiant samples happen at earlier times (due
to light attenuation), these sampling techniques skew the number of
samples towards earlier times. As a consequence, there is a increase of
error along time (see Figures 5.7 and 5.8). New sampling strategies are
therefore needed for transient rendering.

Sampling strategies over scattering delays ∆ti have a negligible influ-
ence over the total path duration tk (Figure 5.1). For surface rendering,
scattering delays are the only control that sampling strategies can
have on the temporal distribution of samples, and there is therefore
little control over the total path duration. In participating media, how-
ever, sample points can be potentially located anywhere along the
path of light, providing direct control also over the propagation times
t(xi↔ xi+1). In this section we develop new sampling strategies for
participating media that target a uniform sample distribution in the
time domain, by customizing:

• The pdf for each segment of the camera or light subpath (Sec-
tion 5.5.1).

• The pdf for a shadow connection (connecting a vertex of the
camera path to a vertex of the light path) via an additional vertex
(Section 5.5.2).

• The pdf in the angular domain to obtain the direction towards
the next interaction (Section 5.5.3).

2Note that a naïve combination of the temporal (1D) and the spatial (2D) kernels would
yield a slower convergence than the combined 3D kernel convergence O(n−4/7) when
using the optimal parameters α = 4/7 and βT = 1/3 reported in previous work [137]
(for volumetric density estimation) or in the statistics literature [231].
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Each of these sampling strategies ensures a uniform distribution of
samples in time for each particular domain of the full path. Although
this does not statistically ensure uniformity for the whole path, in prac-
tice the resulting distribution of total path duration tk samples in time
is close to uniform and therefore noise is reduced (the improvement
over steady state strategies is discussed in Section 5.6). Note that these
strategies are also agnostic of the properties of the media (except for the
index of refraction), and can therefore be used in arbitrary participating
media. Additionally, they can be combined with steady-state radiance
sampling via multiple importance sampling (MIS) [255].

5.5.1 Sampling scattering distance in eye/light subpaths

Each of the segments of a subpath in participating media often shares
the same steady-state sampling strategy, such as mean-free-path sam-
pling, which does not necessarily ensure a uniform distribution of
temporal location of vertices. We aim to find a pdf p(r) (where r is
the scattering distance along one of the subpath segments) so that the
probability distribution p

(
∪∞

i=1ti
)

of temporal subpath vertex locations
is uniform (see Figure 5.4, left). We first define p

(
∪∞

i=1ti
)

based on the
combined probability distribution p(ti) (temporal location of vertex xi
in the light subpath) for all subpath vertices:

p (∪∞
i=1ti) =

∞

∑
i=1

p(ti), (5.11)

where p(ti) is recursively defined based on p(ti−1). Given that ti =
t(xi↔xi−1) + ti−1, as shown in Equation (5.4), we have

p(ti) =
∫ ti

0
p
(
t(xi−1↔xi)

)
p(ti−1)dti−1, (5.12)

p(t1) = p
(
t(x0↔x1)

)
, (5.13)

since the probability of the addition of two random variables is the
convolution of their probability distributions. p (t(xi↔xi−1)) is the
probability distribution of the propagation time, which is related
to the scattering distance pdf p(r) by a simple change of variable
r = c

η t(xi−1↔xi). Note that, in this notation, we are assuming (as pre-
viously discussed) that scattering delays ∆ti are negligible compared
to propagation time. This definition is analogous for the eye subpath.

We show (see supplementary material1, Section D.1) that the ex-
ponential distribution p(r) = λe−λr ensures that p

(
∪∞

i=1ti
)

follows a
uniform distribution for any λ parameter. Figure 5.5 (left) experimen-
tally shows that this exponential distribution leads to this uniform
probability for the whole subpath, while a uniform pdf leads to a non-
uniform temporal sample distribution. In practice, λ modulates the



100 a framework for transient rendering

average number of segments of the subpath: for a path ending at time
te, the average number of segments with path duration tk ≤ te is λ c

η te.
Our results show that an average of three or four vertices per subpath
gives a good compromise between path length, efficiency and lack of
correlation. Note that mean-free-path sampling is also an exponential
distribution whose rate equals the extinction coefficient of the medium
(λ = σt). Directly using mean-free-path sampling is thus optimal for
time sampling when σt is close to the optimal λ.

subpath termination. Russian roulette is a common strategy
in steady state rendering algorithms. It probabilistically terminates
subpaths at each scattering interaction, reducing longer paths with
a small radiance contribution. In transient state, this unfortunately
translates into fewer samples as time advances, reducing the signal-to-
noise ratio (SNR) at higher frames. Instead, we simply terminate paths
with a total duration greater than the established time frame.

While the temporal locations of subpath vertices are uniform, there
is still little control over the spatial locations xi. These depend not only
on scattering distances but also on scattering angles. As shadow rays
are deterministic and depend on such spatial locations, uniformity
cannot be ensured. To address this, we develop a new strategy that
deals with such shadow connections (Section 5.5.2) and an angular
sampling strategy (Section 5.5.3) that leads to an improved distribution
in the temporal domain of the location-dependent propagation delays.

5.5.2 Sampling line-to-point shadow connections

Shadow rays are deterministic segments connecting a vertex in the eye
subpath to another vertex in the light subpath, so their duration cannot
be controlled. We introduce a new indirect shadow vertex whose posi-
tion can be stochastically set to ensure a uniform sample distribution
along the duration of the (extended) shadow connection. The geometry
of this indirect connection is similar to equiangular sampling [135, 158,
224] (see Figure 5.4, middle).

Given a vertex xi of a light subpath, a vertex xi+2 and a direction ω
(importance sampled from the scattering function) on an eye subpath,
our technique connects the two vertices via an indirect bounce at an
importance-sampled location xi+1. If ri+1 and ri+2 are the distances
from xi+1 to xi and xi+2 respectively, we importance sample ri+2 to
enforce a uniform propagation time between the connected vertices
{xi, xi+1, xi+2}. This connection could also be done in reverse order
(from xi+2 to xi).
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Given l = xi − xi+2 and a connection time range (ta, tb) (in which we
aim to get uniformly distributed samples), the pdf is:

p(ri+2) =
η

c(tb−ta)

1+
ri+2 − (l ·ω)√

r2
i+2 − 2ri+2(l ·ω) + (l · l)

, (5.14)

which leads to the following inverse cumulative distribution function
(cdf):

ri+2(ξ) =
(ξ(tb − ta) + ta − ti − ∆ti+1)

2 −
( η

c
)2

(l · l)
2 η

c (ξ(tb − ta) + ta − ti − ∆ti+1)− 2
( η

c
)2

(l ·ω)
. (5.15)

where ξ ∈ [0, 1) is a random number. Assuming a rendered temporal
range of (0, te), we set the shadow connection limits to ta = ti + t(xi↔
xi+2) and tb = te − ∆tk −

(
∑k−1

j=i+2 t(xj↔xj+1) + ∆tj

)
. The derivation

of this pdf can be found in the supplementary material1, Section D.2.
Figure 5.5 (middle) compares our line-to-point sampling strategy with
other common strategies in terms of sample distribution along the
temporal domain, leading to a uniform distribution of samples. Note
that we discard all paths with a total duration larger than te (when
tb < ta).

5.5.3 Angular sampling

Importance sampling the phase function generally leads again to a
suboptimal distribution of samples in time. We propose a new angular
pdf p(θ) to be applied at each interaction of the light subpath, which
targets the temporal distribution of samples assuming that the next
vertex xi+1 casts a deterministic shadow ray towards the sensor. Given
the sensor vertex xk and a sampled distance ri+1 between two consec-
utive vertices xi and xi+1 (see Figure 5.4, right), this strategy ensures
a uniform distribution of the total propagation time in {xi, xi+1, xk}.
The direction from xi to xi+1 is ω = (θ, φ) (in spherical coordinates)
where θ is the sampled angle and φ is uniformly sampled in [0..2π).
Note that the sampled angle θ is related to the direction towards the
sensor (l = xk − xi) and not to the incoming direction (which is often
the system of reference for phase function importance sampling). This
pdf is:

p(θ) =
ri+1 sin θ

2
√

r2
i+1 + |l|2 − 2ri+1|l| cos θ

, (5.16)

with the following inverse cdf:

θ(ξ) = arccos

(
|l| − 2r2

i+1ξ2 − 2ξri+1 (|l| − 1)
ri+1|l|

)
. (5.17)
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Figure 5.5: Histogram of the number of samples along the temporal dimen-
sion for different sampling strategies. Left: Sample distribution for
the whole light subpath, according to the importance sampling of
subpath segments. Middle: Importance sampling of a line-to-point
shadow connection Right: Angular importance sampling. Notice
how our developed sampling strategies (exponential for segment
sampling and the corresponding time sampling strategies in the
other two cases) lead to a uniform distribution of samples along
the temporal domain on each case. Both the line-to-point and the
angular sampling are defined over a certain range.

The supplementary material1, Section D.3 contains the full derivation.
This pdf prioritizes segments towards the target vertex xt, which helps
in practice since backward directions often lead to paths that become
too long for the rendered time frame. Figure 5.5 (right) shows how our
angular sampling strategy leads to a uniform distribution of samples
in time, as opposed to other alternatives. The shadow ray from vertex
xi+1 to the sensor in xk (and to every vertex in the eye subpath in bidi-
rectional path tracing) is then cast by applying the sampling technique
described in Section 5.5.2. Alternatively, the shadow ray could be cast
from xi by applying MIS between this angular sampling and line-to-
point time sampling (Section 5.5.2). We also apply the same angular
sampling strategy for each interaction of the eye subpath, targeting the
light source.

5.6 results

Here we show and discuss our rendered scenes. For visualization we
use selected frames of the animations; we refer the reader to the supple-
mentary material1 for more rendered examples, and to the video3 for
3http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/videos/Jarabo2014_main_video.
mp4

http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/videos/Jarabo2014_main_video.mp4
http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/videos/Jarabo2014_main_video.mp4
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a

0.9 1.50.2

Standard Sampling 128K 
Standard Sampling 1K 
Time Sampling 1K

t t t

Time-resolved Log Radiance at (a)

Figure 5.7: Comparison of our three time sampling strategies combined, against
the standard techniques used in steady state, in the dragon scene
accounting for multiple scattering (top). Each graph shows the time-
resolved radiance (bottom) at pixel (a), for three different scattering
coefficients σs = {0.2, 0.9, 1.5}, and absorption σa = 0.1. For 1K
samples per pixel and frame, our combined techniques (red) feature
a similar quality as standard steady state techniques with 128 times
more samples (green), while with the same number of samples,
our techniques significantly outperform standard sampling (blue),
especially in highly scattering media. To emphasize the differences
between sampling techniques, here we use the histogram path reuse
(see Section 5.4). Additional results for other types of media can be
found in the supplementary material.

the complete animations. In all the scenes light emission occurs at t = 0
with a delta pulse4. Unless otherwise stated, we use transient path
tracing and kernel-based density estimation (Section 5.4) for sampling
and reconstruction, respectively. For the latter, we use a Perlin [214]
smoothing kernel, following previous work [84, 137], with forty nearest
neighbors to determine the initial kernel bandwidth. Unless noted
otherwise, all results are shown in camera time [259] (i.e. including the
propagation time of the last segment).

Figure 5.7 compares transient rendering using our three time-based
sampling strategies (Section 5.5) against common radiance-based steady-

4We could use a Gaussian pulse, although this would introduce a number of downsides:
1) an ideal delta pulse does not introduce any additional temporal blur; 2) in reality, the
scale of physical Gaussian pulses is 2-3 orders of magnitude smaller than the shutter
open interval, in effect constituting a delta pulse; and 3) a delta pulse allows us to
distinguish between effects caused by the actual behavior of light and effects due to
limitations of current hardware.
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Figure 5.8: Comparison of different sampling techniques for computing sin-
gle scattering, in a scene consisting of a dragon illuminated by
point light source within participating media (left). As opposed to
simple mean-free-path sampling and the state-of-the-art equiangular
sampling [158], that distributes samples based on radiance, our point-
to-line sampling (Section 5.5.2) distributes samples so that the are
uniformly distributed in time (bottom, right). This allows perform-
ing better in terms of relative error (bottom, left) when rendering
time-resolved radiance, avoiding the radiance signal degradation at
longer times. Here we use the histogram (Section 5.4) to emphasize
the performance of the algorithms.

state sampling techniques (mean-free-path and phase-function sam-
pling, and deterministic shadow connection). Our approach distributes
samples more uniformly in time, which reduces variance along the
whole animation, while significantly lowering noise in later frames.
We obtain similar quality to standard sampling using two orders of
magnitude less samples. These advantages are even more explicit when
using our line-to-point sampling strategy to render single scattering,
as shown in Figure 5.8, where we compare against equiangular sam-
pling [158]. Figure 5.9 shows how the combination of our kernel-based
density estimation and our time sampling strategies produces better
results than using either technique in isolation.

Figures 5.6 demonstrates the macroscopic delays due to traversing
media with different order of refraction, which leads to a temporal
delay of the wavefront, especially visible in the caustics. In this example,
we use a transient version of the photon beams algorithm [118] to obtain
the radiance samples due to scattering in the media. To illustrate this
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d)c)b)a)

Figure 5.9: Selected frame of the dragon scene with σs = 0.2, rendered with
a) standard sampling and histogram, b) our time sampling and
histogram, c) standard sampling and our kernel-based density esti-
mation, and d) time sampling and kernel-based density estimation.
We can see how using our techniques combined lead to frames with
significantly lower noise.

in a single image we use the peak-time visualization proposed by Velten
et al. [259].

Figure 5.10 compares our simulation against a real scene captured
with the femtophotography technique of Velten et al. [259]. We can see
that our simulation faithfully reproduces the different orders of scat-
tering events occurring during light propagation. Finally, Figure 5.11

shows different examples of non-trivial phenomena visible in transient
state, including temporal chromatic dispersion due to wavelength-
dependent index of refraction, refraction delays for ordinary and ex-
traordinary rays in birefringent crystals [164, 268] and fluorescence due
to energy re-emission after absorption [81]. We refer to the supplemen-
tary video 3 for full visualization of the different phenomena.

5.7 discussion

In summary, we have extended the classical path space integral to
include the temporal domain, and shown how the high frequency
nature of transient light transport leads to severe sampling problems.
We have proposed novel sampling strategies and density estimation
techniques, which allow us to distribute samples uniformly in time,
resulting in reduced variance and a constant distribution of bias. Our
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Figure 5.10: Comparison between the Cube scene from [259] and our rendered
simulation of the same scene. Visible differences are due to approx-
imate materials and camera properties.

supplementary material contains a rigorous mathematical analysis of
all our technical contributions. Last, we have presented simulations of
interesting transient light transport effects using modified versions of a
representative cross section of common rendering algorithms.

Apart from educational benefits, our work could be used to help
design prototypes of novel ultra-fast imaging systems, or as a forward
model for inverse problems such as recovering hidden geometry or
material estimation. Our temporal progressive density estimation (Sec-
tion 5.4) could also be used to accelerate radiance reconstruction in
time-resolved imaging techniques, reducing the need for taking re-
peated measurements to improve the SNR. Moreover, synthetic ground
truth data may become a very valuable tool for designing and bench-
marking future ultra-fast imaging devices.

Our time-resolved simulations can help analyze the complex phe-
nomena involved in light transport, and gain new insights. For instance,
Figure 5.12 shows how during the early stages of light propagation,
the first orders of scattering determine the shape of the light distri-
bution (a spherical wavefront), but over time this shape becomes a
Gaussian of increasing variance. This observation is consistent with
previous work [286], where it is shown that light in a medium ex-
hibits diffusion after traveling about ten times the mean-free-path, and
might explain some of the errors near the light source reported in the
quantized diffusion model [38]. This effect is more accentuated in the
presence of anisotropic media, where the wavefront behavior is even
more dominant.

future work . There are many compelling avenues of future work:
First, it would be interesting to extend a unified path sampling frame-
work [157] to transient state. We have shown how the photon beams
algorithm [118] can be used in transient rendering, combined with
our temporal density estimation; however, a spatio-temporal progres-
sive photon beams framework would be needed to achieve optimal
convergence in transient state. Additionally, by building a joint sam-



108 a framework for transient rendering

a) Tem
poral chrom

atic dispersion
b) B
irefringence

c) Fluorescence

Figure
5.

1
1:Exam

ples
of

different
phenom

ena
observed

in
transient

state:from
left

to
right,tem

poralchrom
atic

dispersion
due

to
w

avelength
d

epend
ent

ind
ex

of
refraction;ord

inary
and

extraord
inary

im
age

form
ation

in
a

birefringent
crystal;and

energy
re-em

ission
in

a
fluorescent

bunny.See
the

supplem
entary

video
for

the
fullanim

ations.



5.7 discussion 109

−5 −4 −3 −2 −1 0 1 2 3 4 5-5 -4 -3 -2 -1 10 2 3 4-5 -4 -3 -2 -1 10 2 3 4

ForwardLscatteringL(gL=L0.5)IsotropicLscatteringL(gL=L0)
L

mm mm

1.4Lps
5.8Lps

20.0Lps
11.5Lps

10LMFP

L

LogLRadiance

Figure 5.12: Time-resolved light transport from a point light source placed in
the middle of an isotropic (left) and forward (right) scattering
medium, emitting at time t = 0. Both media have a mean free
path of 0.244 mm (σt = 4.1 mm−1). In the initial phase the light
distribution is dominated by the wavefront shape of the low-order
scattering events. In isotropic scattering, light distribution becomes
Gaussian after traveling ten times the mean free path. In forward
scattering, this distance is increased.

pling strategy in both angle and distance, as in recent advanced steady
state sampling techniques [64, 204], we could leverage the benefits
of both to ensure better uniformity in the temporal distribution of
samples. Furthermore, the three proposed time sampling strategies
are limited to participating media; extending this to surface transport
results in a much narrower sampling space. Metropolis Light Transport
techniques [256] represent promising candidates in this regard, where
temporal mutation strategies would be needed.

We hope that our research will inspire future work on our un-
derstanding of light transport, the design of ultra-fast imaging and
the development of novel rendering techniques. For instance, sev-
eral geometric approaches to acoustic rendering are also based on
ray tracing: a more extensive analysis of similarities between acous-
tic and transient rendering might prove fruitful to both domains.
Our code and datasets (scenes and movies) are publicly available at
http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/.

http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/




6P R O G R E S S I V E T R A N S I E N T P H O T O N B E A M S

In this chapter we introduce a novel density estimation algorithm for
transient rendering of participating media based on the framework
proposed in previous Chapter 5. The photon beams algorithm [118]
supposed a significant advance in steady-state rendering in participat-
ing media. By extending radiance records from points to beams, the
density of information within a participating medium is dramatically
increased, significantly improving convergence. In this work we make
the observation that this aspect presents key benefits also in transient
state, where variance is usually aggravated over time due to uneven
distributions of radiance samples. The continuity of photon beams
along the direction of propagation allows to densely fill not only space
but also time. Motivated by this observations, we adapt the progressive
photon beams algorithm [119] by accounting for temporal delays in
the radiative transfer equation, and provide a progressive version in
both time and space. We derive optimal convergence rates accounting
for spatial and temporal kernels, and demonstrate the potential of the
method in a wide variety of scenes including caustics and multiple
scattering.

This work has been conditionally accepted after minor revisions to
Computer Graphics Forum (CGF). This work is an extension from an
article accepted at Spanish Conference on Computer Graphics (CEIG),
where it was granted one of the two best papers awards. Additionally
a poster version of the CEIG article was accepted at SIGGRAPH 2017,
where it ended as one of the semifinalists on the graduate category of
the Student Research Competition (SRC).
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6.1 introduction

The emergence of transient imaging has led to a vast number of ap-
plications in graphics and vision [113], where the ability of sensing
the world at extreme high temporal resolution allows new applica-
tions such as imaging light in motion [259], appearance capture [195],
geometry reconstruction [25, 179], or vision through media [24, 279]
and around the corner [8, 257]. Sensing through media is one of the
key applications: The ability of demultiplexing light interactions in the
temporal domain is a very promising approach for important practical
domains such as non-invasive medical imaging, underwater vision, or
autonomous driving through fog. Accurately simulating light transport
could help enormously in these applications, potentially serving as a
benchmark, a forward model in optimization, or as a training set for
machine learning.

Transient rendering in media is, however, still challenging: The in-
creased dimensionality (time) increases variance dramatically in Monte
Carlo algorithms, potentially leading to impractical rendering times.
This variance is especially harmful in media, where the signal tends
to be smooth due to the low-pass filtering behavior of scattering, in
both the spatial and temporal domains. One of the major drawbacks
of transient rendering is that it requires much higher sampling rates
to fill up the extended temporal domain, specially when using 0D
(photon) point samples, which are sparsely distributed across both
time and space. We make the observation that 1D photon trajectories
populate both space and time much more densely; hence, a technique
based on photon beams [118] should significantly reduce the rendering
time when computing a noise-free time-resolved render, and, given its
density estimation nature, it could naturally combine with the temporal
domain density estimation proposed by Jarabo et al. [111].

We present a new method for transient-state rendering of participat-
ing media, that leverages the good properties of density estimation for
reconstructing smooth signals. Our work improves Jarabo et al. [111] by
extending progressive photon beams (PPB) [119] to the transient domain,
and combining it with temporal density estimation for improved recon-
struction in both the spatial and temporal domains. Our technique is
biased but consistent, converging to the ground truth using finite mem-
ory by taking advantage on the progressive [83, 149] nature of density
estimation. We analyze the asymptotic convergence of our proposed
space-time density estimation, computing the optimal kernel reduction
ratios for both domains. Finally, we demonstrate our method on a
variety of scenes with complex volumetric light transport, featuring
high-frequency occlusions, caustics, or glossy reflections, and show
its improved performance over naively extending PPB to the transient
domain.
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This work is an extension of our previous work on rendering transient
volumetric light transport [180], where we proposed a naive extension
of photon beams to transient state. Here we increase the applicability
of the method, by proposing a progressive version of the space-time
density estimation, and rigorously analyze its convergence.

6.2 related work

Rendering participating media is a long-standing problem in computer
graphics, with a vast literature on the topic. Here we focus on works
related directly with the scope of the paper. For a wider overview on
the field, we refer to the recent survey by Novák et al. [205].

photon-based light transport. Photon mapping [121] is one
of the most versatile and robust methods for rendering complex global
illumination, with several extensions for making it compatible with mo-
tion blur [26], adapting the distribution of photons [75, 240], carefully
selecting the radiance estimation kernel [106, 137, 240], combining it
with unbiased techniques [63, 85], or making it progressive for ensuring
consistency within a limited memory budget [83, 149]. Hachisuka et
al.’s [86] recent SIGGRAPH course provides an in-depth overview.

Jensen and Christensen [122] were the first to extend photon map-
ping to media, and Jarosz and colleagues [117] significantly improved
eits efficiency with the beam radiance estimate, which replaces repeated
point queries with one “beam” query finding all photons along the
entire camera ray. Jarosz et al. [118] later applied this idea to the pho-
ton tracing process by storing full photon trajectories (photon beams),
leading to a dramatic increase in photon density for the same pho-
ton tracing step. Their progressive and hybrid counterparts [118, 157]
leveraged the benefits of photon beams while providing consistent solu-
tions using finite memory. Recently, Bitterli and Jarosz [21] generalized
0D photon points and 1D photon beams to even higher dimensions,
proposing the use of photon planes (2D), volumes (3D) and, in theory,
higher-dimensional geometries, leading to unbiased density estimation.
All these works are, however, restricted to steady-state renders; we
instead focus on simulating light transport in transient state.

transient rendering . Though the transport equations [28, 66]
are time-resolved, most rendering algorithms focus on steady-state light
transport. Still, several works have been proposed to deal with light
transport in a time-resolved manner. In particular, most previous work
on transient rendering has focused on simulating surfaces transport:
Klein et al.[148] extended Smiths’ transient radiosity [239] for second
bounce diffuse illumination, while other work has used more general
methods based on transient extensions of Monte Carlo (bidirectional)
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path tracing [108, 109, 111, 216] and photon mapping [186, 206]. Several
works have also dealt with time-resolved transport on the field of
neutron transport [14, 27, 45, 274]. Closer to our work, Ament and
colleagues [5] rendered transient light transport in refractive media
using volumetric photon mapping, but they do not provide an efficient
approach that guarantees consistency. Jarabo et al. [111] proposed a
transient extension of the path integral, and introduced an efficient
technique for reconstructing the temporal signal based on density
estimation. They also proposed a set of techniques for sampling media
interactions uniformly in time. Their method is however limited to
bidirectional path tracing and photon mapping, often failing to densely
populate media in the temporal domain. Finally, Bitterli [20] and Marco
et al. [178, 180] proposed a transient extension of the photon beams
algorithm, but these approaches are not progressive, therefore not
converging to the correct solution in the limit. Our work extends
the latter, proposing a progressive, consistent, and robust method for
rendering transient light transport. We leverage beams continuity and
spatio-temporal density estimation to mitigate variance in the temporal
domain, and derive the parameters for optimal convergence of the
method.

6.3 transient radiative transfer

The radiative transfer equation (RTE) [28] models the behavior of light
traveling through a medium. While the original formulation is time-
resolved, its integral form used in traditional rendering ignores this
temporal dependence, and computes the radiance L reaching any point
x from direction ~ω as

L(x, ~ω)= Tr(x, xs) Ls(xs, ~ω) +
∫ s

0
µs(xq) Tr(x, xq) Lo(xq, ~ω)dq, (6.1)

where xd = x − d · ~ω is a point at distance d, µs is the scattering
coefficient, and Tr(x, xd) = exp(−

∫ d
0 µt(xd′)dd′) is the transmittance

describing the fraction of photons that make it between x and xd
without undergoing extinction at any point xd′ , determined by the
extinction coefficient µt(xd′). The outgoing radiance Lo in direction ~ω
from a medium point xq at distance q is defined by the scattering
integral:

Lo(xq, ~ω) = Le(xq, ~ω) +
∫
S

fs(xq, ~ωi, ~ω) L(xq, ~ωi)d~ωi, (6.2)

where S is the spherical domain, and fs is the phase function. Ls is
defined analogously via the rendering equation [133], but integrated over
the hemispherical domain, and using the cosine-weighted BSDF in
place of the phase function.
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transient rte Equations (6.1) and (6.2) assume that the speed of
light is infinite. However, if we want to solve the RTE at time scales
comparable to the speed of light we need to incorporate the different
delays affecting light. In the following we review the main practical
considerations for accounting time into the integral form of the RTE for
its application in transient rendering. Light takes a certain amount of
time to propagate through space, and therefore light transport from a
point x0 towards a point x1 does not occur immediately. In the absence
of scattering effects, transport between two points x0 and x1 occurs as

L(x1, ~ω, t) = L(x0,−~ω, t− ∆t), (6.3)

where ∆t is the time it takes the light to go from x0 to x1. In turn, ∆t is
defined by

∆t(x0 ↔ x1) =
∫ x1

x0

η(x)
c

dx, (6.4)

where η(x) is the index of refraction at a medium point x and c is the
speed of light in vacuum. Note that in this case light does not travel in a
straight line, but by following the Eikonal equation [5, 80]. In a medium
with a constant index of refraction η(x) = ηm, then ∆t(x0 ↔ x1) can be
expressed as

∆t(x0 ↔ x1) =
ηm

c
||x1 − x0||. (6.5)

The second form of delay occurs in the scattering events, and might
occur from different sources, including electromagnetic phase shift,
fluorescence and phosphorescence, or multiple scattering within the
surface (or particle) microgeometry. To account for these sources of scat-
tering delays, we introduce a temporal variable in the phase function as
fs(x, ~ωi, ~ω, t), where t is the instant of light interacting with the particle
before it is scattered. With those delays in place, we reformulate the
RTE (Equations (6.1) and (6.2)) introducing the temporal dependence
as [66]

L(x, ~ω, t) = Tr(x, xp) Ls(xp, ~ω, t− ∆tp)

+
∫ p

0
µs(xq) Tr(x, xq) Lo(xq, ~ω, t− ∆tq)dq, (6.6)

Lo(xq, ~ω, t)=
∫ t

−∞
Le(xq, ~ω, t)dt′

+
∫
S

∫ t

−∞
fs(xq, ~ωi, ~ω, t−t′) L(xq, ~ωi, t)dt′d~ωi, (6.7)

with ∆tp = ∆t(x ↔ xp) and ∆tq = ∆t(x ↔ xq) (Equation (6.4)).
Ls changes analogously. Note that we assume that the matter does not
change at time-scales comparable to the speed of light, and therefore
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s1
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s3

xb

(a) (b)

Figure 6.1: (a) A photon emitted from the light source will take a time tb0 =
ηm
c (s1 + s2 + s3) to get to xb. (b) Radiance estimation in the medium

is done by intersecting every ray against the photon beam map, and
performing density estimations at the ray-beam intersections (red).

avoid any temporal dependence on µs and µt. Introducing temporal
variation at such speeds would produce visible relativistic effects [112,
269].

6.4 transient photon beams

Photon beams [118] provide a two-pass numerical solution for render-
ing participating media in steady state: In the first pass (Figure 6.1a), a
series of random walk paths are traced from the light sources. These
paths represent packages of light (photons) traveling through the
medium. Every interaction of a photon within the medium is stored
on a map as a beam with a direction ~ωb, position xb and power Φb. In
the second pass (Figure 6.1b), rays are traced from the camera against
the scene, and Equation (6.1) is approximated by summing up the
contribution of all near photon beams Rb of the eye ray defined by
r = (xr,−~ωr)

L(xr, ~ωr) ≈ ∑
b∈Rb

Lb(xr, ~ωr), (6.8)

where Lb(xr, ~ωr) is the contribution of photon beam b. Every photon
beam b is considered to have certain radius Rb, and radiance seen
by a camera ray is computed by performing a density estimation on
every ray-beam intersection. For 1D and 2D kernels, this radiance is
computed as

L1D
b (xr, ~ωc) = K1D(Rb)Φb fs(θb)µs

e−µtsb e−µtsr

sin θb
, (6.9)
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Figure 6.2: (a) Ray-beam intersection for density estimation using a 2D kernel
(top) and 1D kernel (bottom). Time delays tb, tr within these spatial
density estimations will depend on the ray-beam orientation the
blur region intersections sb, sr, the speed of light, and the index
of refraction of the media. (b) Radiance estimate of a single beam
at pixel ij using a 2D blur generates a temporal footprint over a
time interval [t−, t+] (top) while radiance estimate using a 1D blur
occurs at a single time instant t (bottom).

L2D
b (xr, ~ωr) =K2D(Rb)Φb fs(θb)µs

e−µt(s−c −s+c )(|cos θb |−1) − 1

e µt(s−r +s−b )µt(| cos θb| − 1)
, (6.10)

where the beam is defined by xb + sb~ωb and the ray is defined by
xr + sr~ωr (see setups in Figure 6.2a).

6.4.1 Our algorithm

To generalize photon beams to the transient domain, we need to account
for the duration of light paths. This requires considering propagation
and scattering delays along the camera and light subpaths, but also the
effect of time in the density estimation connecting these two subpaths.

creating the photon map We compute the photon propagation
as a standard random walk through the scene, which can be modeled
using the subpath formulation defined by Jarabo et al. [111]. Let us
define a light subpath x̄l = x0...xk−1, with k vertices, where x0 is the
light source. This light path defines k− 1 photon beams, in which a
beam bj is defined by its origin at xbj

= xj and direction ~ωbj
=

xj+1−xj
‖xj+1−xj‖

.
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Using Jarabo’s definition of the path integral (and therefore of the
contribution of the subpaths), we compute the flux of each photon as:

Φbj
=

f (x̄j, τ̄j)

Mp(x̄j, τ̄j)
=

Le(x0 → x1, τ0)T(x̄j, τ̄j)

M ∏
j
i=0 p(xi, τi)

, (6.11)

with x̄j the subpath of x̄l up the vertex j, f the subpath contribution
function, τ̄j = τ0...τj the sequence of time delays up to vertex j, M
the number of photon random walks sampled, Le(x0 → x1, τ0) the
emission function, p(xi, τi) the probability density of sampling vertex
xi with time delay τi. The throughput, T(x̄j, τ̄j), of subpath (xi, τj) is
defined as:

T(x̄j, τ̄j) =

[
j−1

∏
i=1

fs(xi, τj)

] [
j−1

∏
i=0

G(xi, xi+1)V(xi, xi+1)

]
, (6.12)

with fs(xi, τj) the scattering event at vertex xi with delay τj, and
G(xi, xi+1) and V(xi, xi+1) the geometry and visibility terms between
vertices xi and xi+1, respectively. Finally, for transient state we need
to know the instant tbj

at which the photon beam is created (through
emission or scattering), defined as:

tbj
=

j−1

∑
i=0

τj +
j−1

∑
i=0

∆t(xi, xi+1). (6.13)

rendering For rendering, we adapt Equation (6.8) to account for
the temporal domain, as

L(xr, ~ωr, t) ≈ ∑
b∈Rb

Lb(xr, ~ωr, t), (6.14)

with Lb(xr, ~ωr, t) the radiance estimation for beam b to ray t at instant
t. In essence, Lb(xr, ~ωr, t) will return zero radiance if t is out of the
temporal footprint of the density estimation kernel. Depending on the
dimensionality of the density estimation, Jarosz and colleagues [118]
proposed three different estimators based on 3D, 2D and 1D kernels.
Since the 3D kernel results impractical due to costly 3D convolutions,
we focus on 1D and 2D kernels (Equations (6.9) and (6.10)), and extend
them to transient state, assuming homogeneous media.

kernel 2d We generalize Jarosz’s et al.’s 2D estimate L2D
b (Equa-

tion (6.10)) by introducing a temporal function W(t) as

L2D
b (xr, ~ωr, t) =K2D(Rb)Φb fs(θb, t)µs

e−µt(s−r −s+r )(|cos θb |−1) − 1

e µt(s−r +s−b )µt(| cos θb| − 1)
W2D(t), (6.15)
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where [s−r , s+r ] are the limits of the ray-beam intersection (Figure 6.2a),
θb is the angle between ~ωb and ~ωr, and K2D(Rb) is a canonical 2D kernel
with radius Rb. The temporal function W2D(t) models the temporal
footprint of the 2D kernel as

W2D(t) =

 1
t+−t− if t ∈ (t−, t+)

0 otherwise
, (6.16)

where t− = tb + tr +
ηm
c (s−r + s−b ) and t+ = tb + tr +

ηm
c (s+r + s+b ), and

tr and tb are the initial times of the camera ray and beam, respectively.
Note that due to transmittance, the photon energy varies as it travels
across the blur region. Evenly distributing the integrated radiance Lb
across this interval introduces temporal bias, in addition to the inherent
spatial bias introduced by density estimation. However we observed
this even distribution provides a good tradeoff between bias, variance,
and computational overhead.

kernel 1d In the 1D kernel defined for density estimation by Jarosz
et al. the spatial blur is performed over a line. Therefore, the energy
of the beam is just spread on the ray on a single point at r(sr), from a
single point of the beam b(sb) (see Figure 6.2a). In consequence, s±r → sr
and s±b → sb, which implies that t± → tbr, and the temporal function
reduces to W1D(t− tb) = δ(t), with δ(t) the Dirac delta function. With
that in place, we transform Jarosz et al. 1D estimate to

L1D
b (xr, ~ωr, t) = K1D(Rb)Φb fs(θb, t)µs

e−µtsb e−µtsr

sin θb
δ(t− tb), (6.17)

with K1D(Rb) a 1D kernel with radius Rb.

implementation Since photon beams correspond to full photon
trajectories, they allow us to estimate radiance at any position xb +
s~ωb of the beam, and therefore at any arbitrary time t(xb + s~ωb). As
mentioned, one-dimensional radiance estimate corresponds to a single
time across the beam. In a traditional rendering process where camera
rays are traced through view-plane pixels against the beams map, the
temporal definition within a pixel will be proportional to the amount
of samples per pixel taken. Additionally, 2D blur requires distributing
every radiance estimate along a time interval, which reduces variance in
the time dimension of a pixel at the expense of introducing additional
temporal bias.

Finally, note that the temporal footprint of the density estimation
might be arbitrarily small, so the probability of finding a beam b
at an specific time might be very low. We alleviate this issue using
path reuse via density estimation [111]. In particular, for the non-
progressive results we use histogram temporal density estimation. In
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this technique, the samples in the temporal domain are reused across
all frames by evaluating their contribution functions, which correspond
to the temporal window covered by each frame.. In Section 6.5 we
introduce temporal kernel-based density estimation, and combine it
with the spatial density estimation of the beam.

6.5 progressive transient photon beams

By means of Equations (6.15) and (6.17) we have introduced tempo-
ral dependence on the spatial density estimations that use 2D and
1D kernels, respectively. These density estimations reduce variance
at the expense of introducing bias in the results, which means both
Equations (6.8) and (6.14) will not converge to the correct solution,
even with an infinite number of photons M. To avoid this, progressive
density estimation aims to provide a biased, yet consistent technique,
that in the limit converges to the expected value (in other words, the
bias vanishes in the limit). The key idea is to average several render
passes with a finite number of photon random walks M, progressively
reducing the bias in each iteration while allowing variance to slightly
increase.

In order to fully leverage a progressive approach, we propose to
combine our time-resolved spatial density estimations (Section 6.4)
with additional temporal density estimations. While our time-resolved
2D spatial kernel implicitly performs a temporal blur over the interval
[t−, t+], it is coupled with the spatial blur. This does not allow to choose
its own initial kernel size for the temporal density estimation, which is
a desirable degree of freedom since the temporal resolution may not be
proportional to the spatial one. In contrast, our time-resolved 1D spatial
kernel does not perform a temporal blur, since the footprint is a single
instant in time. As we show in the remainder of this section, this allows
us to perform additional progressive temporal density estimations
with an independent initial kernel size, while keeping the same two-
dimensionality (1D spatial and 1D temporal). In the following, we
introduce our spatio-temporal beam density estimation based on our
time-resolved 1D kernel, and then present our progressive approach.

spatio-temporal beam estimation Jarabo et al. [111] showed
that progressive density estimations in the temporal domain can in
fact improve the convergence rate for transient rendering, in particular
when compared with the histogram method used in Section 6.4 for
rendering the temporal domain. To combine such approach with the
(progressive) spatial density estimation in photon beams [119], we



6.5 progressive transient photon beams 121

Algorithm 1 Pseudo-code of our progressive spatio-temporal density
estimation.

Ln ← 0
Rb ← R0
T ← T0
for i ∈ [0..N) do

r ← traceRay()
B← beamsMap() (Eqs. (6.6), (6.7), (6.11)-(6.13))

Rb ← Rb

√
i+2/3

i+1 (Eq. (6.20), left)

T ← T
√

i+2/3
i+1 (Eq. (6.20), right)

Lb ← 0
for b ∈ B do

Lb ← Lb+ radiance(r, b, Rb, T ) (Eq. (6.18))
end for
Ln ← Ln + Lb

end for

reformulate the 1D kernel in Equation (6.17), by convolving it with a
1D temporal kernel KT (t) so that

L1D
b (xr, ~ωr, t) = K1D(Rb)Φb fs(θb, t)µs

e−µtsb e−µtsr

sin θb
KT (t− tb).

(6.18)

progressive transient photon beams We generalize the com-
putation of L(xr, ~ωr, t) (Equation (6.14)) using an iterative estimator,
defined as

L(xr, ~ωr, t) ≈ L̂n(xr, ~ωr, t) =
1
n

n

∑
i=0

∑
b∈Bi

Lb(xr, ~ωr, t) (6.19)

with L̂n the estimate of L after n iterations, and Bi the set of photon
beams in iteration i. Note that the previous equation assumes that the
camera ray r is the same for all iterations. That is not necessarily true
(and in fact it is not) but for simplicity we express this way.

The error of the estimate L̂n is defined by its bias and variance, which
as shown in Appendix 6.B is dependent on the bandwidth of the spatial
and temporal kernels. In particular, the variance of the error increases
linearly with the bandwidth of the kernels, while bias is reduced at
the same rate. Then, on each iteration we reduce the bias by allowing
the variance to increase at a controlled rate of (i + 1)/(i + α), with
α ∈ [0, 1] being a parameter that controls how much the variance is
allowed to increase at each iteration. To achieve that reduction, on each
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iteration i + 1 we reduce the footprint of kernels K1D and KT (Rb |j and
Ti) by

Rb |i+1

Rb |i
=

(
i + α

i + 1

)βR

,
Ti+1

Ti
=

(
i + α

i + 1

)βT
, (6.20)

where βR and βT control the individual reduction ratio of each kernel,
with βT = 1− βR. A pseudo code of the main steps of our progressive
approach can be found in Algorithm 1. In the following, we analyze
the convergence rate of the method, and compute the optimal values
for the parameters α, βT and βR.

convergence analysis We analyze the convergence of the algo-
rithm as a function of the asymptotic mean squared error (AMSE) defined
as

AMSE(L̂n) = Var[L̂n] + E[εn]
2, (6.21)

where Var[L̂n] is the variance of the estimate and E[εn] is the bias at
iteration n. As shown in Appendix 6.C, the variance converges with
rate

Var[L̂n] ≈ O(n−1) + O(n−α) = O(n−α), (6.22)

while the bias converges with rate

E[εn] = O(n1−α)−2βT + O(n1−α)2βT −2. (6.23)

Plugging Equation (6.22) and (6.23) into Equation (6.21), we can
model the AMSE as

AMSE(L̂n) = O(n−α) +
(

O(n1−α)−2βT + O(n1−α)2βT −2
)2

. (6.24)

Finally, by minimizing Equation (6.24) (see Appendix 6.D) we obtain
the values for optimal asymptotic convergence βT = 1/2 and α = 2/3,
which by substitution gives us the final asymptotic convergence rate of
our progressive transient photon beams

AMSE(L̂n) = O(n−
2
3 ). (6.25)

6.6 results

In the following we illustrate the results of our proposed method in five
scenes: Cornell spheres, Mirrors, Pumpkin, Soccer [245], Pumpkin,
and Juice. See Figures 6.4, 6.3 (right), and 6.8 (left) for steady-state
renders of the scenes. Results of Figures 6.5 and 6.6 were taken on
a desktop PC with Intel i7 and 4GB RAM using a transient 2D ker-
nel (Equation (6.15)). Figures 6.3, 6.7, and 6.8 were rendered on an
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Cornell spheres Mirrors Pumpkin

Figure 6.4: Steady-state renders for the scenes Cornell spheres (Figure 6.5),
Mirrors (Figure 6.6), and Pumpkin (Figure 6.7).

Intel Xeon E5 with 256GB RAM, using our progressive spatio-temporal
kernel density estimations (Section 6.5) derived from the transient
spatial 1D kernel (Equation (6.17)). All temporal density estimations
are performed using radiance samples within fixed radius of the cor-
responding iteration (instead of using a nearest neighbor approach).
Please refer to the supplemental video1 for the full sequences of all the
scenes.

Figure 6.5 shows a Cornell box filled with a scattering medium,
and demonstrates the effect of camera unwarping [259] when rendering.
Camera unwarping is an intuitive way of visualizing how light propa-
gates locally on the scene without accounting for the time light takes
to reach the camera. The scene consists of a diffuse Cornell box with a
point light on the top, a glass refractive sphere (top, IOR = 1.5) and a
mirror sphere (bottom). While Figure 6.5b shows the real propagation
of light—including camera time—, Figure 6.5a depicts more intuitively
how light comes out from the point light, travels through the refractive
sphere, and the generated caustic bounces on the mirror sphere. Note
how in the top sequence we can clearly see how light is slowed down
through the glass sphere due to the higher index of refraction. We can
also observe multiple scattered light (particularly noticeable in frames
t=4ns and t=6ns) as a secondary wavefront.

Figure 6.6 compares visualizations of light propagation within the
Mirrors scene using Heaviside and Dirac delta light emission. The
scene is composed by two colored mirrors and a glass sphere with
IOR = 1.5, and was rendered using the previously mentioned camera
unwarping. We can observe how delta emission generates wavefronts
that go through the ball and bounce in the mirrors, creating wavefront
holes where constant emission creates medium shadows. In the last
frame of the top row Delta emission clearly depicts the slowed down
caustic through the glass ball respect to the main wavefront.

Our progressive method combines time-resolved 1D spatial kernels
of photon beams and temporal density estimations, reducing bias while
providing consistent solutions in the limit with an optimal convergence

1http://webdiis.unizar.es/~juliom/pubs/2018CGF-PTPB/2018CGF_PTPB.mp4

http://webdiis.unizar.es/~juliom/pubs/2018CGF-PTPB/2018CGF_PTPB.mp4
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Figure 6.5: Comparison of Cornell spheres scene using camera-unwarping
(top), where we do not take into account the camera time, and real
propagation of light (bottom). In the bottom row the shape of the
wavefront is altered by the camera time, as if we were scanning the
scene from the viewpoint towards the furthest parts of the scene.
Camera unwarping on the other hand illustrates more intuitively
how light propagates locally.

rate of O(n−
2
3 ). In Figure 6.7 we analyze its convergence with respect

to progressive transient path tracing with temporal KDE [111] (PTPT).
In the middle graph we show the temporal profile on a single pixel for
both our algorithm and PTPT after 4096 equal-time iterations, where
both algorithms converge to the reference solution taken with transient
path tracing (no temporal KDE) with 64 million samples. While PTPT
presents faster convergence (see Figure 6.7, right graph), our algorithm
presents a better behavior over time where variance increases due to
the lack of samples (center graph). Additionally, it requires much fewer
iterations than PTPT to achieve a similar MSE (see log-log right graph).

In Figure 6.3 we show a more complex scenario, with different caus-
tics rendered, with our progressive algorithm. It contains a smooth
dielectric figurine with different transmission albedos placed within a
participating medium with an isotropic phase function. Our method is
capable of handling complex caustics transmitted from light sources
through the player, and then through the ball. Our algorithm pro-
gressively reduces bias and variance to provide a consistent solution.

Finally in Figure 6.8 we illustrate a setup combining different media
properties, and specular refractive and reflective materials. The liquid
has a very forward phase function, making the light first travel through
the direction of the stream (t = 4.6 ns), and then going through the
liquid inside the glass (t = 5.1ns to t = 6.3ns). The mirror surface
makes the light to bounce back to the surrounding medium as a caustic
through the water spills and ice cubes at t = 5.1ns and t = 6.6ns. Note
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that these are not fully observable in the steady-state render (left) due
to the accumulated radiance from the surrounding medium and the
adjusted exposure of the image.

6.7 conclusions

In this work we have presented a robust progressive method for effi-
ciently rendering transient light transport with consistent results. We
derived our method based on progressive photon beams [119], ex-
tending its density estimators to account for light time-of-flight, and
deriving a new progressive scheme. We then compute the convergence
of the method, and derive the parameters for optimal asymptotic con-
vergence. Our results demonstrate that combining continuous photon
trajectories in transient state and our optimal spatio-temporal conver-
gence rates allow to robustly compute a noise-free solutions to the
time-resolved RTE for complex light paths. We believe that our work
might be very useful for developing new techniques for transient imag-
ing and reconstruction in media, as well as to obtain new insights on
time-resolved light transport.

As future work it would be interesting to analyze more thoroughly
the optimal performance and kernels for variance reduction and bias
impact in transient state, under varying media characteristics. In ad-
dition, extending our method to leverage recent advances in media
transport, such as transient-state adaptations of higher-dimensional
photon estimators [21] as well as hybrid techniques [157], could im-
prove performance of time-resolved rendering for a general set of
geometries and media characteristics.
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appendices

6.a error in transient progressive photon beams

Here we analyze the consistency of the transient progressive photon
beams algorithm described in Section 6.5. For our analysis on the error
of the estimate, we use the asymptotic mean squared error (AMSE) defined
as

AMSE(L̂n) = Var[L̂n] + E[εn]
2, (6.26)

where Var[L̂n] is the variance of the estimate and E[εn] is the bias at
iteration n. We model Var[L̂n] as [149]

Var[L̂n] =
1
n

Var[Ψ L] +
1
n2

n

∑
j=1

Var[Ψ εj], (6.27)

where Ψ is the contribution of the eye ray, and εj is the bias for iteration
j. The first term is the standard variance of the Monte Carlo estimate,
which is unaffected by the kernel. The second term, on the other hand,
is the variance of the error, and is dependent on density estimation. On
the other hand, the estimated value of the error (bias) E[L̂n] is defined
as

E[L̂n] = L + E[Ψ]E[εn], (6.28)

where E[εn] is the bias of the estimator after n steps:

E[εn] =
1
n

n

∑
j=1

E[εj], (6.29)

with E[εj] the expected error at iteration j. In the following, we first
derive the variance and expected value of the error for a single iteration.
Then, we analyze the asymptotic behavior of the these terms, and
compute the values for optimal convergence for βT , βR and α.

6.b variance and expected value of the error of the time-
resolved beam radiance estimate

We first analyze the variance and expected value of the error (bias)
introduced by the radiance estimate at each iteration. Let us first define
the error in each iteration as:

ε = L̂n(xr, ~ωr, t)− L(xr, ~ωr, t)

=
M

∑
i=1

K1D(Rb)KT (t− ti)Φi − L(xr, ~ωr, t). (6.30)
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variance We first define the variance of the error Var[ε] as (in the
following, we omit dependences for clarity):

Var[ε] = Var[
M

∑
i=1

K1DKT Φ− L] (6.31)

= (Var[K1D] + E[K1D]
2)(Var[KT ] + E[KT ]2)

(Var[Φ] + E[Φ]2)− E[K1D]
2E[KT ]2E[Φ]2,

In order to compute the variance of the error Var[ε] we need to make a
set of assumptions: First, we assume that the beams’ probability density
is constant within the kernel K1D in the spatial domain [119], and within
KT in the temporal domain [111]. We denote these probabilities as pRb
and pT respectively. We also assume that the distance between view
ray and photon beam, time tb and beams’ energy Φi are independent
samples of the random variables D, T and Φ, respectively, which
are mutually independent. Finally, we assume that D and T have
probability densities pRb and pT .

With these assumptions, and taking into account that E[K1D] = pRb
and E[KT ] = pT , we can model the the variance introduced by the
temporal kernel Var[KT ] as [111]

Var[KT ] =
pT
T

∫
R

kT (ψ)2dψ− p2
T , (6.32)

where we express KT as a canonical kernel kT with unit integral such
that KT (ξ) = kT (ξ/T )T −1. Analogously, Var[K1D] is [119]:

Var[K1D] =
pRb

Rb

∫
R

k1D(ψ)
2dψ− p2

Rb
. (6.33)

This allow us to express the variance of the error Var[ε] as:

Var[ε] ≈
(

Var[Φ] + E[Φ]2
)( pRb

Rb
C1D

)( pT
T CT

)
, (6.34)

where C1D and CT are kernel-dependent constants. The last term can
be neglected by assuming that the kernels cover small areas in their
respective domains, which effectively means that C1D � pRb and
CT � pT . Equation (6.34) shows that for transient density estimation,
the variance Var[ε] is inversely proportional to RbT .

bias Bias at each iteration j is defined as the expected value of the
error E[εj] as

E[εj] = E[
M

∑
i=1

K1D KT Φ− L]

= E[K1D] E[KT ] E[Φ]− L.
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Using a second-order expansion of pT and pRb , instead of the zeroth-
order used when modeling variance, we can express the expected value
of KT as [111]

E[KT ] ≈ pT + T 2
∫

R
kT (ψ)O(‖ψ‖2)dψ = pT + T 2C ii

T ,

(6.35)

while the expected value of K1D is [119]

E[K1D] ≈ pRb + Rb

∫
R2

k1D(ψ)O(‖ψ‖2)dψ = pRb + RbC ii
1D,

(6.36)

where C ii
T and C ii

1D are constants dependent on the higher-order deriva-
tives of the spatio-temporal light distribution. Using (6.35) and (6.36),
and L = pRb pT E[Φ] we finally compute E[εj] for iteration j as

E[εj] ≈ (pRb + Rb
2C ii

1D)(pT + T 2C ii
T )E[Φ]− pRb pT E[Φ]

= E[Φ](pRbT
2C ii
T + pT Rb

2C ii
1D + T 2C ii

T Rb
2C ii

1D). (6.37)

6.c convergence analysis of progressive transient pho-
ton beams

Based on the expressions for Var[ε] and E[εj] defined above (Equa-
tions (6.34) and (6.37)), we can know derive the asymptotic behaviour
of Equation (6.21). For that, we will compute the variance Var[L̂n] and
bias E[εn] after n iterations.

variance Assuming that the random variables Ψ and εj are in-
dependent, we model the variance of the estimator Var[L̂n] in Equa-
tion (6.27) as [149]:

Var[L̂n] =
1
n

Var[ΨL] +
1
n2

n

∑
j=1

Var[Ψεj] (6.38)

=
1
n

Var[ΨL] + Var[Ψ]
1
n2

n

∑
j=1

Var[εj] +

E[Ψ]2
1
n2

n

∑
j=1

Var[εj] + Var[Ψ]
1
n2

n

∑
j=1

E[εj]
2.

Following [137], we can approximate Var[εn] as a function of the vari-
ance at the first iteration Var[ε1] as:

Var[εn] ≈
Var[ε1]

(2− α)nα
= O(n−α). (6.39)
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Finally, by applying Var[εn] and asypmtotic simplifications, we can
formulate Var[L̂n] (6.39) as:

Var[L̂n] ≈
1
n

Var[ΨL] + E[Ψ]2Var[εn]

≈ 1
n

Var[ΨL] +
Var[ε1]

(2− α)nα

= O(n−1) + O(n−α) = O(n−α). (6.40)

bias The expected value of the error E[εn] is modeled in Equa-
tion (6.28) as a function of the averaged bias introduced at each iteration
E[εj] (6.37). Computing the kernels’ bandwidth Tj and Rb j at iteration j
by expanding Equation (6.20) as a function of their initial value by we
get

Tj = T1(j α B(α, j))−βT , (6.41)

Rb j = Rb1(j α B(α, j))−βRb , (6.42)

where B(x, y) is the Beta function. Using (6.41) and (6.42) in Equa-
tion (6.37) we can express E[εj] as a function of the initial kernel band-
widths

E[εj] = E[Φ]pRbC
ii
T T 2

1 Θ(j1−α)−2βT

+E[Φ]pT C ii
1DRb

2
1Θ(j1−α)−2βRb

+E[Φ]C ii
T C ii

1DT 2
1 Rb

2
1Θ(j1−α)−2(βT +βRb). (6.43)

Finally, we use ∑n
j=1 Θ(jx) = n O(nx) to plug Equation (6.43) into

Equation (6.29) to get the asymptotic behavior of E[εn] in transient
progressive photon beams:

E[εn] = O(n1−α)−2βT + O(n1−α)−2βRb + O(n1−α)−2(βT +βRb),

which, by using the equality βRb = 1− βT , becomes:

E[εn] = O(n1−α)−2βT + O(n1−α)2βT −2 + O(n1−α)−2

= O(n1−α)−2βT + O(n1−α)2βT −2. (6.44)

6.d minimizing asymptotic mean squared error

Using the asymptotic expression for variance and bias in Equations
(6.40) and (6.44), we can express the AMSE (6.21) as

AMSE(L̂n) = O(n−α) +
(

O(n1−α)−2βT + O(n1−α)2βT −2
)2

.

(6.45)
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which is a function of the parameters α and βT . Given that the vari-
ance is independent of βT , we first obtain the optimal value for this
parameter that yields the highest convergence rate of the bias E[εn].
We differenciate Equation (6.44), apply asymptotic simplifications and
equating to zero, we obtain the optimal value βT = 1/2. By plugging
this value in Equation (6.45), we obtain:

AMSE(L̂n) = O(n−α) + O(n−2(1−α)). (6.46)

Finally, by finding the minimum again with respect to α we get the
optimal parameter α = 2/3, which results in the optimal convergence
rate of the AMSE for our transient progressive photon beams as

AMSE(L̂n) = O(n−
2
3 ) + O(n−2(1− 2

3 )) = O(n−
2
3 ). (6.47)
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In this chapter we address one of the pathological problems in off-
the-shelf Time-of-Flight range cameras: multipath interference (MPI).
One of the main motivations that triggered this project was to demon-
strate and exploit the potential of transient light transport simulation
in transient imaging problems. The goal of this work is to correct MPI
errors introduced by the assumption of single-bounce illumination.
Our operational baseline is to avoid hardware modifications, and to
keep real-time performance. To achieve this we propose a convolutional
deep-learning approach to learn corrections of MPI. To circumvent the
lack of labeled real data, we propose a hybrid approach real and syn-
thetic data. Our hybrid scheme first learns to obtain lower-dimensional
representations of real depth maps. Then, it is re-trained using syn-
thetic labeled data to decode these representations to the corrected maps
without MPI. We demonstrate that our method works in real time,
and overcomes previous works in a wide variety of real and synthetic
scenarios.

This project started during my two-month internship at Microsoft
Research Asia in Beijing, China. It was partially developed there, and
continued as a collaboration with them until its publication. The work
was published in ACM Transactions on Graphics and presented at
SIGGRAPH Asia 2017.

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong,
A. Jarabo, M. H. Kim, X. Tong & D. Gutierrez

DeepToF: Off-the-Shelf Real-Time Correction of Multipath

Interference in Time-of-Flight Imaging

ACM Transactions on Graphics, Vol.36(6)
(Presented at SIGGRAPH Asia 2017)

7.1 introduction

Time-of-flight (ToF) imaging, and in particular continuous-wave ToF
cameras, have become a standard technique for capturing depth maps.
Such devices compute depth of visible geometry by emitting modulated
infrared light towards the scene, and correlating different phase-shifted
measurements at the sensor. However, ToF devices suffer from multi-
path intereference (MPI): a single pixel records multiple light reflections,

135
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but it is assumed that all light reaching it has followed a direct path
(see [113] for details). This introduces an error on the captured depth,
which reduces the applicability of ToF cameras.

To compensate for MPI, most previous works leverage additional
sources of information, such as coded illumination or multiple modula-
tion frequencies that lead to different phase-shifts, from which indirect
light might be disambiguated. This requires either hardware changes
(e.g. modifying the built-in illumination, or using sensors that can
handle multiple modulated frequencies), or multiple passes with a
standard ToF camera. Other single-modulation approaches simulate
an estimation of the ground-truth light transport, then compensate
the captured MPI using information from such simulation. Such ap-
proaches, while working with any out-of-the-box ToF sensor, typically
require several minutes for a single frame, and might lead to errors
when the simulation is not accurate.

Our work aims to lift these limitations: We present a novel technique
to correct MPI using an unmodified, off-the-shelf camera, with a single
frequency, and in real time. A key observation is that, since both the cam-
era and the infrared emitter are co-located and share almost the same
visibility frustrum, most of the MPI information is actually present in
image space. Furthermore, from the discretized geometry given by a
depth map, light transport at each pixel can only be estimated as a lin-
ear combination (with unknown weights) of the contributions from the
rest of the pixels. This linear process can be represented as a spatially-
varying convolution in image space, with unknown convolution filters.
This motivates our design of a convolutional neural network (CNN) to
obtain such filters.

However, suitable ToF datasets that include depth with MPI and
its corresponding ground-truth reference do not exist, and capturing
such dataset is not possible with current devices. To overcome this,
we synthesize such data using an existing physically-based transient
light transport renderer (Section 7.5), extending it with a ToF camera
model. Using this model, we introduce MPI in the simulated depth
estimation, and compare it with the reference depth. Our network uses
the synthetic data for training, takes depth with MPI as input, and
returns a corrected depth map. In particular, since the input and output
have the same resolution, we design an encoder-decoder network.
While amplitude or phase-shifted images could provide additional
information to the network, they are often uncalibrated and highly
dependent on the device characteristics. We therefore use depth as the
only reliable input to our network, providing a real-time solution that
is robust even for single-frequency ToF devices.

This approach introduces two new challenges. First, generating syn-
thetic data is time-consuming, and thus the simulated dataset is un-
likely to be large and diverse enough to avoid overfitting. Second,
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although we carefully analyze our synthetic data to make sure that it is
statistically similar to real-world data, it might still be too perfect, lack-
ing for instance subtle differences due to imperfections in the sensor or
the emitter. We address this by leveraging the fact that the input and
output depths must be structurally similar, and devising a two-stage
training. The first stage is a convolutional autoencoder (CAE) from
real-world captured data, which requires no ground-truth reference.
This tackles both challenges, since it allows us to use large datasets
with real-world imperfect data for training. This first stage thus trains
the encoding filters of the network as a feature dictionary learned from
structural properties of ToF depth images (Section 7.6.1).

The second stage provides supervised learning for the regression
with the synthetic dataset as reference, which accounts for the effect
of MPI (input and output are now different), and feeds the decoder
(while the encoder remains unmodified). We treat the effect of MPI as
a residue, and therefore model this second stage as supervised residual
learning (Section 7.6.2).

We analyze the performance of our approach in synthetic and cap-
tured ground-truth data, and compare against previous works, showing
favorable results while being significantly faster. Finally, we demon-
strate our technique in-the-wild, correcting MPI from depth maps
captured by a ToF camera in real time. In summary, we make the
following contributions:

• A two-stage training strategy, with a convolutional autoencoder
plus a residual learning approach. It leverages statistical knowl-
edge from real captured data with no ground truth, and then com-
pensates the error from synthetic data (which includes ground
truth).

• A synthetic ToF dataset of scenes sharing similar statistical prop-
erties as real-world scenes. For each scene, we provide both MPI-
corrupted and ground-truth depth. We believe this data is much
needed, and we hope our dataset can help future works.

• A trained network that compensates multipath interference from a
single ToF depth image in real time, which outperforms previous
algorithms even using such minimal input.

Our training dataset and trained network are publicly available online
at the project page1.

7.2 related work

Convolutional neural networks (CNNs) have been widely used for
many image-based reconstruction tasks, such as intrinsic images, nor-
1http://webdiis.unizar.es/ juliom/pubs/2017SIGA-DeepToF/
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mal estimation, or depth recovery. Here we only focus on CNN-based
depth reconstruction methods that are closely related to our work. We
refer to Jarabo et al.’s recent survey [113] for a complete overview on
transient and ToF imaging, and to Goodfellow et. al.’s book [72] for
other deep learning techniques and their applications.

cnn-based depth reconstruction A set of methods derive
depth from multi-view images. Žbontar and LeCun [287] trained a
CNN for computing the matching cost of stereo image pairs. Kalantari
et. al. [134] exploited a CNN to estimate the disparity between sparse
light-field views, and fed the result to another CNN to interpolate the
light-field views for novel view synthesis. Different from these multi-
view methods, we reconstruct a depth image from a single snapshot
captured by a monocular ToF camera.

Other methods estimate depth from a single RGB image. Eigen et.
al. [48, 49] proposed an end-to-end CNN in which a coarse depth image
is first recovered, then progressively refined. In each step, the coarse
depth is upsampled and combined with fine scale image features. Based
on this approach, several works formulate the generated depth as a
conditional random field (CRF), and then refine it with the help of
color image segmentation [169, 175, 261], or multi-resolution depth
information generated by intermediate CNN layers [282]. Although
these methods improve the accuracy of the result, the CRF optimization
is expensive and slow. Most recently, Su et. al. [242] trained a CNN
with a synthetic dataset rendered from a large dataset for reconstruct-
ing a low-resolution 3D shape from a single RGB or RGB-D image.
Different from these methods, we do not rely on additional sources
of information. Moreover, we have also developed an efficient scheme
that combines both unlabeled real ToF images and labeled synthetic
data for CNN training. This can efficiently generate a full-resolution
depth map at a rate of up to 100 frames/second.

multipath interference Several works take advantage of inputs
with several amplitudes and phase images through multiple modula-
tion frequencies. This input can be translated into multipath interfer-
ence correction through optimization [43, 56], closed-form solutions
with inverse attenuation polynomials [70], spectral methods [54, 147],
sparse regularization [18], or through modeling indirect lighting as
phasor interactions in frequency space [78]. Although these techniques
are efficient for some devices that can capture a few frequencies si-
multaneously, such as Kinect V2 [54], they require multiple passes for
single-frequency ToF cameras.

Other approaches deal with multipath interference by adding or
modifying hardware. Wu and colleagues [278] decompose global light
transport into direct, subsurface scattering, and interreflection compo-
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nents, leveraging the extremely high temporal resolution of the femto-
photography technique [259]. Modified ToF sensors allow to reconstruct
a transient image from multiple frequencies [92, 215]. Other techniques
include custom coding [130], or combining ToF sensors with structured
light projection [197, 206]. In contrast, our method works with just an
out-of-the-box phase ToF sensor, without any modifications.

Some techniques remove multipath interference from a single fre-
quency (a single amplitude and depth image) by estimating light trans-
port from the approximated depth. One of the approximations con-
siders a single indirect diffuse bounce (assuming constant albedo)
connecting all pairs of pixels on the scene [57]. This has been later
extended to multiple diffuse bounces and multiple albedos, by adding
some user input [59]. Last, an optimization algorithm over depth space
with path tracing has also been presented [124]. While these approaches
manage to compensate multipath interference from input obtained with
any ToF device, they are very time-consuming; moreover, given the
sparse input and the assumptions simplifying the underlying light
transport model, they are unable to completely disambiguate indirect
light in all cases. In contrast, given even less information (a single depth
map, without amplitude) our work is able to compensate multipath
interference for varied and complex geometries, with different albedos,
and in real time.

Table 7.1 summarizes these approaches, and compares them to our
method. We list the required input, the variability of the tested scenes
(including albedo and geometry) and the execution time. Our method
works on a large range of scenes, with a just a single depth map as
input, and yields real time performance.

7.3 problem statement

tof depth errors Using four phase-shifted measurements c1...4,
ToF devices compute the depth z at every pixel p as

z =
c φ

4π fωR

(7.1)

φ = arctan
(

c4 − c2

c1 − c3

)
, (7.2)

where fωR is the device modulation frequency, c is the speed of light
in a vacuum, and φ is the phase of the wave reaching a pixel p. This
model works under the assumption of a single impulse response from
the scene, therefore assuming

ci(p) = x(p)e2π j φ(p)
fωR

c +θi , (7.3)

with j =
√
−1, x(p) the amplitude of the wave, and θi the phase shift

of measurement ci. However, given indirect illumination, the observed
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Figure 7.1: ToF MPI at different scales, showing IR emission (red), indirect
bounces (blue) and observed radiance (green). Left: Observed
second-bounce illumination occurs mostly from reflections on visi-
ble geometry due to shared light-camera visibility frustum (camera
facing the table), while higher-order bounces usually have a signifi-
cant impact in the locality of the observed points (e.g. camera facing
the plants). Right: Large objects such as a wall may cast a signifi-
cant indirect component over the whole scene when captured from
afar, while longer paths from out-of-sight geometry (discontinuous)
create negligible MPI due to attenuation.

pixel may receive light from paths other than single-bounce direct light,
which leads to

ĉi(p) = ci(p) +
∫

P
x(p) e2π j φ(p)

fωR
c +θi dp, (7.4)

where P is the space of all the light paths p reaching pixel p from
more than one bounce; the amplitude x(p) and phase delay due to
light time-of-flight φ(p) are now functions of the path p. The effect
of multiple bounce paths if often ignored in ToF sensors obtaining
approximate measures ci(p) = ĉi(p) and therefore leading to a depth
estimation error, the multipath interference (MPI).

mpi observations In ToF range devices, the light source is typi-
cally co-located with the camera, sharing a similar visibility frustum.
As we illustrate in Figure 7.1 (camera facing the table), this implies that
most of the MPI due to second-bounce indirect illumination comes from
actual visible geometry. Previous works have leveraged this by taking
into account only second-bounce illumination [43, 57], or by ignoring
non-visible geometry [124]. Higher-order indirect illumination might
come from non-visible geometry, but due to the exponential decay of
scattering events and quadratic attenuation with distance, light paths
of more than two bounces interfere mainly in the local neighborhood
of a point (see Figure 7.1, camera facing the plants). These observations
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suggest that most of the information on multipath interference from
a scene is available in image space, where Equation (7.4) is discretized
into a summatory and can be modeled as a spatially-varying convo-
lution. Please refer to Appendix 7.A for a more detailed derivation
of such spatially-varying convolution model. Last, since the effect of
multipath interference does not eliminate major structural features of a
depth map, the incorrect depth and the reference depth are structurally
similar.

7.4 our approach

Given that MPI can be expressed as a spatially-varying convolution,
MPI compensation could be modeled as a set of convolutions and
deconvolutions in depth space. This in turn suggests that MPI errors
could in principle be solved designing a convolutional neural network
(CNN). Specifically, since incorrect and correct depths are only slightly
different (but structurally similar), using a convolutional autoencoder
(CAE) would be a tempting solution. A convolutional autoencoder is a
powerful tool which takes the same input and output to learn hidden
representations of lower-dimensional feature vectors by unsupervised
learning, resulting in two symmetric networks: an encoder and a de-
coder. This allows to build a deeper network architecture, and preserves
spatial locality when building these representations [182]. The lower-
dimensional feature vectors retain the relevant structural information
on the input and eliminate existing errors, effectively returning the
restored (reference) image. Recently, CAEs have been successfully used
in many vision and imaging tasks (e.g. [32, 44]).

A straight-forward CAE, nevertheless, cannot be applied to our par-
ticular problem: as the errors introduced by MPI are highly correlated
with the reference depth to be recovered, we need such ground-truth ref-
erence for training. However, a large enough labeled dataset (i.e., pairs
of MPI-corrupted depth and its corresponding ground-truth depth),
needed for training, does not exist. Although real-world, ToF depth
images are widely available, measuring their ground-truth depth maps
is a non-trivial task. On the other hand, rendering time-resolved images
from synthetic scenes is extremely time-consuming, and the results
would only cover a small portion of real-world scene variations.

We propose a two-step training scheme to infer our convolutional
neural network from both unlabeled real depth images, and labeled
synthetic depth image pairs (with and without MPI). Our method is
inspired by super-resolution methods based on overcomplete dictio-
naries and sparse coding [285]. Figure 7.5 shows an overview of our
network: We first learn an encoder network as a depth prior through
traditional unsupervised CAE training, in which unlabeled real depth
images (with unknown errors) are used as both input and output. The
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Without MPI With MPI

Figure 7.2: Representative sample of the scenes (amplitude) rendered with the
ToF model to generate depth images with MPI. The top-left image
shows the same scene with and without MPI.

resulting encoder allows us to obtain lower-dimensional feature vectors
of incorrect depth images. In our second step, different from sparse
coding where original signals are reconstructed as a linear product of
dictionary atoms, we train a decoder that can reconstruct the reference
depth map from such feature vectors. To this end, we keep the encoder
network unchanged and cascade it with a residual decoder network.
The weights of the decoder network are learned from the synthetic
depth pairs via supervised CNN training.

Our network therefore only takes the depth image with MPI as input,
and outputs a depth map without the effects of MPI. We do not feed
our network with any other ToF information, such as pixel amplitudes
or phase images, because these properties highly depend on specific
ToF camera settings, and are unstable. By using only depth as input,
our solution is robust using off-the-shelf ToF devices that operate with
a single frequency.

In the following two sections, we first introduce our dataset for
training (Section 7.5), then describe in detail our network and our
two-step training scheme (Section 7.6).

7.5 training data

To obtain accurate pairs of incorrect (due to MPI) and ground-truth
reference depth maps, we simulate the response of the ToF lighting
model using the publicly-available, time-resolved bidirectional path
tracer of Jarabo et al. [111]. This allows us to obtain four phase images
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[Equation (7.2)], and from those the MPI-distorted depth estimation of
a ToF camera [Equation (7.1)].

Existing ToF devices generally use square modulation functions
instead of perfect sinusoidal ones; this introduces additional errors
on the depth estimation (wiggling), although ToF cameras do account
for these errors and compensate them in the final depth image. The
wiggling effect and its correction are specific for each camera, and in
general information is not provided by manufacturers. We therefore
use ideal sinusoidal functions to avoid introducing non-MPI-related
error sources. Ground-truth depths are straightforward to obtain from
simulation.

dataset We simulated 25 different scenes with varying materials,
using six different albedo combinations between 0.3 and 0.8, and ren-
dered from seven different viewpoints, at 256×256 resolution—similar
to what ToF cameras yield—, computed with up to 20 bounces of
indirect lighting. From these we obtained 1050 depth images with
MPI (which we flip and rotate to generate a total of 8400) and their
respective reference depths. The geometric models of the scenes were
obtained from three different free repositories2. Some examples can be
seen in Figure 7.2. In the remaining of this chapter we refer to this as
the synthetic dataset.

Training a network from scratch requires a sufficiently large labeled
dataset. However, generating it is very time-consuming, so using only
synthetic data for our purposes is highly unrealistic. We therefore
gather an additional dataset of 6000 unlabeled, real depth images (48000

with flips and rotations) from public repositories [138, 235, 280], and
use them to pre-initialize our network; we refer to this as the real
dataset. Learning representations of unlabeled real depths will later
improve depth corrections from our smaller synthetic labeled dataset
(Section 7.6).

Figure 7.3 compares a real scene captured with a ToF camera (thus
including MPI) with our ToF simulation, showing a good match. Ad-
ditionally, in Appendix 7.B we perform a statistical analysis on both
datasets, to assess their similarity.

quantitative analysis of mpi errors Figure 7.4 shows the
error distributions across our entire synthetic dataset. Note that while
previous works have addressed local errors of just a few centimeters
in small scenes, our data indicates that the global component can
introduce much larger errors, with an average error of 26 cm (red line
in the top-left histogram) for scenes up to 7.5 m. On average, 12% of

2https://benedikt-bitterli.me/resources/
http://www.blendswap.com/
https://free3d.com/
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1.2m

1.4m

1.6m

1.2m

1.4m

1.6m

Capture Simulation

Figure 7.3: Depth map with MPI of a real scene (top left) captured by a ToF
camera, and its corresponding synthetic model (top right). The
bottom row shows the depth profiles for the horizontal (left) and
vertical (right) lines, showing a good agreement.

the measured ToF depth corresponds to MPI (bottom-left histogram).
The bivariate histogram relating relative error and observed depth
(bottom-right) additionally shows that the average remains constant at
around 10% for most measured depths, being larger for smaller depths.

7.6 network architecture

We now describe how to train our network, following our two-stage
scheme with the real dataset (during autoencoding) and our synthetic
dataset (during supervised decoding).

7.6.1 Stage One: Autoencoder

We train our convolutional autoencoder using the real dataset, contain-
ing 48000 depth images with unknown errors. We use this incorrect
depth as input and output for this unsupervised training, and use the
synthetic dataset (with MPI) as its validation set. With this stage we
pre-initialize the network so the encoder (Figure 7.5, top, gray blocks)
is able to generate lower-dimensional feature vectors (Figure 7.5, top,
blue block) for both real and synthetic depth maps. Training and val-
idation curves of this stage are shown in Figure 7.6. Once we train
the parameters of the encoder, we freeze its convolutional layers and
update only the decoder layers in the second stage.
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mean      0.12

mean      26cm

0.1
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Avg. Rel. MPI error per ToF depth

Figure 7.4: In reading order: Absolute MPI error; depth distribution for ref-
erence and ToF depths, at a modulation of 20MHz (i.e. maximum
unambiguous distance of 7.5m); relative error with respect to mea-
sured ToF depth; and bivariate histogram showing relative MPI
error density per measured ToF depth. Measured ToF depths con-
tain an average error of 12%. The blue line in the bivariate histogram
shows that the average relative MPI error per ToF depth remains
around 10% for most measured depths.

network parameters In the encoding stage, we apply sets of
two 5×5 convolutions with a two-pixel padding, and a stride of two
pixels to progressively reduce the size of the convolutional inputs
to each layer. This helps to effectively combine and find features at
different scales. We perform this operation at six scales, applying pairs
of convolutions over features of 256×256 pixels (input), down to 8×8

(innermost convolution pair, last encoding layer). In the decoding stage,
we perform upsampling and 5×5 convolutions with two-pixel padding,
starting from the encoder output (see Figure 7.5 top, red arrows) until
we reach the output resolution 256×256.

We have tested our network without this pre-initialization step, feed-
ing it directly with synthetic labeled data. The results show that the
network loses the ability to generalize, arbitrarily decreasing the accu-
racy in the validation dataset, as presented in Section 7.7.

7.6.2 Stage Two: Supervised Decoder

In the second stage, we freeze the encoder layers, and train the decoder
through supervised learning using our synthetic dataset. We introduce
incorrect depth (with MPI) as input, and target reference depth (without
MPI) as output. We use 80% of our synthetic dataset for training, and
the remaining 20% for validation. Given that the encoder performs
downsampling operations to detect features at multiple scale levels,
full resolution outputs (256×256) are significantly blurred. We thus add
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symmetric skip connections to mix detailed features of the encoding
convolutions (which stay unchanged) to their symmetric outputs in
the decoder (Figure 7.5, bottom). Since we observed that the difference
between depth with MPI (input) and reference depth (output) is on
average 12%, we treat MPI as a residue [88] by performing element-
wise additions between the upsampled features and the skipped ones.
Training and validation curves of this stage are shown in Figure 7.6.

In principle, concatenation of skipped features (instead of simpler
element-wise additions) could create more complex combinations with
upsampled features using additional learned filters. However, in our
results we observed that our residual approach performs equally well
(even slightly better, see Section 7.7.1) while yielding a 30% smaller
network model, reducing also execution time.

7.6.3 Implementation Details

We have implemented our network in Caffe, and trained it on an
NVIDIA GTX 1080. Our network takes the input depth without ap-
plying any normalization. Following previous works using CNNs, all
convolutional layers are followed by a batch normalization layer, a scale
and bias layers, and a ReLU activation layer, in that order. For training,
we use the Adam solver [145] for gradient propagation. The learning
rate was set to 1 · 10−4, and adjusted in a stepped fashion in steps
between 1 · 10−3 and 1 · 10−5, to avoid getting stuck in a plateau, while
our batch size is set to 16 to maximize memory usage. Our resulting
network performs MPI corrections for a single frame in 10 milliseconds.
Additional details on the definition of both the network and training,
including the input sources, can be found in the project webpage.

7.7 results and validation

In this section, we first analyze other alternative, simpler networks,
showing how they yield inferior results. We then compare our results
against existing methods using off-the-shelf cameras, and thoroughly
validate the performance of our approach in both synthetic and real
scenes, including video in real time. Real scenes were captured with a
PMD CamCube 3.0, which provides depth images at 200×200 resolu-
tion, and operates at 20MHz with 7.5 meters of maximum unambiguous
depth.

7.7.1 Alternative Networks

We test three alternatives to our CNN: (1) suppressing the pre-initialization
autoencoder stage by directly training an encoder-decoder with syn-
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Figure 7.6: Learning curves for our two-stage scheme. The first stage (left)
learns lower-dimensional representations of real depths using an
autoencoder. The second stage (right) learns MPI corrections in the
decoder by training with our labeled synthetic data. Note that the
first stage converges quickly and provides a good starting point for
the second stage, which uses a different training set.

thetic labeled data; (2) removing the residual skip connections; (3) sub-
stituting residual connections by concatenated connections. Figure 7.8
shows how our autoencoder with the residual learning approach yields
better results with respect to these other alternatives, with better gener-
alization and smaller network size. By computing R2 scores between
the depth predicted by each network and the target depths across
the whole set of images, we observe that, without the autoencoding
stage, the images present a lower average score than our results (see
Figure 7.8, top-right table). Also, the variance of the per-image mean
absolute error without pre-initialization triplicates the variance of our
residual network errors, leading to more unstable accuracy. Concate-
nating skip connections worsens results slightly, while additionally
making the network about 30% larger, due to the need to learn more
parameters to combine the additional features. Last, removing residual
skip connections avoids enriching upsampled features with high reso-
lution features from the encoder layers, producing blurry outputs and
therefore a much higher error.

7.7.2 Comparison with Previous Work

In Figure 7.9 we compare our solution to previous works requiring no
hardware modifications, and using a single frequency [57, 124]. We
use both a synthetic and a real scene. Fuchs’ approach [57] results in
a noisy estimation due to the discretization of light transport, taking
around 10 minutes to compute. Jimenez et. al’s technique [124] is
hindered by the geometrical complexity of the scenes, taking around
one hour for a lower resolution image of 100× 100; we were unable
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Figure 7.8: Error distributions for different network alternatives: without
residual connections (purple), without the autoencoding pre-
initialization (blue), with concatenated skip connections (yellow),
and our residual approach (green). Average R2 across all predicted
depth images shows that our residual learning with autoencoding
pre-initialization reaches the best error distributions in the results,
in terms of accuracy and low variance. The percentiles show that
our approach presents also the best error distribution.

to compute larger images due to high memory consumption (about
60GB). Moreover, the results are very close in general to the input ToF
captures, including MPI errors and several outlier pixels. Our results
are significantly closer to the reference, eliminating MPI errors, while
being orders of magnitude faster.

7.7.3 Synthetic Scenes

From the synthetic dataset, a total of 213 scenes were used for the vali-
dation set (augmented to 1704 with flips and rotations). As Figure 7.10

(left) shows, our method yields a much better error distribution. Fig-
ure 7.11 shows a comparison of simulated ToF depth, our MPI-corrected
depth, and the reference depth images. Our CNN preserves details
while significantly mitigating MPI errors.

Additionally, in Figure 7.12 we compare the errors for five albedo
combinations of three different scenes by randomly varying each ob-
ject’s reflectance between 0.3 and 0.8. It can be observed how our
network is robust to these variations, consistently correcting depth
errors due to MPI. Note how even under strong albedo changes on
large flat objects (e.g., the cabinet in the first row, or the tabletop in the
second) our network successfully recovers the correct depth.



152 deeptof

0.5
2.0

1.7
4.3

OursRefe rence

[Fuchs 2010]
[Jim

enez 2014]
O

urs
ToF

A
m

plitude
R

eference

1.0

2.3

0.5

1.3

1.0

2.3

0.5

1.3

m
D

epth (m
)

Figure
7.

9:C
om

parison
w

ith
previous

w
orks.Top

row
:synthetic

scene.B
ottom

row
:realscene.Jim

enez
et.al’approach

[
1
2
4]

is
hind

ered
by

the
geom

etrical
com

p
lexity

of
the

scenes,and
fails

to
correct

M
P

I
since

the
op

tim
ization

converges
to

a
local

m
inim

u
m

.Fu
chs’

technique
[
5

7]
is

closer
to

the
reference,but

is
very

noisy
and

greatly
d

iverges
in

som
e

regions.O
ur

approach
is

the
closest

to
the

reference,as
show

n
both

in
the

depth
m

aps
and

the
graphs

plotting
the

blue
scanlines.



7.7 results and validation 153

0.2m 0.6m 1m

1%

5%

9%
Synthetic error (m)

0

1%

2%

3%

0m 0.1m 0.2m 0.3m 0.4m

Capture error (m)
Percentiles: 25%       50%      75%

ToF
Ours

ToF
Ours

0.4m 0.8m0

Percentiles: 25%       50%      75%

Figure 7.10: Per-pixel distributions of absolute error for the synthetic validation
dataset (left), and real dataset with measured ground truth (right).
For each distribution, three percentiles (25%, 50% and 75%) are
marked below. Our results clearly present a better error distribu-
tion.

7.7.4 Real Scenes

We now analyze the performance of our method in real scenes, captured
with a PMD camera. We first show results on controlled scenarios with
combinations of V-shapes, panels and a Cornell box, and then more
challenging captures in the wild. The lens distortion of all the captures
was corrected using a standard calibration of the intrinsic camera
parameters, using a checkerboard pattern and captures at different
distances [23, 174].

cornell box and v-shapes We created different setups com-
bining a Cornell box structure and V-shapes with flat panels (see
Figure 7.13, left column). We accurately measured the geometry of
these scenes, to create corresponding synthetic reference images for a
quantitative analysis. The Cornell box dimensions were 600×500×640

mm, with additional panels from 400 mm to 1200 mm. The PMD cam-
era was placed at multiple distances from 0.5 to 2.4 meters. We added
several geometric elements to the scenes: three prisms with different
dimensions, and a cardboard letter E, in order to add extra sources of
MPI error. The surfaces of the Cornell box, two panels, and the smaller
shapes were painted twice with a 50-50 mixture of barium sulfate and
white matte paint, providing a good trade-off between durability and
high-reflectance diffuse surfaces [150, 209]. Note that this mixture has
an albedo of approximately 0.85, leading to large MPI and thus ensur-
ing very challenging scenarios. Figure 7.13 (middle and right) shows
the results of the captured depth and our corrected result. We com-
pensate most of the MPI errors in both scenes, approximating depth
much closer to the reference than the ToF camera. We can observe on
the error distributions (right histogram in Figure 7.10) how our CNN
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Figure 7.11: Validation results for synthetic scenes (validation set) at varying
distances between 0.5 and 7 meters. Top row shows ToF amplitude.
Second, third and fourth rows show ToF depth with MPI, our
estimated depth, and reference depth (without MPI). Our solution
manages to correct MPI errors in a wide range of scenes while
preserving details.

manages to keep 50% of the per-pixel errors under 5 cm, while 75% of
the errors in the PMD captures are over 9 cm.

scenes in the wild We now analyze several in-the-wild scenes,
to illustrate the benefits of our approach in non-controlled conditions.
The results are shown in Figure 7.14. We can see how our network
successfully suppresses MPI in all cases, while still preserving details
thanks to our residual learning approach. The magnitude of our MPI
corrections is proportional to the measured ToF distance. This follows
our observations in the error analysis (see Figure 7.4), where larger
distances tend to yield larger errors since the relative error oscillates at
around 10%.

7.7.5 Video in Real Time

Given the speed of our approach we are also able to process depth
videos in real time. Regarding temporal coherence, we leverage the
fact that our input (incorrect depth) is quite stable between frames, so
our network produces temporally coherent results without explicitly
enforcing it. Other inputs such as amplitude and/or phase could show
less stability, compromising this temporal coherence. We show some
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Figure 7.13: Error comparison for different captured combinations of the Cor-
nell box, panels and prisms. Reference depth solutions were ob-
tained replicating the scenes in simulation. We significantly de-
crease MPI errors in all the captured scenes, yielding errors under
5 cm for the 50% of the pixels, as we demonstrate in the error
histograms (Figure 7.10).

frames in Figures 7.7 and 7.15. Full sequences can be found in the
supplemental video3.

7.8 discussion and future work

We have presented a new approach for ToF imaging, to compensate
the effect of multipath interference in real time, using an unmodified,
off-the-shelf camera with a single frequency, and just the incorrect
depth map as input. This is possible due to our carefully designed
encoder-decoder (convolutional-deconvolutional) neural network, with
a two-stage training process both from captured and synthetic data.
Additionally, we provide our synthetic time-of-flight dataset that in-
cludes pairs of incorrect depth (affected by MPI) and its corresponding
correct depth maps, as well as the trained network, for public use.

Several avenues of future work exist. First, as discussed in Section 7.5,
we do not consider the wiggling error due to non-perfectly sinusoidal
waves in our training dataset, since it is partially compensated by ToF
cameras, and manufacturers do not provide information on this. If
this information were available, we could incorporate the full camera
pipeline (including non-sinusoidal waves and wiggling correction)
into our training dataset, and re-train our CNN accounting for these
residual errors. In addition, there are still challenging scenarios where
results could be improved, as shown in Figure 7.16. The very high

3http://webdiis.unizar.es/~juliom/pubs/2017SIGA-DeepToF/2017SIGA_DeepToF_SuppVideo.mp4

http://webdiis.unizar.es/~juliom/pubs/2017SIGA-DeepToF/2017SIGA_DeepToF_SuppVideo.mp4
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Figure 7.14: Comparison of conventional ToF and our corrected depth, in real
world scenes. In accordance with our analysis of MPI errors from
our synthetic dataset, longer depths yield higher errors (about 10%
of the measured distance).

albedo of barium-painted surfaces creates large MPI errors, specially
under specific camera-light configurations (left). Although our MPI
correction provides better results than the captured ToF depth, there is
still some residual error of about 10 cm in average. Also, our network
fails to correct MPI in the presence of objects which are very close to the
camera, such as the bottom-left box in the second example (Figure 7.16,
right). This is most likely because most of our synthetic dataset contains
depths between 1.5m and 4m. Despite this, as we showed in Figure 7.10,
per-pixel error distributions are significantly better than captured ToF
depth.

Our work assumes diffuse (or nearly diffuse) reflectance. Although
we have shown that it works well in several real-world scenarios with
more general reflectances, it presents some problems in the presence of
highly glossy materials. While incorporating such reflectances into our
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Figure 7.15: Our approach can also be applied to correct MPI errors of in-
the-wild videos of real scenes, in real time and keeping temporal
consistency. Here we show the depth profiles of a few frames of
two of our videos. The complete sequences can be found in the
supplemental video3.

training dataset would help, our approach is likely to fail for extremely
glossy or transparent surfaces; in such scenarios, other multi-frequency
approaches [130, 219] could be better suited.

appendices

7.a light transport in image space

Section 7.3 shows how most of the information on multipath inter-
ference from a scene is available in image space. This allows us to
approximate Equation (7.4) by limiting the integration domain P to the
differential paths p that reach pixel p from visible geometry. Moreover,
given the discretized domain of an image, we can model Equation (7.4)
using the transport matrix Ti [202, 206], which relates the ideal response
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Figure 7.16: Due to the high albedo of our barium-mixed diffuse paint (≈ 0.85),
some specific camera-light configurations may yield large MPI
errors (left). Objects very close to the camera (right, bottom-left box)
yield a higher error since most of our training dataset has depths
from 1.5m to 4m (see Figure 7.4). Still, our approach manages to
improve MPI errors in both cases, providing results significantly
closer to the reference depth.

in pixel pv with the outgoing response at pixel pu, for a measurement
phase shift i. Thus

ĉi(pu) = ci(pu) + ∑
v

Ti(pu, pv) ci(pv)

= ci(pu) + Ti ∗ ci, (7.5)

where ∗ is the convolution in pv, and ci is the full phase-shifted im-
age. While ideally this means that we can compute the correct phase-
shifted image ci by applying a deconvolution on the captured ĉi, as
ci = ĉi ∗v (I + Ti)

−1 with I the identity matrix, in practice this is not
possible since the transport matrix Ti is unknown. Capturing it is an
expensive process, and we cannot make strong simplifying assump-
tions on the locality of light transport (i.e. sparsity in Ti), since light
reflected from far away pixels might have an important contribution on
pixel p. However, as we show in Section 7.4, we can learn the resulting
deconvolution operator by means of a convolutional neural network.

7.b depth statistics

To validate our synthetic dataset (Section 7.5), we follow previous works
on depth image statistics [100, 101] on both real and synthetic datasets.
In particular, we analyze single-pixel, derivative and bivariate statis-
tics, as well as joint statistics of Haar wavelet coefficients. To compare
the results we use three different metrics: chi-squared error [211], the
Jensen-Shannon distance [51, 172], and Pearson’s correlation coefficient.
The first is a weighted Euclidean error ranging from 0 to ∞ (less is bet-
ter); the second one measures the similarity between two distributions,
ranging from 0 to

√
ln(2) = 0.833 (less is better); the last measures

correlation, where a value of 0 indicates two independent variables,
and ±1 indicates a perfect linear direct or inverse relationship.



160 deeptof

Gradient of log(depth) [m]
-1.5 -1 -0.5 0 0.5 1 1.5

pd
f [

-]

10 -6

10 -4

10 -2

10 0

Capt x
Sim x
Capt y
Sim y

log(depth) [m]

-0.5 0 0.5 1 1.5 2

pd
f [

-]

10 -8

10 -6

10 -4

10 -2

10 0

Capture
Simulation

(a) (b)

Figure 7.17: (a) Logarithmic depth histogram of real and simulated depths,
showing a good match between both sets. (b) Derivative in x
and y directions of real and simulated depths, also showing a
similar trend. Please refer to the text for quantitative data and
other statistical analyses.

Figure 7.17a shows the depth histograms of both sets of images. They
are very similar, with a chi-squared error of 0.032, Jensen-Shannon
distance of 0.129, and a correlation of 0.90. Figure 7.17b shows how the
vertical and horizontal gradients of both datasets also follow a similar
trend, with a chi-squared error of 0.051 and 0.028, Jensen-Shannon
distance of 0.162 and 0.118, and correlation coefficients of 0.948 and
0.969 for the vertical and horizontal gradients respectively. Both sets
have high kurtosis values, as reported by Huang et al. [101].

Next, we carried out a bivariate statistical analysis to pairs of pixels
at a fixed separation distance, following the co-ocurrence equation [101,
167]. Capture and simulation match with a chi-squared error of 0.094,
Jensen-Shannon distance of 0.245, and correlation of 0.915. Last, we
selected three Haar filters (horizontal, vertical, and diagonal) in order to
analyze joint statistics in the wavelet domain. Capture and simulation
match with a chi-squared error of 0.152 and 0.172, Jensen-Shannon dis-
tance of 0.314 and 0.336, and correlation coefficients of 0.892 and 0.896,
for the horizontal-vertical and horizontal-diagonal pairs respectively.

These values indicate that our simulated images share very similar
depth statistics with existing real-world depth images, so they can be
used as reliable input for our network.
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In this thesis we have focused on solving different challenges of com-
putational light transport. We have chosen light propagation time as
the central axis to distinguish between two sorts of light transport:
steady-state, where information in the temporal dimension is deemed
irrelevant; and transient-state, in which time is an essential component
in the problems to solve. In the former we have addressed challenges in
traditional uses of light transport in rendering applications, while for
transient-state we have focused on obtaining and leveraging accurate
light transport data for transient imaging problems. In both steady- and
transient-state contributions we have faced long-standing and novel
problems alike.

steady-state light transport A common problem addressed
in this thesis is variance reduction in Monte Carlo based rendering. In
Chapter 2 we addressed this on steady-state rendering by proposing
a new radiance caching method for participating media. Inspired by
existing approaches that use radiance derivatives to predict radiance
changes, we reuse radiance samples in participating media, and avoid
tracing rays when radiance can be accurately extrapolated with first-
order translational derivatives. Our key contributions are an improved
way to compute derivatives that solves inaccuracies of previous works,
and extending these derivatives to second order to improve error pre-
diction when driving sampling density. While modern production path
tracers have departed from radiance caching algorithms [116, 152, 230,
267], they are still the ground truth for architectural design [128], and
are included in rendering engines such as Radiance [163, 265] or V-Ray
[74] for indirect illumination interpolation. Furthermore, our expres-
sions to compute up to second-order local derivatives are not limited
just to radiance caching. They are a good estimator of local frequency,
which can be used to drive sampling rates or compute optimal kernels
for density estimations.

In Chapter 3 we presented contributions to real-time rendering, but
under a novel research direction. Far from classic trends in rendering
that aim to improve computational efficiency, we addressed energy
consumption as a new constraint in the graphics pipeline. Energy
efficiency is nowadays a significant requirement in a world flooded
by battery-powered devices. In Chapter 3 we demonstrated that both
image quality and energy efficiency can be achieved under a proper
characterization of the scenes. We showed that by pre-computing en-

163
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ergy footprints of a scene we can drive shading parameters during
rendering time to satisfy certain energy threshold while maximizing
image quality. We detected and addressed challenges under this new
rendering framework, such as efficient parameter space exploration,
temporal consistency, and adaptive subdivision of the energy maps.
Our framework is the first real-time software-based approach to ad-
dress energy-efficient rendering from a general perspective. Along with
the demonstrated benefits, we also brought out a variety of challenges
still to be addressed, such as support for dynamic scenarios, or finding
energy mappings between high-level rendering settings and low-level
instructions. Recent works after our publication have already demon-
strated this is a research path with great potential. Follow-up work
by Zhang et al. [290] have already addressed the expensiveness of the
pre-computation step by estimating energy-consumption on the fly,
and Vasiou et al. [253] performed a thorough study that relates energy
consumption to the different steps performed during ray tracing. With
a proper mapping between energy consumption, shading operations,
and perceived quality, saliency-driven modulation of rendering opera-
tions could arise as an ambitious way to reduce energy consumption
based on user visual attention.

transient light transport Though transient light transport
simulation is very useful in transient imaging applications, providing
efficient Monte Carlo methods to reduce variance in this new domain
has barely been investigated. In Chapter 5 we introduced a proper
theoretical framework for this purpose. Under this framework, we
analyzed variance behavior of Monte Carlo rendering in transient-state,
and mitigated it with new strategies for uniform sampling in time,
and with reconstruction techniques to reuse the sampled paths. In
Chapter 6 we continued this trend by extending the photon beams
algorithm [118] to transient state, and deriving the proper convergence
rates for progressive spatial and temporal density estimations to guar-
antee the consistency of the method. These two works are the first
contributions that address variance issues on a simulation paradigm
of high importance nowadays due to the recent outburst of transient
imaging methods. Analogously to what the formulation of the path
integral [254, 255] supposed to steady-state rendering, our adaptation
to transient state is a mandatory step to bring on further investigations
in more robust simulation algorithms for time-resolved light transport.
While we provide a solid foundation for this, there is still plenty of
work to bring on. Although the reconstruction methods proposed in
our framework are general, the sampling strategies are still limited to
participating media. Surfaces present a more constrained space, where
driving sampled paths along restricted manifolds while guaranteeing
uniform sample distributions in time becomes more challenging. Nev-
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ertheless, we believe our framework will foster new methods in this
regard. Our transient photon beams algorithm serves as a first example
that our framework can help to develop more efficient algorithms for
transient rendering. By observing the clear benefits of photon-based
methods in transient state, we can anticipate that unifying all existing
path- and photon-based techniques in transient state would be an ap-
propriate way to robustly handle time-resolved transport in complex
material and media combinations. Enabling the simulation of complex
light effects in a time-resolved manner is very important, since tran-
sient imaging applications end up dealing with arbitrary real situations.
Scene configurations with constrained geometry and materials are pos-
sible in lab-controlled setups, but the research process progressively
aims to increase their complexity to enable practical applications.

Motivated by this, in Chapter 7 we targeted multipath interference
reduction (MPI) in Time-of-Flight (ToF) depth cameras, increasing the
geometric complexity of the captured scenarios. For that purpose, we
generated accurate time-resolved light transport in architectural ge-
ometry, and used it to mimic the operational principles of ToF depth
cameras. With these simulations we could easily isolate and analyze
MPI errors under a wide variety of scenarios, avoiding other error
sources typical of ToF hardware. We demonstrated that this data can be
combined with novel deep-learning techniques to correct MPI depth er-
rors in real-time. Our method is the first approach in transient imaging
to perform real-time MPI corrections in a vast amount of complex geo-
metric configurations. We have demonstrated that data-driven methods
that use synthetic data are an effective procedure to tackle transient
imaging problems, and that our transient rendering framework serves
as a solid basis for this. Just a few months after the publication of our
method, several follow-up works have proposed to correct MPI with a
similar methodology [244], even supporting additional ToF artifacts and
providing richer databases [76] using our transient rendering frame-
work. This trend upholds the benefits of using accurate synthetic data
for transient imaging problems, but there is still a long way to go. While
the geometric complexity and the nature of supported artifacts has
increased, most of these works are limited to diffuse-only, media-free
scenarios. Although we have extended bidirectional path tracing and
photon-based methods to transient state, exploring more sophisticated
algorithms is a pending task. Accounting for light propagation time in
hybrid methods for surfaces [63, 85] and media [157], and deriving the
optimal spatio-temporal kernels would lead to more robust simulations
of light in motion. This would allow to efficiently handle transient
light transport in a wide variety of scenarios, which could be an im-
portance source of data for imaging applications, not only targeting
MPI reduction, but also applications such as reflectance acquisition
or material classification [195, 196, 208, 243, 249, 278]. Tackling MPI
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errors in ToF depth capture (i.e. visible geometry) is just the tip of the
iceberg on a wide range of transient imaging applications for geometry
reconstruction. Methods for reconstructing non-line-of-sight (NLOS)
geometry [79, 257] present much more challenging cases of use, where
the relevant information is encoded in higher-order light bounces at
later timings. In those cases radiance signal is weaker, noisier, and more
convoluted due to multiple bounces in the geometry. Using forward
models to assist the reconstruction process is an effective approach, but
it requires further investigation in algorithms that explore the spatio-
temporal manifolds both robustly and efficiently. Arellano et al. [8]
have already boosted performance of 3rd-bounce hidden geometry re-
construction by a factor of 1000, thanks to a convenient implementation
of back-projection in GPU. But still, pushing reconstruction to higher
bounces is an established goal in transient imaging, which will require
more efficient forward models that can handle the increased complexity
in a practical way.

personal conclusions When I became interested in computer
graphics in my teens, I could only have dreamed to be involved in all
the amazing projects and collaborations that put together this thesis. I
feel very lucky to have had the chance to work with brilliant people,
be part of a collaborative and internationalized research group, and
work with companies that seemed unreachable not so long ago. The
last four years have supposed an unceasing stream of information that
has expanded my knowledge in many different areas, from maths
and physics, to their practical application in graphics and imaging
problems. Complementary to this, I think that I have significantly
improved my abstraction abilities when facing new problems, which I
strongly believe is a key component as valuable as knowledge. I feel
this thesis has helped me to develop myself as a fruitful researcher,
become a better engineer, and has allowed me to acquire many other
skills that go beyond technical aspects.

From a more personal point of view, the elaboration of this thesis
has been a path of many flavors. Perseverance and blind faith have
been essential to climb all the steps along a way where panic, stress,
and desperation have been always bystanders. Despite all the sleepless
nights, it has also been a fun path full of joy and satisfaction when
hard work paid off. But the most important ingredients that made this
thesis possible are all the people that have been around me during
these years: in and out of the workplace, either helping me to push
through or dragging me away from the desk, they have helped me to
not hang it up.
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