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Abstract

Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projec-

tions derived from appropriately defined mesh operators to carry out desired tasks. Early works in this area can

be traced back to the seminal paper by Taubin in 1995, where spectral analysis of mesh geometry based on a

combinatorial Laplacian aids our understanding of the low-pass filtering approach to mesh smoothing. Over the

past ten years or so, the list of applications in the area of geometry processing which utilize the eigenstructures of

a variety of mesh operators in different manners have been growing steadily. Many works presented so far draw

parallels from developments in fields such as graph theory, computer vision, machine learning, graph drawing,

numerical linear algebra, and high-performance computing. This state-of-the-art report aims to provide a com-

prehensive survey on the spectral approach, focusing on its power and versatility in solving geometry processing

problems and attempting to bridge the gap between relevant research in computer graphics and other fields. Nec-

essary theoretical background will be provided and existing works will be classified according to different criteria

— the operators or eigenstructures employed, application domains, or the dimensionality of the spectral embed-

dings used — and described in adequate length. Finally, despite much empirical success, there still remain many

open questions pertaining to the spectral approach, which we will discuss in the report as well.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

A great number of spectral methods have been proposed in
the computing science literature in recent years, appearing in
the fields of graph theory, computer vision, machine learn-
ing, visualization, graph drawing, high performance comput-
ing, and computer graphics. Generally speaking, a spectral
method solves a problem by examining or manipulating the
eigenvalues, eigenvectors, eigenspace projections, or a com-
bination of these quantities, derived from an appropriately
defined linear operator. More specific to the area of geome-
try processing and analysis, spectral methods have been de-
veloped with the intention of solving a diversity of problems
including mesh compression, correspondence, parameteriza-
tion, segmentation, sequencing, smoothing, watermarking,
surface reconstruction, and remeshing.

As a consequence of these developments, researchers are
now faced with an extensive literature related to spectral
methods and it might be a laborious task for those new to
the field to collect the necessary references in order to obtain
an overview of the different methods, as well as an under-

standing of their similarities and differences. Furthermore,
this is a topic that still instigates much interest, and there
are still many open problems to be addressed, which provide
numerous potential possibilities for further investigation. Al-
though introductory and short surveys which cover particu-
lar aspects of the spectral approach have been given before,
e.g., by Gotsman [Got03] on spectral partitioning, layout,
and geometry coding, and more recently by Lévy [Lev06]
on a study of Laplace-Beltrami eigenfunctions, we believe
a comprehensive survey is still called for. In presenting this
report, our goal is to provide a sufficient theoretical back-
ground, informative insights, as well as a thorough and up-
to-date reference on the topic so as to draw interested re-
searchers into this area and facilitate future research. Our
effort should also serve to bridge the gap between past and
on-going developments in several related disciplines.

The rest of the document is organized as follows. We start
with a brief historical account of the use of spectral methods.
Section 3 offers an overview of the spectral approach, pre-
senting the general solution paradigm and discussing possi-
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ble classifications. Section 4 motivates the use of the spectral
approach through a few examples and mentions at a high
level several natural applications. In Section 5, we provide
some theoretical background with several theorems from
linear algebra and other results that are frequently encoun-
tered in the literature covering spectral methods. Section 6
surveys existing operators used for spectral mesh process-
ing and analysis, while Section 7 outlines how the different
eigenstructures can be utilized to solve respective problems.
Computational issues are addressed in Section 8. Section 9
finally provides a detailed survey of specific spectral meth-
ods. Finally, we offer a few open questions for future con-
sideration in Section 10.

2. A historical account

Long before spectral methods came about in the com-
puter graphics and geometry processing community, a great
deal of knowledge from the field of spectral graph theory
had been accumulated, following the pioneering work of
Fielder [Fie73] in the 1970’s. A detailed account of results
from this theory can be found in the book by Chung [Chu97],
two survey papers by Mohar [MP93, Moh97], as well as
other graph theory texts, e.g., [Bol98].

The focus in spectral graph theory has been to derive rela-
tionships between the eigenvalues of the Laplacian or adja-
cency matrices of a graph and various fundamental proper-
ties of the graph, e.g., its diameter and connectivity [Chu97].
It has long been known that the graph Laplacian can be seen
as a combinatorial version of the Laplace-Beltrami operator
from Riemannian geometry [Moh97]. Thus the interplay be-
tween spectral Riemannian geometry [Cha84] and spectral
graph theory has also been a subject of study [Chu97].

One major development stemming from spectral graph
theory that has found many practical applications in-
volves the use of the Fielder vector, the eigenvector of a
graph Laplacian corresponding to the smallest non-zero
eigenvalue. These applications include graph or mesh
layout [DPS02, Kor03], image segmentation [SM00], graph
partitioning for parallel computing [AKY99], as well as
sparse matrix reordering [BPS93] in numerical linear
algebra. For the most part, these works had not received a
great deal of attention from the graphics community until
recently.

Treating the mesh vertex coordinates as a 3D signal de-
fined over the underlying mesh graph, Taubin [Tau95] first
introduced the use of mesh Laplacian operators for discrete
geometry processing in his SIGGRAPH 1995 paper. What
had motivated this development were not results from spec-
tral graph theory but an analogy between spectral analy-
sis with respect to the mesh Laplacian and the classical
discrete Fourier analysis. Such an analysis was then ap-
plied to the irregular grids characterizing general meshes
and mesh smoothing was done via low-pass filtering with-
out expensive optimization. Subsequently, projections of a

mesh signal into the eigenspaces of mesh Laplacians have
been studied for different problems, e.g., implicit mesh fair-
ing [DMSB99,KR05,ZF03], geometry compression [KG00,
SCOT03], and mesh watermarking [OTMM01, OMT02]. A
summary of the filtering approach to mesh geometry pro-
cessing was given by Taubin in his Eurographics state-of-
the-art report [Tau00]. Mesh Laplacians operators also allow
us to define differential coordinates to represent mesh geom-
etry, which is useful in applications such as mesh editing and
shape interpolation. These works have been surveyed in the
state-of-the-art report given by Sorkine [Sor05].

While mesh filtering [Tau95, DMSB99, ZF03] can be ef-
ficiently carried out in the spatial domain via convolution,
methods which require explicit computation of the eigen-
vectors of the mesh Laplacian, e.g., [KG00, OTMM01], had
suffered from the problem of high computation cost. A rem-
edy was proposed to first partition the mesh into smaller
patches and then perform spectral processing on a per patch
basis [KG00]. In fact, one may even choose to perform reg-
ular resampling and conduct the classical Fourier analysis in
each patch [PG01]. However, artifacts emerging at the arti-
ficially introduced patch boundaries may occur and it would
still be desirable to perform global spectral analysis over the
whole mesh surface in a seamless manner.

Recently, efficient schemes for eigenvector computation,
e.g., with the use of algebraic multi-grid methods [KCH02]
or spectral shift [DBG∗06, VL07], as well as eigenvector
approximation via the Nyström method [FBCM04], have
feuded renewed interests in spectral methods for mesh pro-
cessing and analysis. At the same time, developments in
fields such as computer vision and machine learning on
spectral techniques have started to exert more influence on
the computer graphics community. These inspiring devel-
opments include spectral graph matching and point corre-
spondence from computer vision, dating back to the works
of Umeyama [Ume88] and Shapiro and Brady [SB92] in
the late 1980’s and early 1990’s. Extremal properties of the
eigenvectors known from linear algebra provided the theo-
retical background. These techniques have been extended to
the correspondence between 3D meshes, e.g., [JZvK07].

The method of spectral clustering [vL06] from machine
learning has also been utilized in geometry processing,
e.g., [KSO04, LZ04]. An important result from graph the-
ory that plays a crucial role in spectral clustering relates
the number of connected components in a graph with the
multiplicity of the zero eigenvalue of the graph Laplacian.
Recently, studies in the machine learning community on
spectral clustering have focused on explaining its success
[NJW02] as well as discovering its limitations [vLBB05].

The use of the Fielder vector for linear graph layout has
found applications in mesh sequencing [IL05] and mesh seg-
mentation recently [ZL05, LZ07]. The study of Laplacian
eigenfunctions over mesh surfaces has yielded a new ap-
plication, that of quadrilateral remeshing [DBG∗06]. Last
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but not the least, multidimensional scaling [CC94] and null-
space graph embeddings [LS99] have been applied to pla-
nar [ZKK02] and spherical [Got03] mesh parameterizations,
respectively.

3. Overview of the spectral approach

Most spectral methods have a basic framework in common,
which can be roughly divided into three steps.

1. A matrix M which represents a discrete operator based
on the structure of the input mesh is defined. This matrix
can be seen as incorporating pairwise relations between
mesh elements. That is, each entry Mi j possesses a value
that represents the relation between the vertices (faces or
other primitives) i and j of the mesh. The pairwise re-
lations can take into account only vertex connectivity or
combine topological and geometric information.

2. An eigendecomposition of the matrix M is performed,
that is, its eigenvalues and eigenvectors are computed.

3. The eigendecomposition is further employed in a
problem-dependent manner to obtain a desired solution.

In view of the above framework, the variations for the dif-
ferent spectral methods arise in how the matrix M is com-
posed and how the eigendecomposition is employed to ob-
tain the result, since eigenvalues, eigenvectors, or eigenspace
projections can all be used. These lead to a few possible clas-
sifications of spectral methods, which we outline below.

• Based on the operator used:

Depending on whether the matrix M should be defined by
the geometry of the input mesh, one can classify linear
mesh operators used for spectral analysis as either combi-

natorial or geometric.

It is also possible to distinguish between matrices
which encode graph adjacency information, along with
their extensions, and matrices which approximate the
Laplacian operator, e.g., the graph Laplacian used in
spectral graph theory [Bol98, Chu97, Moh97]. In graph-
theoretic terminology, the adjacency matrix is sometimes
said to model the Lagrangian of a graph [Bol98]. One
possible extension of the graph Laplacian operator is
to the class of discrete Schrödinger operators, e.g., see
[BHL∗04, DGLS01]. The precise definition of these and
other operators mentioned in this section will be given in
Section 6.

Both the graph adjacency and the Laplacian matrices
can also be extended to incorporate higher-order neigh-
borhood information. That is, relationships between all
pairs of mesh elements are modeled instead of only con-
sidering element pairs that are adjacent in a mesh graph. A
particularly important class of such operators are the so-
called Gram matrices, e.g., see [STWCK05]. These matri-
ces play a crucial role in several techniques from machine
learning, including spectral clustering [vL06] and kernel-

based methods [SS02], e.g., kernel principal component
analysis (Kernel PCA) [SSM98].

• Based on the eigenstructures used:

In graph theory, the focus has been placed on the eigen-
values of graph adjacency or Laplacian matrices. Many
results are known which relate these eigenvalues to graph-
theoretical properties [Chu97]. While from a theoretical
point of view, it is of interest to obtain various bounds on
the graph invariants from the eigenvalues, several practi-
cal applications simply rely on the eigenvalues of appro-
priately defined graphs to characterize geometric shapes,
e.g., [JZ07, RWP06, SMD∗05, SSGD03].

Indeed, eigenvalues and eigenspace projections are
primarily used to derive shape descriptors (or signatures)
for shape matching and retrieval applications, where the
latter, obtained by projecting a mesh representation along
the appropriate eigenvectors, mimics the behavior of
Fourier descriptors [ZR72] in the classical setting.

Eigenvectors, on the other hand, are most frequently
used to derive a spectral embedding of the input data, e.g.,
a mesh shape. Often, the new (spectral) domain is more
convenient to operate on, e.g., it is low dimensional, while
the transform still retains as much information about the
input data as possible. This issue, along with the use of
eigenvalues and Fourier descriptors for shape characteri-
zation, will be discussed further in Section 7 and 9.

• Based on the dimensionality of the eigenstructure:

This classification is more relevant to the use of eigen-
vectors for the construction of spectral embeddings. One-
dimensional embeddings typically serve as solutions to
ordering or sequencing problems, where some specific op-
timization criterion is to be met. In many instances, the
optimization problem is NP-hard and the use of an eigen-
vector provides a good heuristic [DPS02, MP93]. Of par-
ticular importance is the Fiedler vector [Fie73]. For ex-
ample, it has been used by the well-known normalized cut
algorithm for image segmentation [SM00].

Two-dimensional spectral embeddings have been
used for graph drawing [KCH02] and mesh flat-
tening [ZSGS04, ZKK02], and three-dimensional
embeddings have been applied to spherical mesh parame-
terization [Got03]. Generally speaking, low-dimensional
embeddings can be utilized to facilitate solutions to
several geometric processing problems, including mesh
segmentation [LZ04, ZL05, LZ07] and correspon-
dence [JZvK07]. These works are inspired by the use of
the spectral approach for clustering [vL06] and graph
matching [SB92, Ume88].

4. Motivation

In this section, we motivate the use of the spectral approach
for mesh processing and analysis from several perspectives.
These discussions naturally reveal which classes of prob-
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Figure 1: Color plot of the first 10 eigenvectors of the graph

Laplacian for a face mesh. A nonlinear color transfer func-

tion is applied to enhance the contrast. The apparent align-

ment between the color patch boundaries and face features

is due to the feature-sensitive tessellation of the face mesh.

lems are suitable for the spectral approach. Several examples
are presented to better illustrate the ideas.

4.1. Harmonic behavior of Laplacian eigenvectors

One of the main reasons that combinatorial and geometric
Laplacians are often considered for spectral mesh process-
ing is that their eigenvectors possess similar properties as
the Fourier basis functions. By representing mesh geome-
try using a discrete signal defined over the manifold mesh
surface, it is commonly believed that a Fourier transform of
such a signal can be obtained by an eigenspace projection of
the signal along the eigenvectors of a mesh Laplacian. This
stipulation was first applied by Taubin [Tau95] to develop
a signal processing framework for mesh fairing, where an
analogy to the classical 1D situation was taken advantage
of.

Indeed, the classical Fourier transform of a periodic 1D
signal can be seen as the decomposition of the signal into a
linear combination of the eigenvectors of the Laplacian op-
erator.† A combinatorial mesh Laplacian is then adopted to
conduct Fourier analysis on a mesh signal. A distinction be-
tween the mesh case and the classical Fourier transform is
that while the latter uses a fixed set of basis functions, the
eigenvectors which serve as “Fourier-like” bases for mesh
signal processing would change depending on mesh con-
nectivity, geometry, and which type of Laplacian operator is
adopted. Nevertheless, the eigenvectors of the mesh Lapla-
cians all appear to exhibit harmonic behavior and are seen
as the vibration modes or the harmonics of the mesh surface
and their corresponding eigenvalues are the associated fre-

quencies [Tau95]. Consequently, mesh fairing can be carried
out via low-pass filtering. This approach and subsequent de-
velopments have been described in details in [Tau00].

† It is worth noting here that this statement still holds if we replace
the Laplacian operator by any circulant matrix [Jai89].

Figure 2: A 557-vertex bunny model reconstructed using 10,

30, 60, 90, 120, 240, 480, and 557 eigenvectors of the graph

Laplacian.

In Figure 1, we give color plots of the first 10 eigenvec-
tors of the combinatorial graph Laplacian of a face mesh,
where the entries of an eigenvector are color-mapped. As we
can see, the harmonic behavior of the eigenvectors is evident.
Although the filtering approach proposed by Taubin does not
fall strictly into the category of spectral methods since nei-
ther the eigenvalues nor the eigenvectors of the mesh Lapla-
cian are explicitly computed, the resemblance to classical
Fourier analysis implies that any application which utilizes
the Fourier transform can be applied in the mesh setting,
e.g., geometry compression [KG00]. In Figure 2, we show
a simplied Stanford bunny model (with 557 vertices and 999
faces) reconstructed using a few truncated spectrums derived
from the graph Laplacian.

4.2. Modeling of global characteristics

Although each entry in a linear mesh operator may encode
only local information, it is widely held that the eigenval-
ues and eigenvectors of the operator can reveal meaningful
global information about the mesh shape. This is hardly sur-
prising from the perspective of spectral graph theory, where
many results are known which relate extremal properties of
a graph, e.g., its diameter and Cheeger constant, with the
eigenvalues of the graph Laplacian.

As Chung stated in her book [Chu97], results from spec-
tral theory suggest that the Laplacian eigenvalues are closely
related to almost all major graph invariants. Thus if a matrix
models the structures of a shape, either in terms of topology
or geometry, then we would expect its set of eigenvalues to
provide an adequate characterization of the shape. Indeed,
this has motivated the use of graph spectra for shape match-
ing and retrieval in computer vision [SMD∗05,SSGD03] and
geometry processing [JZ07,RWP06]. The eigenvalues serve
as compact global shape descriptors. They are sorted by their
magnitudes so as to establish a correspondence for comput-
ing the similarity distance between two shapes. In this con-
text, it is not necessary to consider what particular character-
istic an individual eigenvalue reveals.
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Figure 3: Spectral embeddings (bottom row) of some ar-

ticulated 3D shapes (top row) from the McGill 3D shape

benchmark database [McG]. Since the mesh operator is con-

structed from geodesic distances, the embeddings are nor-

malized with respect to shape bending.

Compared with eigenvalues, eigenvectors provide more
refined shape characterization which also tends to have a
global nature. For instance, it can be shown [SFYD04] that
pairwise distances between points given by the spectral em-
beddings derived from the graph Laplacian model the so-
called commute-time distances [Lov93], a global measure
related to the behavior of random walks on a graph. Eigen-
vectors also possess extremal properties, highlighted by the
Courant-Fischer theorem (given in Section 5), which en-
able spectral techniques to provide high-quality results for
several NP-hard global optimization problems, including
normalized cuts [SM97] and the linear arrangement prob-
lem [DPS02], among others [MP93].

4.3. Structure revelation

Depending on the requirement of the problem at hand, the
operator we use to compute the spectral embeddings can be
made to incorporate any intrinsic measure on a shape in or-
der to obtain useful invariance properties, e.g., with respect
to part articulation. In Figure 3, we show 3D spectral em-
beddings of a few mesh models obtained from an operator
derived from geodesic distances over the mesh surface. As
geodesic distance is bending-invariant, the resulting embed-
dings are normalized with respect to bending and can facili-
tate shape retrieval under part articulation [EK03, JZ07].

Generally speaking, with an appropriately designed linear
operator, the resulting spectral embedding can better reveal,
single out, or even exaggerate useful underlying structures
in the input data. The above example shows that via a trans-
formation into the spectral domain, certain intrinsic shape
structures, e.g., part composition of the shape, are better re-
vealed by removing the effects of other features, e.g., those
resulting from shape bending. In other instances, the spec-
tral approach can present the nonlinear structures in an input
data in a high-dimensional feature space so that they become
much easier to handle. In particular, the nonlinear structures
may be “unfolded” into linear ones so that methods based on

(a) (b) (c)

Figure 4: Result of spectral clustering, shown in (b), on the

2-ring data set (a). (c) shows the 2D spectral embedding.

linear transformations and linear separators, e.g., PCA and
k-means clustering, can be applied.

One classical example to illustrate this, is the problem of
clustering the 2D data set shown in Figure 4(a). Although to
a human observer, the data should clearly be clustered into
an outer and an inner ring, conventional clustering meth-
ods such as k-means would fail. However, by constructing
a Gram matrix based on Euclidean distances and a Gaussian
kernel and then spectrally embedding the data into the 2D
domain, we arrive at the set shown in Figure 4(c). This set
is trivial to cluster via k-means to obtain the desired result in
(b). This is the spectral clustering method [vL06].

4.4. Dimensionality reduction

Typically, the dimensionality of the linear operator used for
spectral mesh analysis is equal to the size of the input mesh,
which can become quite large. By properly selecting a small
number of leading eigenvectors of the operator to construct
an embedding, the dimensionality of the problem is effec-
tively reduced while the global characteristics of the origi-
nal data set are still retained. In fact, the extremal properties
of the eigenvectors ensure that the spectral embeddings are
“information-preserving”; this is suggested by a theorem due
to Eckart and Young [EY36], which we give in Section 5 as
Theorem 5.5. Furthermore, there is evidence that the clus-
tering structures in the input data may be enhanced in a low-
dimensional embedding space, as hinted by the Polarization
Theorem [BH03] (Theorem 5.6).

Some of the advantages of dimensionality reduction in-
clude computational efficiency and problem simplification.
One such example is image segmentation using normalized
cuts [SM00]. In a recursive setting, each iteration of the seg-
mentation algorithm corresponds to a line search along a
1D embedding obtained by the Fiedler vector of a weighted
graph Laplacian. The same idea has been applied to mesh
segmentation [ZL05, LZ07] where the simplicity of the line
search allows to incorporate any efficiently computable (but
not necessarily easy to optimize) search criteria, e.g., part
salience [HS97]. In Figure 5(a), we show the best cut present
in the mesh face sequence obtained using the 1D spectral
embedding technique given by Liu and Zhang [LZ07]. This
example reflects the ability of spectral embeddings to reveal
meaningful global shape characteristics for a model that is

c© The Eurographics Association 2007.

5



Hao Zhang & Oliver van Kaick & Ramsay Dyer / Spectral Methods for Mesh Processing and Analysis

(a) Optimal cut. (b) Result of line search.

Figure 5: First cut on the Igea model (example taken

from [LZ07]). (a) The best cut present in the mesh face se-

quence. (b) Result from line search based on part salience.

difficult to segment and in only one dimension. However,
line search based on part salience does not return the best
result, as shown in (b). This is due to the inability of the part
salience measure to capture the most meaningful cut.

5. Theoretical background

In this section, we list a few theorems from linear algebra
related to eigenstructures of general matrices, as well as a
few useful results concerning spectral embeddings. These in-
clude the Spectral Theorem, the Courant-Fischer Theorem,
the Ky-Fan theorem [Bha97], and the Polarization Theo-
rem [BH03]. These theorems are stated here without proofs.
Proofs of some of these theorems can be found in the associ-
ated references. The Spectral and Courant-Fischer theorems
are well known in linear algebra, whose proofs can be found
in many standard linear algebra texts, e.g., [Mey01, TB97].

Given an n× n matrix M, to obtain its eigendecomposi-
tion, we compute its eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn and
associated eigenvectors v1,v2, . . . ,vn. By definition,

Mvi = λi vi and vi 6= 0, for i ∈ {1 . . .n}.

The set of eigenvalues λ(M) = {λ1,λ2, . . . ,λn} is known as
the spectrum of the matrix.

When the matrix M is generalized to a linear operator
acting on a Hilbert space, the eigenvectors become eigen-

functions of the operator. For our purpose, we will focus
on real symmetric matrices, whose counterpart in functional
analysis are compact self-adjoint operators. The main advan-
tage offered by symmetric matrices is that they possess real
eigenvalues whose eigenvectors form an orthogonal basis,
that is, v

⊺

i v j = 0 for i 6= j. The eigendecomposition of a real
symmetric matrix is described by the Spectral Theorem:

Theorem 5.1 (The Spectral Theorem) Let S be a real sym-
metric matrix of dimension n. Then we have

S = VΛV
⊺ =

n

∑
i=1

λiviv
⊺

i ,

the eigendecomposition of S, where V = [v1 v2 . . . vn] is

the matrix of eigenvectors of S and Λ is the diagonal matrix
of the eigenvalues of S. The eigenvalues of S are real and
its eigenvectors are orthogonal, i.e., V ⊺V = I, where M⊺ de-
notes the transpose of a matrix M and I is the identity matrix.

One of the most fundamental theorems which characterize
eigenvalues and eigenvectors of a symmetric matrix is the
Courant-Fischer theorem. It reveals certain extremal prop-
erty of eigenvectors, which has frequently motivated the use
of eigenvectors and the embeddings they define for solving
a variety of optimization problems.

Theorem 5.2 (Courant-Fischer) Let S be a real symmetric
matrix of dimension n. Then its eigenvalues λ1 ≤ λ2 ≤ . . .≤
λn satisfy the following,

λi = min
V ⊂ R

n

dim V = i

max
v ∈ V

‖v‖2 = 1

v⊺Sv

where V is a subspace of R
n with the given dimension. When

considering only the smallest eigenvalue of S, we have

λ1 = min
‖v‖2=1

v
⊺

Sv.

Similarly, the largest eigenvalue

λn = max
‖v‖2=1

v
⊺

Sv.

When the unit length constraint is removed, the quadratic
form v⊺Sv in Theorem 5.2 becomes the well-known
Rayleigh quotient v⊺Sv/v⊺v. Another way of characteriz-
ing the eigenstructures is the following result, which can be
seen as a corollary of the Courant-Fischer Theorem.

Theorem 5.3 Let S be a real symmetric matrix of dimen-
sion n. Then its eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn satisfy the
following,

λi = min
‖v‖2 = 1

v⊺vk = 0,∀1 ≤ k ≤ i− 1

v⊺Sv,

where v1, . . . ,vi−1 are the eigenvectors of S corresponding
to eigenvalues λ1, . . . ,λi−1, respectively.

Another useful theorem which relates the sum of the par-
tial spectrum of a symmetric matrix to the respective eigen-
vectors is also known.

Theorem 5.4 (Ky-Fan) Let S be a real symmetric matrix
with eigenvalues λ1 ≤ λ2 ≤ . . .≤ λn. Then

k

∑
i=1

λi = min
U ∈ R

n×k

U⊺U = Ik

tr (U⊺
SU),

where tr(M) denotes the trace of a matrix M and Ik is the
k× k identity matrix.

One may also interpret Theorem 5.4 as saying that a set
of k orthogonal vectors which minimizes the matrix trace
in the theorem is given by the k eigenvectors corresponding
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to the k smallest eigenvalues. Clearly, if U consists of the
k eigenvectors of S corresponding to eigenvalues λ1, . . . ,λk,
then we have tr (U⊺SU) = ∑

k
i=1 λi.

Taking an alternative view, we will see that the set of lead-
ing eigenvectors of a symmetric matrix plays a role in low-
rank approximation of matrices, as given by a theorem due
to Eckart and Young [EY36]. This result is useful in studying
the properties of spectral embeddings, e.g., [BH03, dST04].

Theorem 5.5 (Eckart-Young) Let S be a real, symmetric
and positive semi-definite matrix of dimension n and let
S =VΛV ⊺ be the eigendecomposition of S. Suppose that the
eigenvalues, given along the diagonal of Λ, are in descend-
ing order. Let X = VΛ1/2 be the matrix of eigenvectors that
are scaled by the square root of their respective eigenval-
ues. Denote by X(k) ∈ R

n×k a truncated version of X , i.e., its
columns consist of the k leading columns of X . Then

X(k) = argmin
U ∈ R

n×k

rank(U) = k

‖S−UU
⊺‖F ,

where rank(M) denotes the rank of a matrix M and ‖ · ‖F is
the Frobenius norm.

Theorem 5.5 states that the outer product of the k largest
eigenvectors of S (eigenvectors corresponding to the largest
eigenvalues), when scaled using the square root of their re-
spective eigenvalues, provides the best rank-k approxima-

tion of S. As a related result, we mention an interesting the-
orem which suggests that the clustering structures in a data
set are somewhat exaggerated as the dimensionality of the
spectral embedding decreases. This is the Polarization theo-
rem due to Brand and Huang [BH03].

Theorem 5.6 (Polarization Theorem) Denote by
S(k) = X(k)X

⊺

(k)
the best rank-k approximation of S

with respect to the Frobenius norm, where X(k) is as defined
in Theorem 5.5. As S is projected to successively lower
ranks S(n−1),S(n−2), . . . ,S(2),S(1), the sum of squared
angle-cosines,

sk = ∑
i6= j

(cosθ
(k)
i j )2 = ∑

i6= j

x
(k)⊺
i x

(k)
j

‖x
(k)
i ‖2 · ‖x

(k)
j ‖2

is strictly increasing, where x
(k)
i is the i-th row of X(k).

This theorem states that as the dimensionality of the repre-
sentation is reduced, the distribution of the cosines migrates
away from 0 towards two poles +1 or −1, such that the an-
gles migrate from θi j = π/2 to θi j ∈ {0,π}.

6. Linear operators for spectral mesh processing

We devote this section to the definition of and discussion
on linear operators for spectral mesh processing and anal-
ysis. After introducing notations to be used, coverage will
be provided on combinatorial mesh Laplacians, geometric
mesh Laplacians, discrete Schrödiger operators, and higher-
order operators (in particular, Gram matrices).

6.1. Notation

A triangle mesh with n vertices is represented as M =
(G ,P), where G = (V,E) models the mesh graph, with V

denoting the set of mesh vertices and E ⊆ V ×V the set of
edges, and P ∈ R

n×3 represents the geometry of the mesh,
given by an array of 3D vertex coordinates. Each vertex i∈V

has an associated position vector, denoted by pi = [xi yi zi]; it
corresponds to the i-th row of P. In subsequent discussions,
matrices are denoted in upper-case letters (e.g., M), vectors
in lower-case bold (e.g., v), and scalars or functions in lower-
case roman (e.g., s). The i-th element of a vector v is denoted
vi, and the (i, j)-th element of a matrix M is denoted as Mi j .

6.2. Mesh Laplacians: an overview

Let us first provide a general view of mesh Laplacians and
then define specific combinatorial and geometric Laplacians
in subsequent sections. Mesh Laplacian operators are lin-
ear operators that act on functions defined on a mesh. These
functions are specified by their values at the vertices. Thus if
a mesh M has n vertices, then functions on M will be repre-
sented by vectors with n components and a mesh Laplacian
will be described by an n× n matrix.

Loosely speaking, a mesh Laplacian operator locally takes
a weighted average of the differences between the value of
a function at a vertex and its value at the first-order or im-
mediate neighbour vertices. Specifically, for our purposes, a
Laplacian will have a local form given by

(L f )i = b
−1
i ∑

j∈N(i)

wi j

(

fi − f j

)

, (1)

where N(i) is the set of neighbours of vertex i, and the wi j’s
are the edge weights and they are symmetric: wi j = w ji. The

factor b−1
i is a positive number. Its expression as an inverse

will appear natural in subsequent developments.

An operator that is locally expressed by (1) can be fac-
tored into the product of a diagonal and a symmetric matrix

L = B
−1

S, (2)

where B−1 is a diagonal matrix whose diagonal entries are
the b−1

i ’s and S is a symmetric matrix whose diagonal entries
are given by Sii = ∑ j∈N(i) wi j and whose off diagonal entries
are −wi j . Although L itself is not symmetric in general, it is

similar to the symmetric matrix O = B−1/2SB−1/2 since

L = B
−1

S = B
−1/2

B
−1/2

SB
−1/2

B
1/2 = B

−1/2
OB

1/2.

Thus L and O have the same real eigenvalues. And if vi is an
eigenvector of O with eigenvalue λi, then ui = B−1/2vi is an
eigenvector of L with the same eigenvalue.

The eigenvectors of O are mutually orthogonal, since O is
symmetric. This is not generally true for L. However, if we
define a scalar product by

〈 f ,g〉B = f
⊺

Bg,
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then the eigenvectors of L are orthogonal with respect to that
product:

〈

ui,u j

〉

B
= u

⊺

i Bu j = v
⊺

i v j = δi j.

6.3. Combinatorial mesh Laplacians

A combinatorial mesh Laplacian is completely defined by
the graph associated with the mesh. The adjacency matrix
W of a mesh M = (V,E,P), where |V | = n and |E| = m, is
given by

Wi j =

{

1 if (i, j) ∈ E,
0 otherwise.

6.3.1. Graph, normalized graph, and Tutte Laplacians

Given W , the degree matrix D is defined as

Di j =

{

di = |N(i)| if i = j,
0 otherwise,

where di is said to be the degree of vertex i. We define the
graph Laplacian matrix K as

K = D−W.

Referring to equation (1), we see that K can be defined from
(1) by setting bi = wi j = 1 for all i, j. The operator K is also
known as the Kirchoff operator [OTMM01], as it has been
encountered in the study of electrical networks by Kirchoff.
In that context, the weighted adjacency matrix W is referred
as the conductance matrix [GM00].

Note that in the current literature, there is no complete
agreement as to what should be called a graph Laplacian. In
Chung’s book [Chu97], for example, the following normal-
ized version of K,

Q = D
−1/2

KD
−1/2,

with

Qi j =







1 if i = j,
−1/

√

did j if (i, j) ∈ E,
0 otherwise,

is called a graph Laplacian. In this paper, we call Q the nor-

malized graph Laplacian.

There is yet another operator that has been applied
as a combinatorial mesh Laplacian. It was used by
Taubin [Tau95] in his signal processing approach to mesh
fairing, as well as in the context of planar graph draw-
ing [Kor03], first studied by Tutte [Tut63]. Following the
terminology used by Gotsman et al. [Got03], we call this
operator the Tutte Laplacian. It is defined as

T = D
−1

K,

where

Ti j =







1 if i = j,
−1/di if (i, j) ∈ E,
0 otherwise.

Referring to equation (1), we see that T can be defined from
(1) by setting bi = di for all i and wi j = 1 for all i, j. It is
also easy to see that T and Q are similar to each other, as
T = D−1/2QD1/2.

Clearly, for a manifold triangle mesh, the matrices L,Q,
and T are all expected to be sparse with the average number
of non-zero entries per row about seven.

Finally, it is trivial to extend the above definitions to
weighted graphs, where the graph adjacency matrix W

would be defined by Wi j = w(ei j) = wi j , for some edge
weight w : E → R

+, whenever (i, j) ∈ E. Then, it is nec-
essary to define the diagonal entries of the degree matrix D

as Dii = ∑ j∈N(i) wi j.

6.3.2. Graph Laplacian and Laplace-Beltrami operator

Following Mohar [Moh97], we show below that the graph
Laplacian K can be seen as a combinatorial analogue of the
Laplace-Beltrami operator defined on a manifold.

Let us first define an oriented incidence matrix R of a
mesh graph G as follows. Orient each of the m edges of G in
an arbitrary manner. Then R ∈ R

n×m is a vertex-edge inci-
dence matrix where

Rie =

{

−1 if i is the initial vertex of edge e,
+1 if i is the terminal vertex of edge e.

It is not hard to show that K = RR⊺ regardless of the assign-
ment of edge orientations [Moh97].

The Laplace-Beltrami operator ∆ on a Riemannian man-
ifold is a second-order differential operator defined as the
divergence of the gradient [Ros97]. Given an infinitely con-
tinuous real scalar function φ defined over the manifold,

∆(φ) = div(grad(φ)).

Now let G = (V,E) be the graph of a triangulation of the Rie-
mannian manifold. Consider the scalar function f : V → R

which is a restriction of φ to V . Let R be an oriented inci-
dence matrix corresponding to G. Then the operator R⊺ f :
Ê → R acts on the set Ê, with |Ê| = 2|E|, of oriented edges,

(R⊺
f )(e) = f (e+)− f (e−),

where e+ and e− are the terminal and initial vertices of edge
e, respectively. One can view the above as a natural analogue
of the gradient of φ at the edge e. It follows that K = RR⊺

provides an analogue of the divergence of the gradient, giv-
ing a combinatorial version of the Laplace-Beltrami opera-
tor. As the triangulation G becomes sufficiently dense, the
restriction of ∆(φ) to V is expected to be close to K f .

6.3.3. Rayleigh quotient of graph Laplacian

One of the most important properties of the graph Laplacian
is that its associated Rayleigh quotient has a particularly use-
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ful form. Let f be any scalar function defined over the ver-
tices of a mesh with graph Laplacian K. Then

f ⊺K f

f ⊺ f
=

1
2 ∑

n
i, j=1 wi j( fi − f j)

2

‖ f‖2
2

, (3)

where wi j is the weight at edge (i, j). It follows that K is
positive semi-definite. Similar results can be obtained for the
normalized graph Laplacian and Tutte Laplacian.

Since the sum of each row of K is zero and K is pos-
itive semi-definite, the smallest eigenvalue of K is 0 and
one of its associated eigenvectors is the constant vector. It
is known [MP93, Moh97] that the multiplicity of the zero
eigenvalue of K equals the number of connected components
in the graph. By Theorem 5.3 and equation (3), we can char-
acterize the Fiedler vector v2(K) of a connected graph, the
eigenvector associated with the smallest non-zero eigenvalue
of K, as follows,

v2(K) = argminu⊺1=0, ‖u‖2=1

n

∑
i, j=1

wi j(ui −u j)
2.

This shows the usefulness of the Fiedler vector in dealing
with the minimum linear arrangement problem, which seeks
a permutation π : V → {1,2, . . . ,n} of the vertices of the
graph G so as to minimize

n

∑
i, j=1

wi j|π(i)−π( j)|.

6.3.4. Nodal domain theorems

An interesting property of the Laplacians is the relation be-
tween their eigenfunctions and the number of nodal domains
that they possess. A nodal set associated with an eigenfunc-
tion is defined as the set composed of points at which the
eigenfunction takes on the value zero, and it partitions the
surface into a set of nodal domains, each taking on positive
or negative values in the eigenfunction. The nodal sets and
domains are bounded by the following theorem [JNT01]:

Theorem 6.1 (Courant’s Nodal Domain Theorem) Let the
eigenvectors of the Laplace operator be labeled in increasing
order. Then, the i-th eigenfunction can have at most i nodal
domains, i.e., the zero set of the i-th eigenfunction can sepa-
rate the domain into at most i connected components.

This theorem only gives an upper bound for the number of
nodal domains. The direct relation between a specific eigen-
function and its nodal domains is not clear. One possible ap-
plication of nodal domains is pointed out by Dong et al. for
spectral mesh quadrangulation [DBG∗06], explained in Sec-
tion 9.2.1. By carefully selecting a suitable eigenfunction,
they take advantage of the partitioning given by the nodal
domains and remesh an input surface.

Discrete analogues of Courant’s Nodal Domain Theorem
are known [DGLS01]. In fact, these results are applicable
to a larger class of discrete operators, called the discrete
Schrödinger operators, which we define in Section 6.5.

(a) Using K. (b) Using T . (c) Using K. (d) Using T .

Figure 6: Comparing results of spectral compression using

Tutte Laplacian T and graph Laplacian K, showing artifacts

resulting from the use of the latter. Note that the two meshes

in (a) and (b) both have a 4-8 connectivity.

6.3.5. Additional properties and variations

Zhang [Zha04] has examined various matrix-theoretic prop-
erties of the three (unweighted) combinatorial Laplacians
defined thus far. While the eigenvectors of the three oper-
ators all exhibit harmonic behavior, it is shown that depend-
ing on the application, there are some subtle differences be-
tween them. For example, unlike K and T , the eigenvector
of Q corresponding to the smallest (zero) eigenvalue is not a
constant vector, where we assume that the mesh in question
is connected. It follows that the normalized graph Laplacian
Q cannot be used for low-pass filtering as done in [Tau95].

In the context of spectral mesh compression, Ben-Chen
and Gotsman [BCG05] demonstrate that if a specific distri-
bution of geometries is assumed, then the graph Laplacian K

is optimal in terms of capturing the most spectral power for
a given number of leading eigenvectors. This result is based
on the idea that the spectral decomposition of a mesh signal
of a certain class is equivalent to its PCA, when this class is
equipped with the specific probability distribution.

However, it has been shown [ZB04, Zha04] that although
optimal for a specific singular multivariate Gaussian distri-
bution, the graph Laplacian L tends to exhibit more sensi-
tivity towards vertex degrees, resulting in artifacts in meshes
reconstructed from a truncated spectrum, as shown in Fig-
ure 6. In comparison, the Tutte Laplacian appears to possess
more desirable properties in this regard and as well as when
they are applied to spectral graph drawing [Kor03], but the
Tutte Laplacian is not symmetric in general.

One possible way of obtaining a symmetric version from
the initial non-symmetric Laplacian T is by applying the
simple transformation T ′ = 1

2 (T + T⊺), as suggested by
Lévy [Lev06]. Zhang [Zha04] proposes a new symmetric op-
erator which approximates the Tutte Laplacian. The new op-
erator does exhibit nice properties. But a common drawback
of both suggestions is that it is unclear whether the discrete
operators have meaningful continuous counterparts.

Finally, the Tutte Laplacian T can also be “symmetrized”
into a second-order operator T ′′ = T⊺T , where the non-zero
entries of the matrix extend to the second-order neighbors
of a vertex [Zha04]. The eigendecomposition of T ′′ is re-
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j

Figure 7: Angles involved in the calculation of cotangent

weights for geometric mesh Laplacians.

lated to the singular value decomposition of T . When used
in relevant applications, T ′′ exhibits nice properties.

6.4. Geometric mesh Laplacians

In defining a geometric mesh Laplacian, we are interested
in discrete approximations to the Laplace-Beltrami operator
∆S on a smooth surface S . Given a triangle mesh M that
approximates S , we want an operator LM on M that will
play the role that ∆S plays on S . As before, functions on
M are defined by values at the vertices. Barycentric inter-
polation is used to obtain function values on the faces of the
mesh so that the resulting piecewise linear function on M is
continuous.

Pinkall and Polthier [PP93] derive a geometric mesh
Laplacian P based on the cotangent weights, where for any
scalar function f : V → R,

(P f )i = ∑
j∈N(i)

1
2
(cotαi j + cotβi j)( fi − f j). (4)

The angles αi j and βi j are subtended by the edge (i, j), as
shown in Figure 7. Referring to equation (1), we see that
P can be defined from (1) by setting bi = 1 for all i and
wi j = 1

2 (cotαi j + cotβi j) for all i, j.

The operator P can be derived by computing the Dirich-
let energy for piecewise linear functions and noting that
the Laplace equation arises as the Euler-Lagrange equation
which must be satisfied by its minimiser [PP93]. It can be
shown that the quadratic form f ⊺P f evaluates to a total dis-
crete Dirichlet energy over the mesh, implying that P is pos-
itive semi-definite. Also, P is a symmetric matrix so that the
self-disjoint property of the Laplacian operator is satisfied.

The expression (4) for P can be arrived at in several dif-
ferent ways, e.g., see also [MDSB02]. One weakness of P

as a representative of the Laplacian is that (P f )i evaluates
to a nodal value that represents the integral of the Laplacian
over a neighbourhood, rather than a point sample. A solu-
tion proposed by Meyer et al. [MDSB02] is to divide the
expression in (4) by the area of a local neighbourhood Ωi,
whose boundary ∂Ωi is formed by straight lines connecting
the barycentres of the triangles adjacent to vertex i with the
midpoints of edges incident to the triangles. We refer to cells
constructed in this way as barycells.

The resulting operator Y is specified by

(Y f )i =
1

|Ωi|
∑

j∈N(i)

1
2
(cotαi j + cotβi j)( fi − f j), (5)

where |Ωi| is the area of the barycell Ωi. Effectively, the
(Y f )i’s would yield values that are local spatial averages of
the Laplacian. If D is the diagonal matrix whose diagonal
entries are |Ωi|, then the Laplacian proposed is Y = D−1P.

Although Y is not a symmetric matrix, which means that
the self-adjoint character of the Laplacian is sacrificed, the
situation can be salvaged by modifying the definition of the
scalar product as done in Section 6.2.

Finally, using a finite element formulation, another candi-
date for the Laplacian, which we call the FEM Laplacian,
can be derived [DZM05],

F = B
−1

P.

The matrix B is the mass matrix encountered in finite ele-
ment analysis. It is a sparse matrix defined by

Bi j =
Z

M

ϕiϕ j da,

where ϕi is the piecewise linear “hat” function defined at ver-
tex i. Specifically, ϕi(i) = 1, ϕi( j) = 0 if j 6= i, and function
values on the mesh faces are obtained via barycentric inter-
polation. This integral which defines B can be computed an-
alytically [DZM05]. If vertices i and j are neighbours, then
Bi j is 1/12 of the total area of the two triangles adjacent to
edge (i, j). Each diagonal entry Bii is 1/6 of the total area of
the triangles adjacent to vertex i. All other entries are zero.

The matrix F is self-adjoint with respect to the inner prod-
uct 〈 f ,g〉B = f ⊺Bg, which also renders its eigenvectors or-
thogonal in this context. Recently, Vallet and Lévy [VL07]
provide an alternative derivation of the FEM Laplacian using
exterior calculus.

The geometric mesh Laplacians have appeared frequently
in the computer graphics literature, e.g., for implicit mesh
fairing [DMSB99] and more general signal processing on
manifolds [KR05, VL07], shape characterization [RWP06],
as well as remeshing [DBG∗06]. Compared to combinatorial
mesh Laplacians, which depend on mesh connectivity and
not geometry, the geometric mesh Laplacians more closely
approximate the Laplace-Beltrami operator for Riemannian
manifolds.

6.5. Discrete Schrödinger operator

The discrete Schrödinger operator is defined by supplement-
ing the discrete Laplacian with a potential function, which
is again a term arising from the study of electrical networks.
The potential function is a real function, taking on both neg-
ative and positive values, defined on the vertices of a graph.
Specifically, for a given graph G = (V,E), H is a discrete
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Schrödinger operator for G if

Hi j =







a negative real number if (i, j)∈ E,
any real number if i = j,
0 otherwise.

Such operators have been considered by Yves Colin de
Verdiére [dV90] in the study of a particular spectral graph
invariant, as well as by Davies et al. al. [DGLS01] who have
proved discrete analogues of Courant’s nodal domain theo-
rem [JNT01].

A special sub-class of discrete Schrödinger operators,
those having exactly one negative eigenvalue, have drawn
particular attention. Lovász and Schrijver [LS99] have
proved that if a graph G is planar and 3-connected, then
any matrix M in that special sub-class for G with co-rank
3 (dimensionality of the null-space of M) admits a valid
null-space embedding on the unit sphere. The null-space
embedding is obtained by the three eigenvectors corre-
sponding to the zero eigenvalue of M. This result has
subsequently been utilized by Gotsman et al. [Got03] to
construct valid spherical mesh parameterizations.

6.6. Higher-order operators

In works related to image segmentation and clustering, spec-
tral methods usually employ a different operator, the so-
called affinity matrix [SM00, Wei99]. Each entry Wi j of the
affinity matrix W represents a numerical relation between
two data points i and j, e.g., pixels in an image. If this value
is large, the two data points are highly correlated, otherwise,
we say that they possess a small affinity. This notion can
also be applied to meshes, where the entry Wi j represents
the affinity between vertices i and j.

It should be noticed that the affinity matrix differs from
the Laplacian in that affinities between all pairs of elements
being considered have to be defined. This implies that this
matrix is not sparse, in opposition to a mesh Laplacian,
which only relates neighboring elements and is thus sparse.
In practice, this non-sparse structure implies more memory
requirements and more expensive computations.

6.6.1. Gram matrices

A particularly important class of affinity matrices are the so-
called Gram matrices, which are frequently encountered in
machine learning. An n×n Gram matrix is typically derived
by applying a kernel function to pairwise distances between
a set of data points. For example, when a Gaussian kernel is
used, we obtain a Gram matrix W with

Wi j = e
−dist(i, j)2/2σ2

where the Gaussian width σ is a free parameter. Further-
more, a normalized affinity matrix N can be obtained,

N = D
−1/2

WD
−1/2,

where the degree matrix D is defined as before.

While some authors advocate the use of the normalized
affinity matrix for spectral analysis, e.g., in spectral cluster-
ing [NJW02], others employ directly only the matrix W . Al-
though normalization may have an influence on the obtained
results, what visibly controls the behavior of the operator
is how the affinity Wi j between two vertices is defined; this
turns out to be one of the key points of this approach. This is
also an important observation in similar techniques, such as
Multi-dimensional Scaling (MDS) [CC94]. MDS employs
spectral embedding to obtain low-dimensional, typically 2D,
data representations to facilitate visualization. Given as input
the pairwise distances between data points in the original do-
main, the spectral embeddings are such that these distances
are closely approximated by Euclidean distances in the em-
bedding domain. The theoretical set up here is given in part
by Theorem 5.5 from Section 5.

Different ways to define the affinities exist for mesh pro-
cessing. One possibility is to define the affinity between two
mesh vertices as their distance in the graph implied by the
mesh connectivity [LZvK06]. More elaborate approaches
consider the distance on the surface of the model, known
as the geodesic distance, for the purpose of obtaining bend-
ing invariant shape signatures [EK03, JZvK07] or achiev-
ing low distortion in texture mapping [ZKK02]. In the lat-
ter, MDS is applied to flatten a mesh surface for texture
mapping, where Euclidean distances in the plane approxi-
mate geodesic distances over the input mesh surface. How-
ever, computing geodesic distances on meshes can be an
expensive task. Therefore, other approaches have been pro-
posed, such as refining the graph distances by considering
the more global traversal distances. These consist in defin-
ing the affinity between two vertices as the number of paths
in the graph between these two elements [SFYD04].

6.6.2. Non-sparse Laplacian

The affinity matrix and the Laplacian can also be combined
to provide a non-sparse Laplacian, e.g., given by D −W ,
where D and W are as defined in the previous section. Basi-
cally, it can be seen as giving the overall structure of a Lapla-
cian to the affinity matrix. Shi and Malik [SM00] employ
this operator, for example, to perform image segmentation
based on normalized cuts.

As described before, after the operator that is being used
by the method is constructed, its eigendecomposition is per-
formed. The next sections present the different ways in
which the extracted eigendecomposition can be employed.

7. Use of different eigenstructures

The eigendecomposition of a linear mesh operator provides
a set of eigenvalues and eigenvectors, which can be directly
used by an application to accomplish different tasks. More-
over, the eigenvectors can also be used as a basis onto which
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a signal defined on a triangle mesh is projected. The result-
ing coefficients can be further analyzed or manipulated. In
this section, we expand our discussion on these issues.

7.1. Use of eigenvalues

Drawing analogies from discrete Fourier analysis, one would
treat the eigenvalues of a mesh Laplacian as measuring the
frequencies of their corresponding eigenfunctions [Tau95].
However, it is not easily seen what the term frequency
means exactly in the context of eigenfunctions that oscil-
late irregularly over a manifold. Furthermore, since different
meshes would generally possess different operators and thus
different eigenbases, using the magnitude of the eigenval-
ues to pair up corresponding eigenvectors between the two
meshes for shape analysis, e.g., correspondence, is unreli-
able [JZ06]. Despite of these issues, much empirical success
has been obtained using eigenvalues as global shape descrip-
tors for graph [SMD∗05] and shape matching [JZ07]. These
applications are described in more detail in Section 9.1.

Besides directly employing the eigenvalues as graph or
shape descriptors, spectral clustering methods use the eigen-
values to scale the corresponding eigenvectors so as to ob-
tain some form of normalization. Caelli and Kosinov [CK04]
scale the eigenvectors by the squares of the corresponding
eigenvalues, while Jain and Zhang [JZ07] provide justifica-
tion for using the square root of the eigenvalues as a scaling
factor. The latter choice is consistent with the scaling used in
spectral clustering [NJW02], normalized cuts [SM00], and
multidimensional scaling [CC94].

7.2. Use of eigenvectors

Eigenvectors are typically used to obtain an embedding of
the input shape in the spectral domain, in which the task at
hand is more easily carried out or the embedding itself pos-
sesses certain desirable properties. Thus, after obtaining the
eigendecomposition of a specific operator, the coordinates
of vertex i in a k-dimensional embedding are given by the
i-th row of matrix Vk = [v1, . . . ,vk], where v1, . . . ,vk are the
first k eigenvectors from the spectrum (possibly after scal-
ing). Whether the eigenvectors should be in ascending or de-
scending order of eigenvalues depends on the operator that is
being used. In the case of Gram matrices, eigenvectors cor-
responding to the largest eigenvalues are used to compute
spectral embeddings. While for the various Laplacian oper-
ators, the opposite end of the spectrum is considered.

For example, spectral clustering makes use of such em-
beddings. Ng et al. [NJW02] present a method where the
entries of the first k eigenvectors corresponding to the
largest eigenvalues of a normalized affinity matrix (see Sec-
tion 6.6.1) are used to obtain the transformed coordinates
of the input points. Additionally, the embedded points are
projected onto the unit k-sphere. Points that possess high
affinities tend to be grouped together in the spectral domain,

where a simple clustering algorithm, such as k-means, can
reveal the final clusters. Furthermore, the ability of the spec-
tral methods to unfold nonlinearity in the input data has been
demonstrated via numerous examples, including data sets
similar to the one shown in Figure 4.

7.3. Use of eigenprojections

The full set of eigenvectors can be used as a basis to project
a signal defined on a mesh into a different domain. If a set of
orthogonal eigenvectors are obtained by the eigendecompo-
sition of an operator and given by the columns of a matrix V ,
and a function defined on each vertex of the mesh is given by
a vector x, we can project the signal into the spectral domain
simply by

x̃ = V
⊺

x,

where x̃ contains the obtained spectral coefficients. For an
orthogonal set of eigenvectors, this can be seen as a change
of basis for the signal x. As well, the projection is energy-
preserving in the sense that the Euclidean 2-norm is pre-
served: ‖x̃‖2 = ‖x‖2. The inverse transform is obtained by

x = V x̃.

As in the case of Fourier analysis, the intuition is that
when the signal is transformed into the spectral domain, it
might be easier to carry out certain tasks because of the
relation of the coefficients to low and high frequency in-
formation. For example, when the signal considered is the
actual geometry of the mesh, the projections of the signal
with respect to the eigenvectors of the graph Laplacian can
be used for mesh compression [KG00]. That is, a set of
the transformed coefficients from the high-frequency end of
the spectrum can be removed without affecting too much
the approximation quality of the mesh, when it is recon-
structed by the inverse transform. For spectral watermark-
ing of meshes [OTMM01] however, it is the low-frequency
end of the spectrum that is to be modulated. This way, the
watermark is less perceptible and the watermarked mesh can
become resilient against such attacks as smoothing. We elab-
orate more on these in Section 9.3.

Note that the observation that the human eye is less sen-
sitive to low-frequency errors in geometric shape was first
made by Sorkine et al. [SCOT03] in their work on high-pass
quantization for mesh compression. This work, along with
related developments, has been described in details in a pre-
vious state-of-the-art report [Sor05].

8. Efficient computations

Since spectral methods all require the construction of a
mesh operator, which may be non-sparse [LZ04], as well
as its eigendecomposition, efficiency is a concern for large
meshes. To this end, we survey several speed-up techniques
that accelerate the eigendecomposition and reduce the O(n3)
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complexity of the problem, where n denotes the mesh size
(equivalently, dimensionality of the operator).

Methods that either compute a good approximation of the
eigenvectors or that explore the structure of a specific type of
matrices were proposed. When using a mesh Laplacian oper-
ator, it is natural to explore its sparse structure. One method
proposed to accomplish this task is described in Section 8.1,
which makes use of a multiscale approach. An alternative
to this method, which allows to compute a specific set of
eigenvectors, is to introduce a spectral shift into the opera-
tor. This can be combined with iterative methods to speed up
the computation, as described in more detail in Section 8.2.
On the other hand, to compute the eigendecomposition of
dense affinity matrices, the Nyström method [FBCM04] can
be employed. It is based on computing an approximation of
the eigenvectors given by a number of sampled elements, as
described in Section 8.3. Thus, it also avoids the construc-
tion of the full matrix describing the operator.

8.1. Exploring sparsity

Koren et al. [KCH02] propose ACE, from Algebraic multi-

grid Computation of Eigenvectors, a multi-scale method to
accelerate the computation of eigenvectors of Laplacian op-
erators. Multi-scale methods consist in two steps: coarsen-

ing and refinement. Basically, an initial high-dimensional
problem is progressively reduced to lower and lower dimen-
sions by applying a coarsening step, which creates less com-
plex instances of the problem. The exact solution of one
of these low-dimensional versions of the problem is then
computed. Furthermore, the refinement step progressively
translates the solution of the problem in lower dimensions
to higher ones, usually performing some adjustments to the
solution, until a solution to the problem in the original di-
mension is obtained.

However, the design of the coarsening and refinement
steps is usually application dependent, since both steps rely
on exploring a special feature of the problem being solved
and need to preserve the essence of the initial problem. In the
case of Laplacian operators, the sparsity of the related matri-
ces is what allows to speed up the computation of eigenvec-
tors by means of a multi-scale method.

To carry out the coarsening and refinement steps, the key
concept introduced by Koren et al. [KCH02] is that of an
interpolation matrix A, which is an n×m matrix that inter-
polates m-dimensional vectors y into n-dimensional ones x,
given by x = Ay. The interpolation matrix is employed to
obtain a coarsened Laplacian matrix given by Lc = A⊺LA,
where L is the original Laplacian. The same interpolation
matrix is then used for the refinement step, computing the
eigenvectors of the problem at higher and higher resolutions.

The interpolation matrix is created either by contracting
edges on the underlying graph, or by performing a weighted

interpolation of a node from several nodes in the coarser ver-
sion of the problem. The contractions or weighted interpola-
tions are what define the entries of the interpolation matrix,
which can be very sparse, when computed by the contrac-
tions, or less sparse but conveying a more accurate interpo-
lation, when weighted interpolations are used. Determining
which method should be preferentially used depends mainly
on whether the underlying graphs are homogeneous or not.

8.2. Spectral shift and iterative methods

Iterative algorithms compute the eigenvectors of large sparse
matrices in a more efficient manner [TB97]. However, these
methods only allow to obtain the leading eigenvectors of a
matrix. In order to compute eigenvectors associated to a spe-
cific set of eigenvalues, it is necessary to modify the eigen-
problem being solved. Dong et al. [DBG∗06] and Vallet and
Lévy [VL07] accomplish that by utilizing a spectral shift.

The original problem Lv = λv is modified to the form

(L−σI)v = (λ−σ)v

so that when this eigenproblem is solved, the eigenvectors
that are obtained correspond to eigenvalues close to σ. This
is valid due to the fact that, if v is an eigenvector of L with
associated eigenvalue λ, then it is also an eigenvector of L−
σI with associated eigenvalue λ−σ.

Moreover, to compute the eigenvectors associated with
the smallest eigenvalues instead of the leading ones, Val-
let and Lévy [VL07] also resort to the idea of swapping the
spectrum of a matrix by inverting it. This comes from the
observation that the leading eigenvalues of the eigenprob-
lem L−1v = (1/λ)v are the smallest eigenvalues of Lv = λv,
with the same set of eigenvectors v. This is combined with
the spectral shift to obtain the shift-invert spectral transform,
which can be used to split the computation of the eigenvec-
tors of large matrices into multiple bands. Each band can be
computed in linear time, and this process can be further ac-
celerated by the use of out-of-core factorization methods.

8.3. Nyström approximation

In order to compute the eigendecomposition of large affin-
ity matrices, one technique that can be used to approximate
the leading eigenvectors of sampled matrices is the Nyström
method [FBCM04]. Given a set of mesh vertices Z of size n,
whose affinities are given in the matrix W ∈ R

n×n, the first
step in Nyström’s method is to divide the set Z into a subset
of samples X of size l, with l ≪ n, and a subset Y of size m,
which contains the remaining points.

Next, the affinities between the points in the subsets X
and Y are stored in the matrices A ∈ R

l×l and C ∈ R
m×m,

respectively. The cross-affinities between points of X and Y
are stored in matrix B ∈ R

l×m. Thus, the matrix W can be
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written in the following block form

W =

[

A B

B⊺ C

]

.

After obtaining the eigendecomposition of the matrix A,
given by A = UΛU⊺, the columns of Ū , expressed below,
are the approximation for the l leading eigenvectors of W ,
that is, the l eigenvectors related to the largest eigenvalues.
Ū is given by Nyström’s method as

Ū =

[

U

B⊺UΛ−1

]

.

Therefore, only the affinities A between the sampled
points and the cross-affinities B need to be computed in order
to obtain the approximation. Moreover, the original matrix
W can be reconstructed by using the approximated eigen-
vectors. The approximation of W is given by

W̄ = ŪΛŪ
⊺ =

[

A B

B⊺ B⊺A−1B

]

.

The quality of this approximation is given by the quantity
‖W −W̄‖, which is equivalent to computing only the norm
of the Schur complement ‖C−B⊺A−1B‖. However, it is ex-
pensive to directly compute this quantity since it requires the
matrix C, which ideally contains the largest number of affin-
ity values and would imply O(n2) running time. Therefore,
methods that compute an indirect measure of the quality of
the approximation should usually be employed.

The overall complexity of this method is O(l3) for com-
puting the eigendecomposition of matrix A, and O(ml2) for
obtaining the approximated eigenvectors via extrapolation.
Therefore, the problem of computing the leading eigenvec-
tors is reduced from O(n3) to only O(ml2 + l3), recalling that
l ≪ n. In practical applications such as spectral image seg-
mentation [FBCM04], spectral mesh segmentation [LJZ06,
ZL05], and spectral shape correspondence [JZvK07] and re-
trieval [JZ07], l can be as small as less than 1% of n while
still ensuring satisfactory results.

Nevertheless, there are a few issues which emerge when
using the Nyström’s method. First of all, the approximated
eigenvectors are not orthogonal. Fowlkes et al. [FBCM04]
present two techniques to orthogonalize the obtained eigen-
vectors, depending on whether the affinity matrix A is pos-
itive definite or indefinite. However, these techniques may
introduce additional numerical errors on the approximated
eigenvectors. Moreover, the key factor for the accuracy of
the eigenvectors obtained by Nyström’s method is the sam-
pling technique that determines the subset X . Different tech-
niques were proposed for accomplishing this step of the
method, such as random sampling [FBCM04], max-min far-
thest point sampling [dST04], and greedy sampling based on
maximizing the trace of the matrix B⊺A−1B [LJZ06]. But
these schemes all judge the quality of a sampling by the ap-
proximation quality of the eigenvectors obtained, measured

by standard matrix norms, and they do not take into consid-
eration the application at hand.

9. Applications

In this section, we survey specific spectral methods. Al-
though our focus will be on spectral methods for mesh
processing and analysis, highly relevant and representative
problems and techniques from other fields will also be cov-
ered for completeness.

Let us first list in Table 1 the relevant references grouped
by applications. Most of these references will be discussed
in detail in subsequent sections. Others have been discussed
in other parts of the report, when appropriate.

Application References

Clustering [NJW02], [VM03], [BN03],
[KVV00], [vLBB05],
[vL06], [BH03], [MP04]

Graph drawing [Hal70], [PST00], [KCH02]
[DPS02], [Kor03]

Graph indexing [SMD∗05]
Graph matching [Ume88], [SB92], [CK04]
Graph partitioning [ST96], [SM97], [PF98],

[Wei99], [AKY99],
Matrix reordering [BPS93]
Mesh compression [KG00], [ZB04], [Zha04],

[BCG05]
Mesh parameterization [GGS03], [ZSGS04]
Mesh reordering [IL05], [LZvK06]
Mesh segmentation [LZ04], [KLT05], [ZL05]
Mesh smoothing [VL07]
Remeshing [DBG∗06]
Shape correspondence [JZ06], [JZvK07]
Shape indexing [EK03], [RWP06], [JZ07]
Surface reconstruction [KSO04]
Texture mapping [ZKK02]
Watermarking [OTMM01], [OMT02]

Table 1: Applications addressed by spectral methods.

9.1. Use of eigenvalues

Although most applications in the field of geometry pro-
cessing employ eigenvectors to accomplish different tasks,
eigenvalues have been successfully used to address certain
problems, such as graph and shape indexing.

• Graph indexing:

The use of graph spectra for indexing is well known in
computer vision and machine learning, e.g., see a re-
cent comparative study [ZW05]. Recently, Shokoufan-
deh et al. [SMD∗05] make use of eigenvalues for index-
ing graphs that represent hierarchical structures, such as
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shock graphs that define image silhouettes. The eigenval-
ues provide a measure indicating which graphs are similar
and should be compared with a more expensive matching
algorithm. Basically, the index is defined as the sum of
eigenvalues of the adjacency matrix of the graph, which
allows to obtain a low-dimensional index. However, in or-
der to also reflect local properties of the graph, one term
corresponding to the sum of eigenvalues is stored for each
subtree of the graph.

• Shape indexing:

For 3D shape indexing, Jain and Zhang [JZ07] propose
to use the leading eigenvalues of an affinity matrix con-
structed using approximated geodesic distances over the
shape surfaces. The similarity between two models is
given by the χ2-distance between the selected k eigen-
values of the two models, where k is usually very small,
for example, 6. This comparison between the first eigen-
values intuitively corresponds to comparing the variation
of the models in each of the first k nonlinear princi-
pal components. As argued before, the bending invari-
ance of geodesic distances should facilitate the retrieval
of articulated shapes. This has indeed been confirmed
by their experiments on the McGill articulated shape
database [McG]. The simple eigenvalue-based descrip-
tor did outperform two of the best shape descriptors, the
spherical harmonics descriptor [MKR03] and the light
field descriptor [CTSO03], even when they are applied to
the bending-normalized spectral embeddings.

9.2. Use of eigenvectors

In this section, we survey eigenvector-based methods and
classify them according to the dimensionality of the spec-
tral embeddings used.

9.2.1. 1D embedding

Embedding in one dimension consists in producing a linear
sequence of mesh elements based on the order given by the
entries of one eigenvector. The Fiedler vector has been ex-
tensively used in a number of different applications to obtain
a linear ordering of mesh vertices or faces. However, other
applications also select different eigenvectors to obtain a lin-
ear sequencing of mesh elements.

• Sparse matrix reordering:

Barnard et al. [BPS93] use the Fiedler vector to reduce
the envelope of sparse matrices. By reordering a matrix
and optimizing its envelope, the locality of its elements is
increased and the the resulting matrix will become more
“banded”. Several numerical algorithms would improve
their performance when applied to the reordered matrix.
The Fiedler vector is selected due to its property of mini-
mizing the 2-sum in a continuous relaxation of the prob-
lem [MP93].

• Mesh sequencing:

Isenburg and Lindstrom [IL05] introduce the concept
of streaming meshes. The idea is to process very large
meshes that do not fit in main memory by streaming its
components, i.e., transferring blocks of vertices and faces
in an incremental manner from the hard disk to main
memory and back. In this sense, it is highly desirable that
the order in which the vertices and faces are traversed pre-
serves neighboring relations the most, so that only a small
number of mesh elements have to be maintained simulta-
neously in main memory. Therefore, one of the possibili-
ties to obtain such a streaming sequence is also to employ
the Fiedler vector to order the vertices and faces of the
mesh, which provides a linear sequence that heuristically
minimizes vertex separation.

In this context of obtaining a good ordering of mesh
elements, Liu et al. [LZvK06] investigate how the embed-
dings given by an eigenvector of an affinity matrix dif-
fer from the ones given by the Laplacian matrix or other
possible heuristics. These embeddings are evaluated in
terms of various measures related to the interdependence
of mesh elements, the best known ones being span and
width of vertices and faces. Experiments show that the
embeddings given by the affinity matrix provide a better
trade-off between these two measures, when compared to
other approaches.

• Image segmentation:

In the case of image segmentation, instead of the Fiedler
vector, the eigenvector related to the largest eigenvalue
of an affinity matrix has also been used in a great num-
ber of works, since it essentially provides a heuristic
method for obtaining satisfactory graph partitions [ST96].
Weiss [Wei99] presents a unified view of four well-known
methods that follow this approach, such as the work of Shi
and Malik [SM00] and Perona and Freeman [PF98].

These methods firstly define an affinity matrix W

based on the distances between pixels in the image, which
are seen as nodes in a graph. Next, the eigenvector related
to the eigenvalue that is largest in magnitude or, equiva-
lently, the second smallest eigenvector, in the case of the
method of Shi and Malik [SM00], is computed. In the lat-
ter case, the matrix considered is the non-sparse Lapla-
cian D−W . Finally, the entries of this specific eigenvec-
tor are used to convey a partition of the pixels into two
groups. Either the signs of the entries of the eigenvector
or a thresholding of these entries is used to obtain a bi-
nary partition of the pixels. The essence of this approach
is that this specific eigenvector is a continuous solution
to the discrete problem of minimizing the normalized cut
between two sets of nodes in a graph.

• Spectral clustering for surface reconstruction:

Kolluri et al. [KSO04] follow basically the same approach
for the reconstruction of surfaces from point clouds. Af-
ter constructing a Delaunay tetrahedralization based on
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(a) (b) (c)

Figure 8: Generating a quadrangulation of a model (Im-

ages generated by Dong et al. [DBG∗06]): (a) An adequate

eigenfunction is selected. (b) The Morse-Smale complex is

extracted. (c) The quadrangulation is constructed.

the input points, the tetrahedra are divided into two sets
by a spectral graph partitioning method, which provides
the indication of which tetrahedra are inside of the origi-
nal object and which are outside. Finally, this labeling of
tetrahedra defines a watertight surface. The partitioning of
the tetrahedra is also given by the signs of the entries of
the smallest eigenvector of a pole matrix, which is similar
to a Laplacian.

• Mesh segmentation:

In a different setting, Zhang and Liu [ZL05] propose a
mesh segmentation approach based on a recursive 2-way
spectral clustering method. An affinity matrix encodes
distances between mesh faces, which are a combination
of geodesic and angular distances, that provide informa-
tion for a visually meaningful segmentation. Next, only
the first two largest eigenvectors are computed. This pro-
vides a one-dimensional embedding of faces given by the
quotient of the entries of the two eigenvectors. Finally, the
most salient cut in this embedding is located, given by a
part salience measure. The cut provides a segmentation
of the faces into two parts. This process is recursively re-
peated in order to obtain a hierarchical binary partitioning
of the mesh.

• Spectral mesh quadrangulation:

Dong et al. [DBG∗06] propose to use one specific eigen-
vector of the geometric Laplacian to guide a remeshing
process. Firstly, a suitable eigenfunction of the mesh has
to be selected, which possesses a desired number of criti-
cal points. The critical points are points of minima, max-
ima, or saddle points. Next, the Morse-Smale complex is
extracted from the mesh based on this eigenvector. The
complex is obtained by connecting critical points with
lines of steepest ascend/descend, and partitions the mesh
into rectangular patches, which are then refined and pa-
rameterized, conveying a quadrangular remeshing of the
original model. The whole process can be seen in Fig-
ure 8.

One of the key points of this method is in selecting an
eigenfunction that provides an adequate partition of the
mesh. This is achieved by computing all the eigenvectors
of a simplified version of the mesh, choosing from these
eigenvectors the most suitable for the remeshing task, and
then computing the corresponding eigenvector in the full-
resolution mesh by applying a spectral shift to the under-
lying matrix.

9.2.2. 2D and 3D embeddings

Instead of using only one eigenvector given by the eigende-
composition of a specific operator, the next possible step is
to use two or three eigenvectors, to obtain a planar or three-
dimensional embedding of the mesh.

• Graph drawing:

Methods that provide such embeddings have been suc-
cessfully applied in the field of graph drawing, where the
main goal is to obtain a disposition of nodes and edges on
a plane or volume which looks organized and is aesthet-
ically pleasing. Early graph drawing algorithms already
proposed to use the Laplacian matrix, as in the work of
Tutte [Tut63], whose method actually dates back to the
work of Fáry [Far48]. However, in Tutte’s method, the
eigenvectors of the Laplacian matrix are not computed.
Instead, the positions of the nodes of a graph are obtained
by solving a linear system based on this matrix.

However, Hall [Hal70] later proposed to use the eigen-
vectors of the Laplacian matrix to embed the nodes of
a graph in a space of arbitrary dimension. The entries
of the k eigenvectors related to the first smallest non-
zero eigenvalues are used as the coordinates of a node
(a k-dimensional embedding). This method has been re-
cently applied in different domains to provide planar em-
beddings of graphs. For example, Pisanski and Shawe-
Taylor [PST00] use this method to obtain pleasing draw-
ings of symmetrical graphs, such as fullerene molecules in
chemistry. Koren et al. [KCH02, Kor03] employ the ACE
algorithm (Section 8.1) to accelerate Hall’s method in or-
der to obtain drawings of large graphs.

• Planar mesh parameterization via MDS:

Zigelman et al. [ZKK02] use a variant of MDS to obtain
a planar embedding of a mesh and then map a given tex-
ture on this planar surface. In this work, a geodesic dis-
tance matrix is computed by fast marching. Next, the ma-
trix is centered and its eigendecomposition is computed.
The two eigenvectors which are related to the two largest
eigenvalues are used to provide a planar embedding of the
mesh. The flattening that is obtained heuristically mini-
mizes distortions, which is one of the desired properties
in the case of texture mapping. However, no assurance is
provided to prevent triangle fold-overs.

Following a similar approach, Zhou et al. [ZSGS04]
employ MDS based on geodesic distances to obtain a pa-
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(a) (b) (c)

Figure 9: Spherical parameterizations (Images generated

by Gotsman et al. [GGS03]) of the model shown in (a): using

the Tutte Laplacian in (b), and conformal weights in (c).

rameterization and then a chartification of a given mesh.
By growing patches around representative points, which
are determined according to the spectral embedding, the
mesh is divided into charts. The representatives that are
selected are points that are well-spaced over the mesh and
that are also points of minima or maxima, according to
their coordinates in the spectral embedding.

• MDS for mesh segmentation:

MDS is also used by Katz et al. [KLT05] to perform seg-
mentation of meshes, due to its potential of obtaining
a pose-invariant embedding of a mesh. Three eigenvec-
tors are selected to obtain a 3D embedding. Next, feature
points are located in this normalized space, which guide
the segmentation algorithm that partitions the mesh into
meaningful parts.

• Spherical mesh parameterization:

Gotsman et al. [GGS03] describe how a spherical param-
eterization of a mesh can be obtained from the eigenvec-
tors of Colin de Verdiere matrices. Each graph has a class
of these matrices associated with it. By using the entries
of three eigenvectors of such a matrix as the coordinates
of the mesh vertices, a valid spherical embedding is ob-
tained. By solving a non-linear system based on a Lapla-
cian or a similar operator, a Colin de Verdiere matrix is
generated and the three eigenvectors that give the valid
embedding (which are associated to repeated eigenvalues)
are simultaneously computed. One spherical parameteri-
zation obtained by this method can be seen in Figure 9.

• Mesh segmentation:

Recently, Liu and Zhang [LZ07] propose a mesh seg-
mentation algorithm via recursive bisection where at each
step, a sub-mesh embedded in 3D is spectrally projected
to 2D and then a contour is extracted from the planar em-
bedding. Two operators are used in sequence to compute
the projection: the well-known graph Laplacian and a geo-
metric operator designed to emphasize concavity. The two
embeddings reveal distinctive shape semantics of the 3D
model and complement each other in capturing the struc-
tural or geometrical aspects of a segmentation. Transform-
ing the shape analysis problem to the 2D domain also fa-

cilitates segmentability analysis and sampling, where the
latter is needed to identify two samples residing on dif-
ferent parts of the sub-mesh. These two samples are used
by the Nyström method in the construction of a 1D face
sequence for finding an optimal cut, as in [ZL05].

9.2.3. Higher-dimensional embedding

Since a set of n eigenvectors can be obtained from the eigen-
decomposition of an n× n matrix, it is natural to intend to
use more eigenvectors simultaneously to extract more infor-
mation from the eigendecomposition.

• Clustering and mesh segmentation:

One of the most well-known techniques in this re-
gard is spectral clustering [BN03, KVV00, NJW02].
Interested readers should refer to the recent survey by
Luxburg [vL06] and the comparative study by Verma and
Meilă [VM03]. The approach by Ng et al. [NJW02] has
already been outlined in Section 7.2. Other approaches
differ only slightly from the core solution paradigm, e.g.,
in terms of the operator used and the dimensionality of the
embedding. Some works, e.g., [AKY99, NJW02, VM03],
seem to suggest that clustering based on multiple eigen-
vectors tends to produce better results compared with
recursive approaches using single eigenvectors.

Although the reasons for the empirical success of
spectral clustering are still not fully understood, Ng et
al. [NJW02] provide an analysis in terms of matrix per-
turbation theory to show that the algorithm is expected
to work well even in situations where the cluster struc-
ture in the input data is far from an ideal case. There are
other possible interpretations of spectral clustering, e.g.,
in terms of graph cuts or random walks [vL06].

The ubiquity of the clustering problem makes spec-
tral clustering an extremely useful technique. Besides
the work of Kolluri et al. [KSO04] mentioned in Sec-
tion 9.2.1, Liu and Zhang [LZ04] perform mesh segmen-
tation via spectral clustering. Basically, an affinity matrix
is constructed as in [ZL05]. Next, the eigenvectors given
by the eigendecomposition of this matrix guide a cluster-
ing method, which provides patches of faces that define
the different segments of the mesh returned by the seg-
mentation algorithm. It is shown by example that it can
be advantageous to perform segmentation in the spectral
domain, e.g., in terms of higher-quality cut boundaries as
evidenced by the Polarization Theorem (Theorem 5.6 in
Section 5). The downside however is the computational
cost. In a follow-up work [LJZ06], Nyström approxima-
tion is applied to speed-up spectral mesh segmentation.

• Shape correspondence and retrieval:

Elad and Kimmel [EK03] use MDS to compute bending-
invariant signatures of meshes. Each entry of the distance
matrix is defined as the geodesic distance between two
nodes on the surface, computed by fast marching. The
idea behind this approach is that the eigenvectors of this
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affinity matrix allow to embed the mesh in a space where
geodesic distances are reproduced by Euclidean distances.
As well, bending transformations are removed in the spec-
tral domain. The similarity between two shapes is then
given by the Euclidean distance between the moments of
the first few eigenvectors, usually less than 15, and these
similarity distances can be used for shape classification.

Motivated by works on spectral point corre-
spondence [SB92] from computer vision, Jain and
Zhang [JZvK07] rely on higher-dimensional embeddings
based on the eigenvectors of an affinity matrix to obtain
point correspondence between two mesh shapes. The
first k eigenvectors of the affinity matrix encoding the
geodesic distances between pairs of vertices are used to
embed the model in a k-dimensional space. After this
process is performed for two models, the two embeddings
are non-rigidly aligned via thin-plate splines and the
correspondence between the two shapes is given by
the proximity of the vertices after such alignment. Any
measure for the cost of a correspondence, e.g., sum of
distances between corresponding vertices, can be used as
a similarity distance for shape retrieval.

One of the key observations made in [JZvK07] is
the presence of “eigenvector switching”, meaning that the
eigenmodes of similar shapes do not line up with respect
to the magnitude of their corresponding eigenvalues. This
is illustrated in Figure 10. As a result, it is unreliable to
sort the eigenvectors according to the magnitude of their
respective eigenvalues, as has been done in all works on
spectral correspondence so far.

• Graph matching:

Generally speaking, graphs are commonly used to model
shape structures, e.g., skeletal graphs [SSGD03], shock
graphs, or Reeb graphs [HSKK01]. The subsequent graph
matching problem is well studied in the computer vision
community, where a number of spectral approaches have
been proposed, e.g., [Ume88, CK04], adding a geometric
flavor to the problem. As a basic framework, a graph ad-
jacency matrix, which may only encode topological infor-
mation, is eigendecomposed, whereby the graph nodes are
mapped into a low-dimensional vector space. The match-
ing problem is solved in the embedding space.

9.3. Use of eigenprojections

Instead of directly using the entries of the eigenvectors to
provide an embedding for a given model, the eigenvectors
can also be used as a basis to transform signals defined on
the vertices of the mesh. One example of such a signal is
the actual geometry of the mesh (the 3D coordinates of its
vertices). The set of eigenvectors given by the eigendecom-
position can be used to project these signals into the spectral
space, where a specific problem might be easier to solve.

• Geometry compression:

Karni and Gotsman [KG00] propose this approach to
compress the geometry of triangle meshes. Firstly, the set
of eigenvectors of the Tutte Laplacian is computed. Next,
the geometry of the mesh is projected into the spectral
space according to the orthogonal basis given by the com-
puted eigenvectors. Moreover, part of the coefficients ob-
tained by this transformation is eliminated in order to re-
duce the storage space required for the geometry of the
mesh. The coefficients related to the eigenvectors asso-
ciated to larger eigenvalues are firstly removed, which
would correspond to high frequency detail, when follow-
ing an analogy with Fourier analysis. The exact number of
coefficients that is eliminated is given by the impact of the
compression on the quality of the mesh, after the inverse
transformation is performed.
The main drawback of this method is that all eigenvectors
need to be computed, so that the projection can be per-
formed. Since in practice it is only feasible to compute
the full set of eigenvectors for small matrices, Karni and
Gotsman propose to partition the mesh into smaller sets
of vertices. Although that alleviates the problem of com-
puting the eigenvectors for large matrices, it still requires
a good partitioning of the mesh for the efficiency of the
compression, and artifacts along the partition boundaries
are evident when higher compression rates are employed.

• Watermarking:

Ohbuchi et al. [OTMM01, OMT02] also employ the
eigenprojection approach, to insert watermarks into tri-
angle meshes. However, in this method, the eigenvectors
of the Kirchhoff operator are used as the basis for the
projection. After transforming the geometry of the mesh
and obtaining the spectral coefficients, a watermark is
inserted into the model by modifying coefficients at the
low-frequency end of the spectrum. In this way, mod-
ifications on the geometry of the mesh are well-spread
over the model and less noticeable than if they were
directly added to the vertex coordinates. This method also
requires the computation of eigenvectors of the Laplacian
operator, which is prohibitive in the case of large meshes.
Mesh partitioning is again used to address this problem.

• Fourier descriptors:

2D Fourier descriptors have been quite successful as a
means to characterize 2D shapes. Using eigendecompo-
sition with respect to the the mesh Laplacians, one can
compute analogous Fourier-like descriptors to describe
mesh geometry. However, we have not seen such mesh
Fourier descriptors being proposed for shape analysis so
far. There have been methods, e.g., [VS01], which rely on
3D Fourier descriptors for 3D shape retrieval. In this case,
the mesh shapes are first voxelized and 3D Fourier de-
scriptors are extracted from the resulting volumetric data.
We suspect that the main difficulties with the use of mesh
Fourier descriptors for shape matching include computa-
tional costs and the fact that when the eigenmodes vary
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Figure 10: Eigenvector plots for two similar shapes, both with 252 vertices. The entries in an eigenvector are color-mapped. As

we can see, there is an “eigenvector switching” occurring between the fifth and sixth eigenvectors. Such “switching” is difficult

to detect from the magnitude of the eigenvalues. The first 8 eigenvalues for the two shapes are [205.6, 11.4, 4.7, 3.8, 1.8, 0.4,

0.26, 0.1] and [201.9, 10.9, 6.3, 3.4, 1.8, 1.2, 0.31, 0.25], respectively.

between the two mesh shapes to be matched, it becomes
doubtful whether their associated eigenspace projections
can serve as reliable shape descriptors.

10. Conclusion and discussions

In this report, we describe, motivate, and classify spectral
methods for mesh processing and analysis. Related and rep-
resentative developments from other fields, e.g., computer
vision and machine learning, are also covered. Necessary
theoretical background and illustrative examples are both
provided to facilitate understanding of the various concepts.
Finally, we give a detailed survey of specific spectral meth-
ods developed to solve a diversity of problems.

From a theoretical standpoint, we are still missing an ade-
quate sampling theory for signals defined over 2-manifolds.
We envision this theory to be one whose results and analysis
tools resemble those from the theory of sampling and re-
construction in the regular setting using Fourier transforms.
Fundamental questions concerning the proper definition of
concepts such as frequencies, band-limited signals, shift-
invariance, etc., should be addressed.

Take the concept of frequency for example. Our general
belief is that eigenvalues of the mesh Laplacian represent
frequencies. However, eigenvalues are only able to indicate
global properties of the manifold or global properties of the
associate eigenfunctions. The variability of eigenfunctions
having the same or similar eigenvalues implies that eigenval-
ues alone cannot provide sufficient characterization of their
related eigenfunctions. This has been the case when we seek
a proper ordering of the eigenvectors in order to facilitate
robust spectral shape correspondence [JZvK07]. The situa-
tion described here differs from the classical case, where the
eigenfunctions all follow regular vibration patterns and fre-
quencies alone would provide adequate characterization.

Ideally, we would like to find additional characteris-
tic measures for the eigenfunctions. This, for example,
might help us more easily locate the right eigenvector for
deriving a high-quality surface quadrangulation automat-
ically [DBG∗06]. As Lévy [Lev06] has eloquently put,
Laplace-Beltrami eigenfunctions (or eigenfunctions of other
geometric mesh operators) appear to “understand” geome-
try. However, it is not necessarily easy to interpret what the

eigenfunctions are presenting to us. A better understanding
of the eigenvectors and how they relate to the shape of the
underlying manifolds would certainly spark new research
and allow for improvements in the spectral methods.

Other theoretical studies concerning mesh operators and
their eigenstructures include convergence analyses for geo-
metric mesh Laplacians (as in [Xu04]), analyses on the sen-
sitivity of the eigenstructures against shape or connectivity
variations (as in [DZM05]), as well as studies on sampling
for Nyström approximation. In this setting, as for the de-
velopment of a sampling theory, we are concerned with the
interplay between the continuous and the discrete settings.

Moreover, a generalization of the Laplacian operators to
Schrödinger operators allows to consider a new class of pos-
sible operators. However, it is not clear how to easily con-
struct specific instances of these operators in an efficient
manner, e.g., the Colin de Verdiére matrices for spherical
mesh parameterization [GGS03], or to explicitly design such
an operator having the property that it is optimal for a spe-
cific application, e.g., compression or segmentation.

Another wide avenue for further research is the study of
the theoretical aspects of spectral clustering algorithms. First
of all, the reason for the good results obtained by these algo-
rithms is still not completely understood. Fortunately there
exist a number of studies and analyses which elucidate cer-
tain properties responsible for the exceptional behavior of
these algorithms, e.g., [vL06]. These studies might serve as
a starting point to explain the functioning of spectral cluster-
ing and lead to ideas for more complete explanations. Addi-
tionally, other aspects, such as how to select the dimension-
ality of the spectral embeddings or how to construct affin-
ity matrices more suitable for specific applications, e.g., for
proper handling of part stretching in shape characterization,
still require further attention.
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