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Figure 1: An object moves fast across the screen. The top row shows the type of image that is sent to the projector. The bottom
row shows photos with 1/50s exposure time, with the camera following the object motion, similar to a human eye tracking the
object. a) and d) show conventional rendering at 60 frames/second (fps). A double image with color fringes is the result. b) and
e) show how motion blur reduces these artefacts, however, the object is blurred. ¢) and f) show our approach with 120 fps and
temporal correction per color, leading to a much sharper object without color fringes.

Abstract

Single-chip color DLP projectors show the red, green and blue components one after another. When the gaze
moves relative to the displayed pixels, color fringes are perceived. In order to reduce these artefacts, many devices
show the same input image twice at the double rate, i.e. a 60Hz source image is displayed with 120Hz.
Consumer stereo projectors usually work with time interlaced stereo, allowing to address each of these two images
individually. We use this so called 3D mode for mono image display of fast moving objects. Additionally, we
generate a separate image for each individual color, taking the display time offset of each color component into
account. With these 360 images per second we can strongly reduce ghosting, color fringes and jitter artefacts on
fast moving objects tracked by the eye, resulting in sharp objects with smooth motion.

Real-time image generation at such a high frame rate can only be achieved for simple scenes or may only be
possible by severely reducing quality. We show how to modify a motion blur post processing shader to render only
60frames/second and efficiently generate good approximations of the missing frames.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

In many settings, projectors are a desirable type of display.
However, they still suffer from problems such as low lumi-
nance and high lamp replacement cost, preventing a wider

use. However, there is a growing market for home cinema
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and gaming. A recent interest in 3D movies brought time in-
terlaced stereo capability to some entry level consumer pro-
jectors with NVIDIA’s 3D Vision [NVI]. The users wear LC
shutter glasses to see the correct image with each eye. These
projectors also allow us to improve the display of fast mov-
ing objects.
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Such objects moving on a display screen with a relative
speed of more than 1pixel/frame may appear blurred and
lead to slightly visible stuttering motion. This is especially
the case for objects with predictable motion that are tracked
by the human eye. On a typical consumer monitor or projec-
tor this effect is well visible, even with 60 frames/second.

Frame interpolation has gained attention with growing im-
age processing power available on consumer displays and
high definition TVs. Also here, the display of fast motion,
e.g. in sports footage, suffers from the relatively low update
rates. This effect is sometimes reduced by intelligent pro-
cessing in the display device that insert one or more inter-
polated frames per source frame. However, artefacts occur
especially at object borders. In addition, it seems to be much
a personal preference whether the presence of interpolated
frames is regarded as pleasing or not.

In Virtual Reality image generation, additional informa-
tion can be stored along with the frame buffer and can be
used to reduce artefacts. For offline production, videos can
be rendered with 360frames/second and easily converted
into a motion color corrected 120Hz mono or 60Hz stereo
movie. The playback of this preprocessed movie on a match-
ing projector results in much sharper moving objects and
smoother motion. For real time rendering, we also explore
how to reduce computation cost by using a shader similar to
a motion blur shader in order to generate six frames out of
one source frame.

2. Related Work
2.1. DLP Projectors and Modifications

Digital Light Processing (DLP) projectors use deformable
mirrors to influence the direction of the reflected light for
each pixel [Hor90]. Variations in brightness are achieved
via pulse width modulation with high speed binary patterns.
Single-chip projectors show the colors sequentially, one af-
ter another. With an incandescent light source, a color wheel
(see Figure 3b) is used to only pass through the respective
color. LED (or Laser) projectors can simply turn on the re-
quired light source at the correct time and do not need a
color wheel. Usually, single-chip DLPs are used in entry
level consumer products. In contrast, professional DLP pro-
jectors with a high light throughput often use three chips,
one for each color component, displaying each color at the
same time. Our technique requires single chip stereo projec-
tors, as it takes advantage of the time offsets between the
colors. Furthermore, the images for each color wheel cycle
must addressed individually, which means that it must be a
3D (or 120 Hz capable) device.

Raskar et al. removed the color wheel and modified the
firmware of a single-chip DLP projector to project patterns
imperceptible to the human eye but visible to a synchronized
camera image for 3D acquisition [RWC*98]. Cotting et al.
achieve this without projector modifications by measuring

and cleverly using mirror flip sequence timing [CNGF04].
Nguyen et al. also removed the color wheel of such a pro-
jector for high speed real time 3D capturing [NW10]. Multi
viewer stereo display setups likewise profit from the time in-
terlaced signals and use multiple projectors, modified color
filters and glasses [MBCSO01], [KKB*11].

2.2. Temporal Frame Interpolation

Temporal frame interpolation is used for high quality frame
rate conversion, e.g. for slow motion special effects or to
avoid the telecine (2-3 pull-down) problems of judder or
mixed frames. Examples of such algorithms are presented
in [AtLBCAOQ2] and [WPUB11].

Frame interpolation is also commonly used in video com-
pression [LGI91], [KKJK99]. The idea is to transmit frames
at a lower frame rate. The missing intermediate frames are
generated by interpolation. For those frames, only the dif-
ference to the interpolated image is transmitted, usually re-
sulting in higher compression. In some cases, this is block
based and does not necessarily represent actual motion but
may point to a different but similar looking region in the im-
age.

High resolution TV displays can often display at higher
frame rates than what the source material offers. In some
models, one or three intermediate frames are generated for
each source frame for a smoother motion (see Figure 2d,
here shown for a single-chip DLP projector). The filtering
also includes a motion blur reduction. However, artefacts at
object boundaries are common and let many users disable
this feature.

2.3. Frame Duration

Another possibility for smoother motion is black frame in-
sertion (see Figure 2g), equivalent to the 180 degree shut-
ter that is traditionally used in movie projectors. The light
source can be modulated to achieve this effect, fast enough
to avoid flickering. A combination of frame interpolation and
black frame insertion is possible (see Figure 2h).

2.4. High Frame Rate Movies

Video capture systems for very high frame rates exist but
are mostly used for inspection or special effects slow motion
footage. At the time of writing (2012), the movie and pro-
jector industries prepare for high frame rates (HFR), mean-
ing 48 and 60 full frames/second (fps) (Christie, [CDSU12])
or 96fps and 2 x 60fps (Sony). The intentions are to avoid
problems with camera motion for 3D movies, to enable the
use of faster camera motion and to provide a quality advan-
tage compared to watching movies at home. A low cost re-
placement of the integrated media board in the projectors is
promising for a wide adoption of the technology in the cine-
mas.
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Figure 2: A white object moving over time. The ideal motion is shown in a) and is indicated by the dotted lines in b) to h).
The deviation of this ideal motion shows the amount of ghosting and color fringes. b) Conventional rendering with 60 fps on a
typical single-chip DLP projector. ¢) With motion blur. d) 1x frame interpolation. e) Our approach. f) Three-chip DLP showing
colors simultaneously. g) Black frame insertion. h) A combination of 1x frame interpolation and black frame insertion.
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Figure 3: a) A white square moving fast to the bottom right, to be displayed on a projector. b) A typical color wheel of a
single-chip DLP projector. ¢) Display options on such a projector. Each color channel is displayed one after another (from
left to right). The black frames represent the here unused clear segment. Top row: conventional rendering without motion blur.
With a 60 Hz source rate displayed at 120 Hz the object jumps. Middle row: With motion blur, the object appears very blurred.
Bottom row: our approach on a 60Hz stereo projector providing 120Hz in mono, also taking the color timing into account,

resulting in a much sharper object with smooth motion.

2.5. Motion Blur

Computer generated images are usually rendered for a single
moment in time. For animation sequences or sometimes for
still images, motion blurred images are computed. This can
be an artistic choice, mimicking a real camera, or can be used
to avoid stuttering motion artefacts. Motion blur can eas-
ily be integrated in a stochastical renderer, spreading sam-
ples over the exposure time. Another approach is to compute
many complete frames during the exposure time and use the
average of all frames as result. However, in both cases ren-
dering time may increase significantly when using enough
samples to avoid ghosting artefacts or too large amounts of
noise. In order to reduce the cost for motion blur, faster 2D
approximations are often used, such as in [NeuO7] by Neu-
lander et al. In addition to the color buffer, their algorithm
uses a per-pixel velocity buffer and the depth buffer which
are generated during the 3D rendering. The color buffer val-
ues are spread along a linear path according to the velocity
buffer, as long as they are not covered by pixels which are
in front. Ghosting effects can be partially compensated by
jittering the animation time per pixel. A similar technique
can also be used for real-time rendering. A recent example
is the algorithm by McGuire et al. [MHBO12] who manage
to quickly produce images with little artefacts. They con-
vert the scatter algorithm into an efficient gather algorithm
by first finding the maximum velocity in the neighborhood
of each pixel. Along this direction, all samples are collected
that are projected onto that pixel and are not behind the ac-
tual surface (see Section for details). Even though there are
some approximations and restricting assumptions, the results
are impressive.

Likewise, stop motion movies profit from artificial motion
blur that is added in post production [BEO1]. As velocity and
depth information are not available, they must be estimated
using optical flow and other heuristics.

2.6. Constant Frame Rate Rendering

Our algorithm only works when the scene can be rendered
at a sufficient frame rate. In our case we ultimately need
3601fps. Binks et al. show how to achieve an optimized qual-
ity rendering with a constant frame rate by rendering to an
intermediate buffer of a variable size, called Dynamic Res-
olution Rendering [Binl1]. When the rendering of the con-
tent is fast, a larger viewport is used and downsampled to the
frame buffer for antialiasing. When rendering takes long, the
viewport size is decreased to compensate for the slow ren-
dering and the image is upscaled to fill the frame buffer.

2.7. Spatial Subsampling

ClearType by Microsoft [Pla00], [PKH*00] is used for font
rendering on LCD screens. It takes the subpixel structure
of the monitor into account to reduce stair case artefacts on
edges. The basic idea is very much related to our approach,
but while ClearType operates in the spatial domain, we em-
ploy temporal subsampling.

3. Rendering at 360 fps vs. 60 fps

When the gaze moves relative to the image of a single-chip
DLP projector, color fringes are perceived at edges in the
content or at the screen edges, so called rainbow artefacts. To
reduce such artefacts, the complete color cycle is usually dis-
played at least twice during the frame time. However, when
the eye tracks a moving object, this leads to ghosting in addi-
tion to the rainbow effect, as one image is always behind and
one in front of the actual position. Three-chip movie projec-
tors also show each frame twice or three times to avoid flick-
ering and also suffer from ghosting, thereby limiting the type
of motion in the content which can be displayed without this
artefact.

(© The Eurographics Association 2012.
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While the movie industry may move from 24 {ps to 48 or
601ps, does it really make sense to use a significantly higher
frame rate? We argue that indeed, especially with higher res-
olution it makes sense because the same motion results in a
higher speed per pixel at a higher resolution. As an exam-
ple, a horizontal camera pan with 6 pixels per 1/60s on the
screen at a resolution of 1280 x 720 means an image fea-
ture is visible for 3.5s, clearly long enough to be tracked
by the human eye. Motion blur can hide these artefacts but
the objects appear blurred. At 360fps the speed is 1 pixel
per 1/60s, the scene appears considerably sharper and color
fringes disappear on moving objects tracked by the eye (see
Figure 1).

For time sequential stereo projection, entry
level consumer projectors can be used to display
2 x 60images/second or directly 120images/second.
Many color wheels include a small clear segment for
increased brightness in presentations (see Figure 3b). How-
ever, the intensity for this channel is generated internally out
of the RGB information. This option, also known as white
boost, can often be turned off for better color reproduction.
In this case, each individual displayed color channel can be
addressed and used to display 360images/second.

3.1. Motion Blur

Fast moving objects should exhibit motion blur for the dura-
tion of their display, i.e. 1/360s in our case. However, very
fast objects, especially repeating patterns like fence struc-
tures or a rotating wheel that are not tracked by the eye any
more, should not be color corrected. As the eye does not
move along the object motion, this would introduce color
fringes rather than avoiding them. As this depends on the
scene content, we suggest to empirically test and use a max-
imum velocity threshold to apply a color offset. If the veloc-
ity for the individual pixel is above the threshold, standard
motion blur with 1/120s can be used.

3.2. Exact Timing

So far we used the simplifying assumption that each color is
shown for the same duration of 1/360s. However, as already
mentioned, color wheels usually contain clear segments and
show colors for different durations (again, see Figure 3b).
This can be taken into account by adjusting the time offset
accordingly. Also, as shown in [CNGF04], mirror flip se-
quences may be biased leading to a temporal shift especially
for medium brightness values. This is harder to compensate
for, as the output value determines the time offset to compute
this value. In our projector this does not seem to be the case.
In some of our tests we only use the simplified assumption of
evenly spaced offsets and achieve reasonably good results.

To find the timing information for our projector, we did
not want to open the case and measure the color wheel seg-
ments. Instead, we take a photo of the projector light, quickly

(© The Eurographics Association 2012.

Figure 4: Photos of the projector light to find the color tim-
ing, quickly moving/rotating the camera from the right to
the left, here with 1/20s exposure time. Top: A photo of
the projector lens. Bottom: Photo of a thin vertical screen il-
luminated by the projector with a gray gradient reveals the
mirror flip sequence patterns. The color offsets can easily be
read out to sufficient accuracy, here 0.0, 0.32 and —0.2 times
the frame duration for red, green and blue respectively.

rotating the camera (see Figure 4). The offsets can easily be
measured with sufficient accuracy.

Our projector, an Optoma GT750, shows first blue, then
red, then green. It employs the NVision stereo system by
NVidia and shows the image for the left eye first.

4. Implementation

Depending on the system setup, it should be either possi-
ble to directly display images with 120f{ps or alternatively to
show stereo images with 60 fps.

4.1. Offline Rendering

For computer generated, precomputed imagery like ani-
mated movies, the frame rate can easily be increased to
360Hz. As mentioned, a simple approximation is to ren-
der with evenly spaced 360 frames/second which in practice
shows to be sufficiently good. In case the rendering times
are too long, a 2D motion blur algorithm can be adapted as
discussed below. From the resulting images, only the respec-
tive color component is used and in case of stereo rendering
written to the left and right image respectively. We wrote
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simple AviSynth (http://avisynth.org/) scripts to con-
vert a movie with a 360{ps input to either a 120fps movie or
a 60fps stereo movie with our technique applied. With our
consumer projector, we can watch a movie with 1280 x 720
pixels at 360 fps.

Compared to a 60fps movie, twice the number of im-
ages must be stored. The amount of motion is smaller,
which should lead to a slightly better compression. The color
fringes on the edges of moving objects may have the adverse
effect.

4.2. Real Time Rendering

We have tested several implementations, each with different
advantages and drawbacks.

(8 t,=0
Render scene to buf-

fer 1 with temporal
\offset t. for red

(2.

Render scene to buf-
fer 2 with temporal

| offset t; for green

&
Render scene to buf-
fer 3 with temporal
\offset t, for blue

(%

Combine buffers 1-3
in frame buffer

-

Figure 5: Simple rendering algorithm for 120Hz output
without motion blur, using four passes. First, each color
channel is rendered using the respective time offset for the
animation. Finally, the channels are combined and written to
the frame buffer.

4.2.1. Rendering With 360 fps

A simple algorithm is shown in Figure 5. For each frame to
be displayed with 120fps, we render three images, each with
the respective color and timing offset. The final forth pass
combines the three channels and writes them to the frame
buffer. While we use an OpenGL frame buffer object with
three color attachments, the algorithm can also be imple-
mented using the accumulation buffer. Note that the depth
buffer must also be cleared for each of the first three passes.
This method is the simplest to implement. However, render-
ing time increases by over 500 %, so complex scenes may
not be rendered fast enough. In addition, motion blur is miss-
ing. However, it could be added e.g. by rendering even more
frames and using the accumulation buffer to compute the av-
erage frames.

Variation. In scenes with a large amount of static or

slowly moving objects, it may save time to render these ob-
jects at 60 Hz, writing the same color to six color buffers si-
multaneously and afterwards render the fast moving objects
separately into each buffer. The result are approximations
which hardly deviate from the true image. For fast moving
objects with low depth complexity it may suffice to disable
writing to the depth buffer in these six passes. Otherwise, the
depth buffer must be saved and restored between each pass.
The eighth and last pass again combines the channels and
copies the data to the left and right frame buffer.
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Figure 6: A modified motion blur algorithm. In the first
pass, color and also velocity and linear depth buffers are
generated. The second step computes the maximum velocity
within a neighborhood, ignoring other velocities. In the final
pass, for several samples at different animation times, pix-
els are searched along the maximum velocity direction that
project to the current location. For conventional motion blur,
the average of all samples is used as output. Our modifica-
tion is to write the average of fewer samples in shorter time
intervals to the respective output buffer (left/right) and color
channel (see text for details). The output is a 60Hz stereo
image.

4.2.2. Modification of Motion Blur Algorithm

A much more involved approach is to use and modify a mo-
tion blur algorithm. For the pixel shader pipeline, the modifi-
cation of output pixel locations is not possible in an efficient
way. Thus, we follow the idea of the motion blur algorithm
by McGuire et al. [MHBO12] and transform the scatter al-
gorithm into a gather algorithm: Instead of computing the
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new location for each source pixel, for each output pixel we
search which source pixel maps to its location.

Rendering of the scene can again be done with 60 fps, this
time also generating velocity and linear depth buffers in the
first pass with OpenGL’s multiple render targets (see Fig-
ure 6). In the second pass the maximum velocity in a neigh-
borhood with a specified radius is computed. This radius de-
pends on the maximum object velocity in screen space. In
the final pass we gather color information along the direction
of the previously found maximum velocity. This approxima-
tion drastically reduces the search space and works well with
less complex velocity maps. The depth map is used to han-
dle occlusions. Please refer to [MHBO12] for details in that
particular algorithm.

For each output pixel, this computation is repeated for
several animation times. For motion blur, the average color
of all these samples is computed. For our algorithm, the only
difference is that if the absolute velocity is below the user
defined threshold, the values are not averaged but instead,
six groups are averaged and written to the according buffers.
Each of these groups corresponds to the display time of each
color wheel segments of the left and right image. dAs an
example, each group can average two samples, resulting in
twelve samples taken into account.

Our modification adds only a negligibly small cost to
the execution time of such a motion blur algorithm. Ac-
cording to McGuire et al. [MHBO12], their algorithm with
15 samples per pixel at 1280 x 720 takes 3.0ms on a GeForce
480. This means using two samples per group should also
render in 3ms, leaving 13 ms for rendering the scene itself.
Compared to the simple algorithm rendering the scene six
times, this can reduce the total rendering time down to 20 %
and may provide higher quality images due to motion blur.

We implemented a much simplified version of this algo-
rithm as a proof of concept. It suffers from visible artefacts
at object boundaries but demonstrates the concept.

5. Results and Future Work

Scrolling text, such as shown in Figure 1 is a good demon-
stration of our technique. We also made a mockup of a pin-
ball game for one of our test scenes reffig:pinball, where the
ball appears to move smoother with our technique. At very
high speeds, the ball is not tracked by the eye and should get
conventional motion blur.

On devices that do not match the requirements, our tem-
poral color correction will increase the color fringes. This is
also the case for screenshots and photos, where it should be
turned off. Note that the same restrictions also apply e.g. for
stereo displays or ClearType.

A key point in our idea to remove color fringes is that we
need to know in which direction the eye moves and guess.

(© The Eurographics Association 2012.
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Figure 7: Photos of an early test. The exposure was set to
1/30s, capturing two full frames at 60 frames/second. Left:
conventional rendering. Right: six times higher temporal res-
olution.

Figure 8: One of our test scenes is a mockup of a pinball
game. We expect the ball to be tracked by the eye and apply
temporal color correction.

Our assumption is that the case where the eye tracks an ob-
ject is most important. If the eye moves differently, the color
fringes on moving objects may appear more pronounced. As
we leave the static objects unmodified, this is no problem in
practice. An informal user study shows that in the few test
cases our method is clearly preferred over the conventional
display.

For stereoscopic rendering, the same technique can be ap-
plied, taking the offset between left and right image into ac-
count. However, we have not yet studied if users prefer this
method and how this relates to symptoms of dizziness expe-
rienced by some people.

6. Conclusion

For each red, green and blue color wheel section we render
one individual image, with the animation time set accord-
ing to the average display time and thus taking the temporal
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offset into account. We present an analysis and possible im-
plementations for offline production and real time rendering.
We show how to modify a 2D motion blur shader to save ren-
dering time.

The benefit is a smooth motion with much sharper fast
moving objects without color fringes. This also enables
some applications that require the display of fast motion,
such as games. We achieve this without any modification or
additional hardware with an entry level consumer projector.
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