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Abstract
An increasing number of applications call for the incremental/iterative drawing of a visualization. That is an
obvious requirement when dealing with continuously changing data, like the emerging field of data streams or
scientific visualizations that have the burden of rendering complex and evolving physical phenomena. This paper
postulates that the same need is rising in the field of Visual Analytics and cloud based applications and, in order
to provide a support for such processes, it presents a formal model for characterizing the iterative drawing of
a visualization, describing the practical issues and outlining the main parameters that can be used to drive and
evaluate the whole process. The proposed model is general enough to capture all of the above presented scenarios.
Two examples are presented, showing the role that such a model can play in designing iterative visualizations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.2 [Computer Graphics]: Graphics Systems—Distributed/network graphics
I.3.8 [Computer Graphics]: Application—Visualization

1. Introduction

A number of applications call for the incremental drawing of
a visualization. This is a clear requirement for scientific visu-
alizations (see, e.g., [Ma09]) that very often deal with large
amounts of continuously changing data, in order to produce
up to date, accurate, and realistic visualizations. However,
we foresee other scenarios that exhibit similar needs.

Data Streaming. This is an emerging field and one of the
possible goals of an application is to produce a continuous
visualization of the data. Typical constraints are that it is not
feasible to store the whole stream and that, in some cases, it
is even impossible to process all the data. That calls for us-
ing statistical indicators (e.g., kernel density estimation) that
allow for representing in a compact way the processed infor-
mation and for dealing with several kinds of approximations.

Cloud Streaming. In this case, while the data streamed
across the cloud is finite, we assume that the transfer bit rate
is several orders of magnitude less than the data size. If the
goal of the cloud application is to produce a visualization of
a remote large dataset it makes sense to foresee some mech-
anisms that allows for proceeding in an incremental way, us-
ing the initial part of the downloaded data to produce partial
results. This is very common in the straightforward case of
video streaming, in which the server organizes the data in

self-contained chunks, i.e., pieces of data that can be used
without other further information, and send the initial part
of the movie as soon as possible, allowing the end user to
start watching the video even if the whole file is still not
available. However, the cloud usage is continuously increas-
ing and the cloud data servers, that are fighting each others to
conquer the market, are likely to provide additional services
in order to mitigate the slowness of the connection. In par-
ticular we can foresee that specialized scientific data server
will support a) random storage feature and b) data transfer
in self-consistent chunks together with a minimal set of data
aggregates (e.g., min, max, and number of items). That al-
lows for using a partial download as a preliminary result,
considering it as a random sample of the whole dataset.

Iterative VA algorithms. According to [Shn08] visual
analysis is useless if the system does not allows for quick
interaction (e.g., 10 frames per second updates) while ex-
ploring data. Among the several obstacles that prevent a tight
interaction between the automated data analysis and visual-
ization, the computation time of algorithms has a key role.
Typical algorithms used in VA applications (e.g., clustering,
dimension reduction, etc.) take a long time to produce the
result and that slows down the interaction speed, making the
system quite unusable. Also in this situation it makes sense
to foresee some mechanisms that allow the user for interact-
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ing with incremental results, i.e., dealing with an incremen-
tal drawing of a visualization. In particular, we exploit the
fact that several algorithms used in VA scenarios are itera-
tive, producing a sequence of approximate results that con-
verge to the final solution. The idea is to drive the visual-
ization using such intermediate solutions, as soon as they
are available, allowing for a faster interaction. In this case
we foresee two kinds of approximations: a) errors coming
from the visualization of partial results, obviously affecting
the actual visualization and b) errors that rise from the inter-
action with a partial visualization, affecting further analysis
activities.

This paper presents a formal model for characterizing the
iterative drawing of a visualization, describing the practical
issues and outlining the main parameters that can be used to
drive and evaluate the whole process. The model is general
enough to capture all of the above presented scenarios.

The paper is structured as follows. Section 2 presents re-
lated work, Section 3 introduces the proposed model, Sec-
tion 4 presents two case studies, and Section 5 concludes the
paper, outlining future work.

2. Related Work

To the best of the authors’ knowledge, the idea of modeling
different data streaming scenario with a unique formal model
is a novel one. Different attempts have been made in order
to apply visual analytics to data streams, but often they cope
only with focused scenarios and are mainly tailored solution
to a specific problem. In the following we report several re-
lated papers that inspired our work.

[CR98] and [CMS99] propose different models for info-
vis applications; [JKMG02] and [Twe97] deal with the char-
acterization of interactive visualizations process. [CL08] and
[CLW12] cope with infovis applications for dynamic data,
focusing on the interpretability of the obtained visualiza-
tions. The proposal in [FDCD12] introduces a framework
for coping with data streams, describing a series of required
operations and tasks, without considering result approxi-
mations or different cases of data streams. Still in a data
stream scenario [XWR10] discusses how to present signif-
icant visualization changes to the user, applying merge win-
dows algorithms. [WFA∗03] presents an adaptive visualiza-
tion technique based on data stratification to ingest stream
information adaptively when influx rate exceeds processing
rate. Concerning big data processing, [PTMB09] proposes
a framework that copes with computational time issues of
both the main application and the visualization part, propos-
ing methods for the manual skipping of meaningless iter-
ations of the visualization process. [Ma09] offers an am-
ple dissertation on the right use of visualization for large
scale data application, and how to exploit approximation al-
gorithms. Indeed it lacks a formal dissertation and it does
not propose metrics or indicators for evaluating the obtained

results. [FPDs12] copes with the concepts of incremental
visualizations and approximation of final results based on
samples, but it does not generalize these concepts. [WA12]
studies and validates the accuracy of approximate, tempo-
rary visualization results, but limited to the field of cluster-
ing. In a similar way, [RZH12] discusses a visual approxima-
tion scenario for parallel coordinates. Concerning functions
for result approximation and error estimation, [HCZD04]
proposes a method for reducing the computational cost of
approximating a density function, but tied to object track-
ing applications. [ZCWQch] and [Duo07] presents a similar
work for data stream kernel density estimation.

3. Model

In this section we present the general principles underlying
the proposed model, able to represent each application class
as a stream of data with particular characteristics; moreover
we introduce several Quality indicators that will be used to
infer some properties about qualitative aspects of the pro-
cess. Figure 1 presents the model time-flow.
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Figure 1: Time-flow of the proposed model.

The time flow is split in a series of quantum of time ∆t: at
each instant ti, a set of new inputs Ii are produced and sent
by the process; we need time for collecting and processing
them, in order to produce the data that will drive the visu-
alization, namely Ri = {Ai,Si}, where Ai represent a series
of aggregate indicators (e.g., mean, standard deviation, vari-
ance, elements count, etc.) and Si constitutes the representa-
tion of the actual state of the system. According to the par-
ticular nature of the application and of the aggregation func-
tion, a statistical error εstat(Ai) can be introduced during the
computation of Ri (see, e.g., [ZCWQch]). The generic Ri+1
is computed as follows:{

Ai+1 = F(Ai,Si, Ii+1)
Si+1 = G(Si, Ii+1)

where F computes the aggregate Ai+1 using the actual in-
put and the previous state and aggregate and G is a transition
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function that computes the state Si+1 using the actual input
and the previous state.

At the end of ∆tprocess these new data will be used for gen-
erating a new visualization Vi+1. We define the time needed
for producing it as ∆tvisualization.

So we can model the minumum quantum of time as:

Min∆t = ∆tcollect +∆tprocess +∆tvisualization

Figure 2 shows the general architectural schema used for
modeling the applications discussed in Section 1.
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Figure 2: Architectural schema of the application workflow.

This architecture is composed of 2 main functional
blocks, nominally the Automated Data Analysis block and
the Visualization block. The Automated Data Anlysis block
is in charge of supporting the abstraction of the problem as a
data stream, and providing appropriate data to the visualiza-
tion block; it is internally composed by 3 sub-blocks:

• Model workflow: this block takes the set of new inputs
produced at instant ti, Ii and the state of the system pro-
duced at instant ti−1, Si−1 and produce a new set of inter-
mediate results Ri.
• ∆ Evaluation: the result produced by the previous block is

directed to this block: ∆ Evaluator is in charge of comput-
ing two process indicators, nominally ∆dataactual(Ri,R j),
representing the differences between the data produced
in the iteration ti and t j, and ∆visactual(Ri,R j), repre-
senting the visual differences between the visualizations
associated with instant ti and t j. Such values are com-
pared with suitable threshold values, ∆dataT (Ri,R j) and
∆visT (Ri,R j), in order to allow or not the rendering of a
new visualization. It is worth noting that this comparison
is not always made between the results of two consecutive
time instants, but instead between Ri and the last t j, with
j≤ i−1, in which the visualization has changed. The goal
is to reduce the time devoted to the visualization phase if
there are not enough changes in data or visualization pa-
rameters that justify a new rendering.

• Analysis Validator: this block uses the data involved in
the visualization process (computation results and visual
mapping) to compute some quality indicators Qi on the
evolution of the analyzed process, in order to estimate
both the error introduced in the evaluation of Ri and ∆s
and whether the automated analysis can be stopped or if it
needs a further number of steps in order to produce more
precise results. In particular, we define the following qual-
ity indicators:

– Q∆current = RN −Ri : it represents the difference be-
tween the intermediate result Ri and the estimated final
one at instant N.

– Q∆relative = Ri+1−Ri: it represents the difference be-
tween two consecutive results, and it is particularly
useful for estimating how much data has changed in
a single iteration of the process.

– Q∆absolute = R∗−RN : it represent a fixed parameter
of quality in order to understand how good is the esti-
mated value RN in respect to the ideal one R∗

– Qεcurrent = RN − Ri + εstat(Ai) : it represents how
much error is introduced during the execution of the
process between the current iteration and the estimated
final one.

4. Examples

This section presents two case studies, applying the formal
model to a data streaming and a cloud streaming application.

Data Streaming We feed the visual analytics data stream-
ing application with the NHTSA Fatality Analysis Report-
ing System (FARS) [NHT13] data of fatal car accidents in
the USA, from year 1975 to year 1999. We assume that we
are able to process all the incoming data storing only aggre-
gate information (we simulate the situation in which it is not
possible to store all the data). The goal of the application is
to show the density distribution of accidents across the USA
states and we assume that ∆t will be much greater than the
Min∆t: because the system is not a monitoring system but is
intended just to show the accidents distribution we can imag-
ine that the granularity of ∆t is in term of hours: very likely
the situation will change very slowly, even across days. That
does not pose any severe constraint on the application tim-
ing and we can set ∆tcollect = ∆t −∆tprocess−∆tvisualization.
Data are rendered using a choropleth map, split in N areas
(states or counties) in which each accident density value at
time i, di,k,1 ≤ k ≤ N, is mapped on an ordered set of dif-
ferent shades of blue (color(di,k)) clearly distinguishable by
the user; we use this assumption in calculating ∆visactual .
On the basis of reference indicators, we will instantiate both
∆dataactual(Ri,R j) and ∆visactual(Ri,R j) as following:{

∆dataactual(Ri,R j) = Σ
N
k=1
|d j,k−di,k|

N ,

∆visactual(Ri,R j) = Σ
N
k=1
|color(d j,k)−color(di,k)|

N ,

where, as mentioned in Section 3, ∆dataactual(Ri,R j)
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Figure 3: last changed visualization at istant j

Figure 4: changing state: ∆visactual(Ri,R j) is above the
threshold value and so a new rendering is alerted to the user
(note the changes in Wyoming and Nebraska)

will be used for cutting the visualization pipelines (evalu-
ation+rendering) and passing directly at the following step,
while ∆visactual(Ri,R j) will be used for evaluating the vis-
ible differences in the visualization and alerting the user
when a change occurs; all of this will be based on the com-
parison of actual values at interval i with corresponding
threshold values ∆dataT (Ri,R j) and ∆visT (Ri,R j).

Figure 3 shows the last time interval j in which the vi-
sualization changed; each hour a new result Ri is produced,
and the values of ∆dataactual(Ri,R j) and ∆visactual(Ri,R j)

are computed: if ∆dataactual(Ri,R j) < ∆dataT (Ri,R j) or
∆visactual(Ri,R j) < ∆visT (Ri,R j) no new rendering is pro-
duced and the visualization stay the same; instead, if
∆visactual(Ri,R j)> ∆visT (Ri,R j) a new visualization is pro-
duced, alerting the user that a noticeable change is available
(see Figure 4).

Cloud Streaming The Cloud Streaming application is
based on the idea of producing a visualization using a large,
remote datafile, that is sent in a random fashion by the server
and organized in self-consistent chunks. We simulated this
situation splitting a million tuple file (the Vast 2011 mini
challenge1 data [Vas11]) in N random chunks and feeding an
application at precise time interval, simulating a slow down-
load and visualization across the cloud.

As a class of problems that present slow but consistent
amount of data loaded at each interval of time ti, we can ex-
pect this time that the choice of the correct ∆t will be driven

by the ∆tcollect component, in order to not defer parts of data
produced at time ti to the next interval ti+1 and then risk
to produce an amount of data not manageable in the fol-
lowings time intervals. The process will terminate after N
iterations producing, after a long time, a correct result RN ;
however, it is very likely that the gain in fidelity does not
justify a so long wait. In order to stop the process when the
actual visualization is good enough we use the quality in-
dicators Q∆relative = Ri+1−Ri and ∆visactual(Ri,R j): when
both of them are below the threshold we can stop the pro-
cess and/or make the user aware that the visualization is
worth to be used. Figure 5 shows the visualization driven
by final result RN while Figure 6 shows the visualization
associated with the 40% of the download, in which both
Q∆relative = Ri+1−Ri and ∆visactual(Ri,R j) are below the
threshold: the central data clusters are now quite evident.

Figure 5: Final state of the application

Figure 6: The first intermediate valid state: quality indica-
tors are below the threshold

5. Conclusions

This paper addresses the problem of formal modeling a
generic iterative drawing of a visualization, in terms of prac-
tical issues and parameters that can be used to drive and
evaluate the whole process. Moreover, it provides an initial
classification of the applications it is intended for; two ex-
amples provide a first understanding of the model features.
We point out as future work further research in the field of
estimation of final state for both iterative VA algorithms and
cloud streaming scenarios, in order to provide practical ap-
plications to the model parts regarding the optimal final state
R∗ and the estimated final one RN . Additionally, we plan to
further expand the model capturing the error that rises from
the visual interaction with partial results that is used to start
new analytical activities.
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