
EUROGRAPHICS 2006 Tutorial

Collision Handling and its Applications

Matthias Teschner1, Marie-Paule Cani2, Ron Fedkiw3, Robert Bridson4, Stephane Redon5, Pascal Volino6, Gabriel Zachmann7

1 Freiburg University, Germany
2 INP Grenoble, France

3 Stanford University, USA
4 University of British Columbia, Canada

5 INRIA Rhone-Alpes, France
6 University of Geneva, Switzerland

7 Clausthal University, Germany

1. Introduction

In contrast to real-world scenarios, object representations
in virtual environments have no notion of interpenetration.
Therefore, algorithms for the detection of interfering object
representations are an essential component in virtual envi-
ronments. Applications are wide-spread and can be found in
areas such as surgery simulation, games, cloth simulation,
and virtual prototyping.

Early collision detection approaches have been presented
in robotics and computational geometry more than twenty
years ago. Nevertheless, collision detection is still a very ac-
tive research topic in computer graphics. This ongoing in-
terest is constantly documented by new results presented in
journals and at major conferences, such as Siggraph and Eu-
rographics.

In order to enable a realistic behavior of interacting ob-
jects in dynamic simulations, collision detection algorithms
have to be accompanied by collision response schemes.

2. Summary

This tutorial discusses collision detection and response algo-
rithms with a special emphasis on a wide range of applica-
tions, such as rigid objects, deformable objects, cloth, hair,
point clouds and fluids. On one hand, the tutorial illustrates
common aspects of collision handling approaches in these
application areas. On the other hand, unique requirements
of each application are outlined. The presentation of a vari-
ety of solution strategies for collision handling problems in
terms of specific applications provides the participants of the
tutorial with the ability to evaluate existing techniques in the
context of their own application.

The presentation of rigid body collision handling illus-

trates the problem that collisions can occur in-between dis-
crete time steps of a dynamic simulation. If these collisions
have to be detected or the exact contact time is required, tra-
ditional discrete-time techniques cannot be employed. In-
stead, continuous collision detection has to be performed
which is explained in the tutorial.

The presentation of deformable collision handling focuses
on the interplay of collision detection and response. If a real-
istic interactive simulation of interacting three-dimensional
deformable objects is desired, the collision detection algo-
rithm has to provide collision information that can be used
by the collision response scheme. If the collision detection is
efficient, but does not provide useful collision information,
the interplay of detection and response cannot be effective.

Cloth simulation is a challenging application area for
collision handling approaches. In contrast to other areas,
self-collision cannot be neglected and stacking has to be
handled very carefully. While collision response methods
for three-dimensional objects commonly employ penetration
depth information, this information is not available for two-
dimensional cloth models. The tutorial describes specific so-
lutions to cloth collision handling.

Handling hair self collisions is one of the main challenges
in hair simulation, due to the extremely high number of
strands. These anisotropic interactions play a key role in hair
shape and motion, being the cause for hair volume and for
the damping of hair motion. The presentation analyzes and
compares the different strategies that were used for tackling
the problem, from volumetric methods to the adaptive, hier-
archical clustering of hair strands.

Recent publications suggest that point-based object rep-
resentations are useful in rendering and in animation. How-
ever, in the context of collision handling these object repre-

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

M. Teschner et al. / Collision Handling

sentations present unique challenges since point-based ob-
jects are not characterized by explicit surface representa-
tions. Instead, efficient collision handling methods for im-
plicit surfaces are required that are described in the tutorial.

Collision handling among fluids and solids is a very chal-
lenging topic. Different representations of fluids and solids
have to be considered. If a collision occurs, both structures
influence each other which has to be handled by a two-way
collision response or two-way fluid / solid coupling. Addi-
tional problems have to be addressed when multi-phase flu-
ids interact with arbitrarily thin solids such as cloth. Specific
approaches to these problems are presented in the tutorial.

In summary, the tutorial illustrates specific problems in
application areas related to collision handling. The tutorial
shows that there does not exist an optimal approach that can
be used in all cases. Instead, all prerequisites of a problem
and all potential constraints have to be considered in order
to choose a useful combination of collision detection and
response techniques.

3. Proposed Length

• half-day tutorial

4. Topics

Collision handling for rigid objects, deformable objects,
cloth, hair, point clouds, and fluids.

5. Tutorial Syllabus

Introduction. Matthias Teschner. 10 min. The relevance of
collision detection and collision response is motivated. Chal-
lenges in the context of specific applications are illustrated.

Rigid Bodies. Stephane Redon. 30 min. Continuous colli-
sion detection approaches for rigid and articulated objects
are presented. Methods for the discretization of trajectories
and the computation of the exact contact time in discrete-
time simulations are described. See Fig. 1.

Deformable Objects. Matthias Teschner. 25 min. The han-
dling of collisions and self-collisions of dynamically de-
forming three-dimensional objects will be covered. The in-
terplay of efficient collision detection, appropriate collision
information, and physically based collision response is ex-
plained. See Fig. 2.

Cloth. Pascal Volino. 30 min. Collision detection and re-
sponse techniques for non-volumetric objects are discussed.
Since penetration depth information cannot be used for colli-
sion response, specific collision handling approaches will be
presented that handle two-dimensional objects. See Fig. 3.

Hair. Marie-Paule Cani. 30 min. Different strategies for col-
lisions detection and response are reviewed: we show that

volumetric approaches can be used for handling both hair-
body and hair-hair interactions in real time. More intri-
cate solutions yielding very realistic results are presented,
such as the adaptive clustering of strands into interacting,
anisotropic hair wisps. See Fig. 4.

Points. Gabriel Zachmann. 25 min. Point representations
have shown to be attractive for rendering and animation.
This part of the tutorial discusses approaches to detect-
ing collisions among point-based objects. Efficient collision
handling methods for implicit surfaces are discussed that do
not explicitly reconstruct the object surface. See Fig. 5.

Fluids. Robert Bridson, Ron Fedkiw. 30 min. Solid / fluid
coupling algorithms are presented. Challenges in the context
of multi-phase fluids and arbitrarily thin solids are discussed.
In particular, algorithms for cloth and water and their two-
way interaction are described. See Fig. 6.

6. Prerequisites

The participants should have a working knowledge of spatial
data structures and computational geometry. Further, par-
ticipants should be familiar with dynamic simulation ap-
proaches for solids and fluids.

7. Organizer

Matthias Teschner

Computer Science Department, Freiburg University

Georges-Koehler-Allee 052
79110 Freiburg im Breisgau, Germany

mail teschner@informatik.uni-freiburg.de
http http://cg.informatik.uni-freiburg.de/

8. Speakers

Matthias Teschner received the PhD degree in Electrical En-
gineering from the University of Erlangen-Nuremberg in
2000. From 2001 to 2004, he was research associate at Stan-
ford University and at the ETH Zurich. Currently, he is
professor of Computer Science and head of the Computer
Graphics group at the University of Freiburg. His research
interests comprise real-time rendering, scientific computing,
physical simulation, computer animation, computational ge-
ometry, collision handling, and human perception of motion.
His research is particularly focused on real-time physically-
based modeling of interacting deformable objects and fluids
with applications in entertainment technology and medical
simulation. Matthias Teschner has contributed to the field of
physically-based modeling and collision handling in several
papers. At Eurographics 2004, he organized a State-of-the-
Art report on collision detection. At IEEE VR 2005 and Eu-
rographics 2005 he participated and organized tutorials on
collision detection and collision handling.

c© The Eurographics Association 2006.

M. Teschner et al. / Collision Handling

Marie-Paule Cani is a full Professor of Computer Science
at the INPG, France. A graduate from the Ecole Normale
Supérieure, she received a PhD in Computer Science from
the University of Paris Sud in 1990, and was elected mem-
ber of the Institut Universitaire de France (IUF) in 1999.
She is vice-director of the research lab GRAVIR (Computer
GRAphics, Computer VIsion and Robotics), a joint lab of
CNRS, INPG, INRIA and UJF, where she leads the research
group EVASION, created in 2003. Her main research in-
terests cover physically-based simulation, implicit surfaces
applied to interactive modeling and animation and the de-
sign of layered models incorporating alternative representa-
tions and LODs. Recent applications include the animation
of natural phenomena and virtual humans, real-time virtual
surgery and interactive sculpting techniques. Marie-Paule
Cani was paper co-chair of Eurographics 04, is co-chairing
Shape Modeling International 2005 and has served in the
program committee of major graphics conferences, includ-
ing SIGGRAPH in 2001 and 2005.

Ron Fedkiw received his Ph.D. in Mathematics from
UCLA in 1996 and did postdoctoral studies both at UCLA
in Mathematics and at Caltech in Aeronautics before join-
ing the Stanford Computer Science Department. He was
awarded the National Academy of Science Award for Initia-
tives in Research, a Packard Foundation Fellowship, a Pres-
idential Early Career Award for Scientists and Engineers
(PECASE), a Sloan Research Fellowship, the ACM Sig-
graph Significant New Researcher Award, an Office of Naval
Research Young Investigator Program Award (ONR YIP),
a Robert N. Noyce Family Faculty Scholarship, two distin-
guished teaching awards, etc. Currently he is on the editorial
board of the Journal of Computational Physics, Journal of
Scientific Computing, IEEE Transactions on Visualization
and Computer Graphics, and Communications in Mathemat-
ical Sciences, and he participates in the reviewing process of
a number of journals and funding agencies. He has published
over 60 research papers in computational physics, computer
graphics and vision, as well as a book on level set methods.
For the past five years, he has been a consultant with Indus-
trial Light + Magic. He received screen credits for his work
on "Terminator 3: Rise of the Machines" and "Star Wars:
Episode III - Revenge of the Sith".

Robert Bridson received his Ph.D. in Scientific Comput-
ing and Computational Mathematics in 2003 at Stanford
University before arriving at UBC. He has published sev-
eral computer graphics papers on physics-based animation,
from fluids to cloth, as well as a number of scientific comput-
ing papers, and is currently writing a book on physics-based
animation for Cambridge University Press. He codeveloped
physics-based animation software for feature film visual ef-
fects in use at Industrial Light + Magic and elsewhere, and
has also consulted at Sony Pictures ImageWorks.

Stephane Redon is a Research Scientist at INRIA Rhone-
Alpes, working with Dr. Sabine Coquillart in the i3D re-

search team. He graduated from Ecole Polytechnique in
1998, and received his M.S. in 1999 from Pierre and Marie
Curie University, France. He received a Ph.D. in Computer
Science in 2002 from INRIA Rocquencourt - Evry Univer-
sity, France, while working with Dr. Sabine Coquillart and
Prof. Abderrahmane Kheddar on robust interactive simula-
tion of rigid body systems and its applications to virtual pro-
totyping and animation. He spent two years in the Depart-
ment of Computer Science of the University of North Car-
olina at Chapel Hill as a Post-Doctoral Research Associate,
working with Prof. Ming C. Lin in the GAMMA research
team. His research interests include the design of robust and
realistic real-time virtual environments, collision detection,
haptics, motion planning, simulation levels of detail, and 3d
interaction. His current research is centered on the develop-
ment of scalable algorithms for interactive simulation and
control of complex dynamical systems.

Pascal Volino is a computer scientist, working at MI-
RAlab, University of Geneva. He is actually working on new
models for cloth animation, involving versatile models for
efficient simulations on situations involving high deforma-
tion, wrinkling and multilayer garments. The research is par-
ticularly focused on data structure, efficient collision detec-
tion, robust simulation and interactive cloth manipulation.

Gabriel Zachmann is professor for computer graphics at
Clasuthal University since 2005. Prior to that, he was as-
sistant professor with the computer graphics group at Bonn
University. He received a PhD in computer science from
Darmstadt University in 2000. From 1994 until 2001, he
was with the virtual reality group at the Fraunhofer Insti-
tute for Computer Graphics in Darmstadt, where he carried
out many industrial projects in the area of virtual prototyp-
ing. Zachmann has published many papers at international
conferences in areas like collision detection, virtual proto-
typing, intuitive interaction, mesh processing, and camera-
based hand tracking. He has also served on various interna-
tional program committees.

9. Course Notes Description

This tutorial builds on lecture material from the Freiburg
University, INPG Grenoble, Stanford University, INRIA
Rhone-Alpes, University of Geneva, and Clausthal Univer-
sity. Further, material from previous tutorials at Siggraph
2004, IEEE VR 2005 and Eurographics 2005 will be used.
Since all presenters actively contribute to the area of col-
lision handling, all presentations will be accompanied by
videos and software demonstrations.

c© The Eurographics Association 2006.

M. Teschner et al. / Collision Handling

Figure 1: Continuous collision detection for rigid objects.

Figure 2: Handling of collisions and self-collisions among
three-dimensional deformable objects.

Figure 3: Cloth collision handling for two-dimensional ob-
jects without penetration depth information.

Figure 4: Volumetric versus hierarchical clustering methods
for handling hair self collisions.

Figure 5: Collision detection for point-based objects using
implicit surface reconstructions.

Figure 6: Two-way coupling of multi-phase fluids and arbi-
trarily thin solids.

c© The Eurographics Association 2006.

EUROGRAPHICS 2006 Tutorial

Hair interactions

Marie-Paule Cani and Florence Bertails

EVASION group (CNRS, UJF, INPG, INRIA), Grenoble, France

Abstract
Processing interactions is one of the main challenges in hair animation. Indeed, in addition to the collisions with
the body, an extremely large number of contacts with high friction rates are permanently taking place between
individual hair strands. Simulating the latter is essential: without hair self-interactions, strands would cross each
other during motion or come to rest at the same location, yielding unrealistic behavior and a visible lack of hair
volume.
This chapter reviews the most recent advances to tackle the specific problems of hair collision detection and
response. The solutions presented here range from simple approximations that provide hair with a volumetric
behavior in real-time to dedicated algorithms for efficiently yet robustly detecting collisions between hair guides
and for generating a realistic response to hair interactions.

1. Introduction

Human hair is a composite, deformable material made of
more than 100 000 individual fibers called hair strands.
These thin tubular structures are elastic: after motion, they
tend to come back to a rest shape, which is related to their
individual natural curliness and to the set of external forces
applied to them. Global hair motion and even the shape hair
takes at rest highly depend on the nature of the multiple in-
teractions taking place between hair strands: collisions and
contacts between hair strands of different orientations cause
hair to occupy a pretty high volume, especially in the case
of irregular, curly or fuzzy hair. Due to this larger volume,
tangled or fuzzy hair in motion is much more subject to air
damping than smooth and disciplined hair.

The nature of interactions between hair strands is very
complex. This is largely due to the surface of individ-
ual hair strands, which is not smooth but composed of
tilted scales (see Figure 1). This irregular surface causes
anisotropic friction inside hair, with an amplitude that
strongly depends on the orientation of the scales and of the
direction of motion [Zvi86]. Moreover, hair is very triboelec-
tric, meaning it can easily release static charges by mere fric-
tion. This phenomenon, which has been measured in the case
of combed hair, most probably impacts the hair-hair friction
rates.

Because of the extremely large number of strands that
compose a full head of hair, processing hair interactions is

Figure 1: An electron micrograph of a hair fiber that shows
the structure of the outer cuticle surface, which is composed
of thin overlapping scales [Rob94].

known as one of the main challenges in hair animation. Un-
til the late nineties, most hair animation methods tackled
hair collisions with the body, but were not processing self-
interactions at all. This often resulted into an obvious lack of
hair volume. The first methods that detected interactions be-
tween hair wisps spent more than 80% of the simulation time
in this process. More recently, several interesting solutions
that make hair interactions much more practical were de-
veloped: some of them mimic the effect of hair interactions
globally, using a structure that stores the volumetric density
of hair. Others achieve more accurate results by developing
efficient algorithms for detecting collisions between hair-
wisps and by setting up realistic models for response and
friction forces.

c© The Eurographics Association 2006.

Marie-Paule Cani, Florence Bertails / Hair Interactions

This chapter presents those of these recent advances in
which the authors participated: Section 2 briefly reviews the
two main approaches for animating hair, namely modeling
hair as a continuum or as a set of individual hair wisps.
The associated methods for processing hair interactions with
the body are presented and the issues raised by hair self-
interactions are introduced. Section 3 presents a practical
real-time solution, applicable in any hair animation system,
which gives hair a volumetric behavior without requiring to
detect individual interactions between the animated guide-
strands. We then focus on more accurate methods, applicable
for generating high quality animation of long hair: Section 4
reviews some recent methods for efficiently, yet robustly de-
tecting the interactions between guide-strands. Section 5 dis-
cusses the anisotropic models that were set up to model re-
sponse to these interactions. In particular, we describe a vali-
dated model for friction forces. In conclusion, we emphasize
the steps forwards made in the last few years, but also the is-
sues that were not tackled yet, showing that improving the
efficiency and visual realism of hair animation is going to
remain a hot research topic for a while.

2. Hair animation and interaction processing

2.1. Continuous versus wisp-based hair models

Hair animation was made practical in the early
nineties [RCT91] by the idea of animating only a sub-
set of the hair strands (typically one or two hundreds),
which we will call here the guide-strands. This is made
possible by the local spatial coherence of hair motion.
Once the guide-strands have been animated (using for
instance spring and masses, projective dynamics or chains
of articulated rigid bodies), their position is used to generate
the remaining hair strands at the rendering stage.

More precisely, two main families of approaches were
developed for modeling hair: The first ones, more appro-
priate for smooth, fluid hair, consider hair as a contin-
uum [AUK92, DTKT93, HMT01, CJY02, BCN03] and thus
use interpolation between the animated guide-strands for
generating a full head of hair. The second ones, which
achieve their best results for wavy of curly hair, model hair
as a set of disjoint wisps [CSDI99, KN00, PCP01, KH01,
BKCN03, WL03, CCK05]. The animated guide-strands are
assimilated to wisp skeletons and extrapolation is used for
generating extra hair-strands within each wisp. Recently,
Bertails [BAC∗06] bridged the gap between the two kinds
of approaches by allowing the guide-strands to be used both
for interpolation or approximation depending on the type of
hair and on the current distance between neighboring guide-
strands. This model captures hair that looks like a continuum
near the head while well identified wisps can be observed at
the tip.

In the remainder of this chapter, we will discuss hair in-
teractions independently of the hair model used among the

approaches above: hair will be considered as a set of individ-
ual hair guides, each of them more or less explicitly model-
ing a volume of hair around it. Interactions will be detected
and treated based on the position and motion of these guide-
strands.

2.2. Processing hair interactions with the body

The first step towards processing hair interactions is to ad-
equately model hair collisions and contacts with obstacles,
starting with the body of the animated character. Since hair
is animated using guide-strands, the latter and the wisp vol-
umes around them (if any) should be prevented from pene-
trating inside the body. The latter is often approximated us-
ing sets of ellipsoids or stored in a spatial partitioning grid
to accelerate this detection. Since hair is a very soft material,
modeling a one way response is sufficient: the body can be
considered as infinitely rigid and heavy compared with hair,
so the collision has no effect on the subsequent body shape
and motion. Moreover, hair is a very soft and light material:
it does not bounce after collision, but rather experiment a
strong static friction with the parts of the body it is in contact
with. Collision response can thus be treated using methods
set up for other very light material, such as clothing: when
a penetration is detected, the guide-strand or the associated
wisp volume is re-positioned as to be in resting contact with
the body. The guide-strand is either given the velocity of this
body part, or a static friction force is set up between them.

The remainder of the chapter focuses on the part of in-
teraction processing most specific to hair and much more
difficult to handle than collisions with obstacles: we are now
addressing the challenging problem of self-interactions.

2.3. The issues raised by hair self-interactions

The interactions that occur between hair-strands are very dif-
ficult to simulate, For the following reasons:

Firstly, in real hair, the friction between neighboring
strands of similar orientation plays an important part: it dis-
sipates some kinetic energy and damps the overall motion.
This phenomenon cannot be simulated properly in virtual
hair, where only a few guide-hair distributed on the scalp
are animated. The only way to capture this part of self-
interaction is to add some internal damping - which should
depend on the type of hair and is quite difficult to tune - on
the individual motion of a guide strand.

Secondly, strands are very thin, so standard collision de-
tection methods based on penetration cannot be used: strands
or even small wisps of hair of different orientations might
cross each other between two simulations steps and go to
rest in the wrong positions, this interaction remaining un-
noticed.

Lastly, once a collision between hair guides or hair wisps
of different orientation have been detected, the response

c© The Eurographics Association 2006.

Marie-Paule Cani, Florence Bertails / Hair Interactions

model should account for the complex state of surface of
a hair strand: the tilted scales that cover a strand result in
strongly anisotropic static friction. Moreover, these friction
forces are dominant: due to the lightness on a hair strand, the
colliding strands will most probably remain in contact. One
of the challenges of hair self-interactions it thus to define
a response model that prevents strands from crossing each
other while avoiding to generate any bouncing. The latter,
often noticeable in hair animation systems, gives an overall
unstable behavior to the full hair, due to the extremely large
number of local collisions that occur at each time step, even
when hair is at rest.

Historically, the continuous and wisp-based approaches
have tackled hair self-interactions in dramatically different
ways:

- Volumetric interactions: Continuum approaches such as
Hadap’s and Bando’s methods relied on fluid-like inter-
nal viscosity to model hair friction and to prevent self-
intersections is a rather global way [HMT01,BCN03]: no
collision is detected between individual hair strands, but
the latter interact (as fluid particles would do), depending
on the local hair density and on the relative hair motion
around them.

- Guide-strands interactions: In contrast, processing hair
self-collision in discontinuous, wisp-based approaches
has been done through the actual detection of penetration
between moving hair wisps [PCP01]. This allows a more
accurate modeling of the discontinuities that can be ob-
served during fast motion of long, human hair: in these
approaches, wisps of hair defined around a guide-strand
are prevented from crossing each other and two wisps of
different orientations can be in resting contact.

We believe that the general approach chosen for handling
hair interactions can be chosen quite independently from the
hair model, would it be a continuum model, an disjoint set
of hair wisps, or something inbetween.

The remainder of this chapter presents the specific solu-
tion the authors have developed for tackling the problem of
hair interactions. This chapter is not aimed as providing a
state of the art in the area: the interested reader can find a
recent survey on hair animation and rendering techniques
in [WFK∗06]. The volumetric method for hair interactions
presented in Section 3 belongs to the volumetric interactions
approach: it provides a real-time alternative to fluid-like in-
teractions when a coarser approximation is sufficient. Meth-
ods for improving the efficiency of collision detection and
the realism of collision response in the interacting guide-
strands approach are detailed in Sections 4 and 5.

3. A volumetric approach for real-time self-interactions

The work presented in this section was first introduced
in [BMC05], as a side application of a method for handling

hair self-shadowing in real-time. We detail here the applica-
tion of this approach to hair self-interactions.

3.1. A volumetric structure for hair

An acceptable approximation of hair self-interaction con-
sists of considering that internal collisions mainly result into
the preservation of hair volume [LK01]. Starting from this
assumption, hair density information is very useful: If the
local density of hair is over a fixed threshold (corresponding
to the maximum quantity of hair that can be contained within
a cell), the hair strands should undergo external forces that
spread them out.

Bertails et al. [BMC05] use a light-oriented voxel grid
to store hair density values. This enables them to effi-
ciently compute both lighting and mechanical interactions
inside the hair volume in real-time. Though very simple, this
method yields convincing interactive results for animated
hair, is very simple to implement, efficient and can easily
be parallelized to increase performance.

More precisely, the volumetric structure used is based on
a 3D light-oriented density map, which combines an opti-
mized volumetric representation of hair with a light-oriented
partition of space. This voxel structure stores the local hair
density in space, computed from the number of guide-strand
segments within a given cell. It is used to approximate the
light attenuation through each cell of the grid: since the cells
are sorted along the light direction, computing the accumu-
lated translucency for each cell through the hair volume be-
comes straightforward.

3.2. Application to hair interaction

At each animation step, all guide-strand are moved to their
new position and the density map is updated. Then, hair self-
collisions are taken into account for the next simulation step
by adding density-based interaction forces where needed: re-
pulsive forces directed from the center to the border of a grid
cell are generated. They are applied to each hair-guide ele-
ment located in a cell whose density if over a threshold. This
threshold value depends on the desired level of hair fuzzi-
ness.

Although this interaction method is extremely simple, it
yields convincing results. In practice, it was tested with
an accordingly simple, yet robust algorithm for animat-
ing the guide-strands: hair is composed of approximately a
hundred wisps, each of which being simulated using three
guide-strands modeled as chains of rigid links. The lat-
ter are animated using a fast and robust but non-accurate
method [vO91]. The rendering technique is a hybrid be-
tween continuum and wisp-based methods: interpolation be-
tween the three guide-strands is used to generate a con-
tinuum of hair inside each deformable wisps. The overall
method results into interactive hair animations that include

c© The Eurographics Association 2006.

Marie-Paule Cani, Florence Bertails / Hair Interactions

self-interactions as well as self-shadowing, and generate vi-
sually convincing hair volume (see Figure 2). Furthermore,
with this technique, handling hair self-collisions only re-
quires 2.5% of the whole processing time.

Figure 2: Interactive hair self-shadowing processed by ac-
cumulating transmittance values through a light-oriented
voxel grid [BMC05]. (left) Animated smooth hair; (right)
Animated curly hair.

4. Detecting guide-strand interactions

Volumetric methods as the simple solution presented above
are not sufficient for generating high quality animation of
non-smooth hair: two hair wisps of different orientations
may cross each other during motion despite of the volu-
metric forces they undergo. Most hair animation methods
have thus relied on the distance between pairs of guide-
strands or on the penetration between wisps of hair defined
around them for accurately detecting hair self-interactions.
In this chapter, we call these more accurate approaches
guide-strand interactions.

A naive implementation of guide-strand interactions
would lead to O(n2) tests, where n is the total number of
guide-strand segments (or wisp segments) in the hair model.
Following Plante [PCP01], most methods use a pre-detection
based on a regular 3D grid data structure, built around
the character and its hair, to quickly get rid of most non-
intersecting cases. Each grid cell contains a list of hair-guide
elements (or wisp segments) whose bounding box intersects
the cell. At each animation step, the grid is used for quickly
determining a shorter list of segments susceptible to inter-
sect. A mailbox parameter indicates the last time step when
a given pair of such segments has been tested, ensuring that
each pair is tested only once. The 3D grid data structure can
also be used for optimizing collision detection between hair
and the character model: to achieve this, each cell also refer-
ences the polygons of the character model that intersect it.

4.1. Deformable versus cylindrical hair wisps

To account for the complex interactions observed in real hair
during fast motion, Plante et al. represented hair using a
fixed set of deformable, volumetric wisps [PCP01, PCP02].

Figure 3: Elements defining a deformable volumetric
wisp [PCP01].

Each wisp is structured into three hierarchical layers: a
skeleton curve (called here guide-strand) that defines its
large-scale motion and deformation, a deformable volumet-
ric envelope that coats the skeleton and accounts for the de-
formation due to hair interaction within a wisp, and a given
number of hair strands distributed inside the wisp envelope
and which are generated only at the rendering stage (see Fig-
ure 3). More precisely, the deformable sections that shape a
wisp of hair around its guide-strand are animated using 4
1D damped springs, attempting to capture the way a wisp
of hair deforms when its moves and most often comes back
to its initial size at rest. The wisp volume was defined as a
quadratic surface envelop controlled by these cross-sections.

Using such a complex deformable wisp model for the de-
tection of guide-strand interactions proved very time con-
suming: more than 70% of the simulation time was used in
collision detection between hair wisps, despite of the space
grid used to accelerate the process. In total, without taking
hair rendering into account, about 3 hours of computations
were required, in 2001, to compute 3 seconds of animation.

Bertails et al. [BKCN03] introduced an adaptive anima-
tion control structure, called the Adaptive Wisp Tree (AWT),
which enables the dynamic splitting and merging of hair
wisps. The AWT depends on a full hierachical structure for
the hair, which can either be precomputed - for instance us-
ing a hierarchical hairstyle [KN02] - or computed on the
fly. The AWT represents at each time step the wisps seg-
ments (or guide-strand segments) of the hierarchy that are
actually simulated (called active segments). Considering that
hair should always be more refined near the tips than near
the roots, the AWT dynamically splits or merges hair wisps
while always preserving a tree-like structure, in which the
root coincides with the hair roots and the leaves stand for the
hair tips.

In addition to limiting the number of active hair-wisp seg-
ments, one of the key benefits of the AWT for collision de-
tection is that the splitting behavior of the wisps models their
deformation: there is no need for the complex deformable
wisp geometry used in [PCP01]. For collision processing,

c© The Eurographics Association 2006.

Marie-Paule Cani, Florence Bertails / Hair Interactions

active wisp segments of the AWT are thus represented by
cylinders, which greatly simplifies collision detection tests:
detecting interactions simplifies into detecting the local min-
ima of the distance between guide-strand and comparing its
value to the sum of the wisp radii. With this method, ten sec-
onds of animations could be computed, in 2003, in less than
five minutes.

4.2. Handling curly hair and exploiting temporal
coherence

The Super-Helix model that was recently intro-
duced [BAC∗06] is the first model that accurately simulates
the dynamics of curly hair: unlike previous approaches,
curly hair wisps are not modeled using a straight mass-
spring skeleton around which wavy strands are drawn at
the rendering stage, but are instead accurately modeled
using wavy to fuzzy guide-strands, which have a piece-wise
helical shape. Detecting interactions between such complex
helical guide-strands is indeed more costly.

To handle collisions between hair clumps guided by
Super-Helices in a both accurate and efficient way, our
strategy is based on the two following ideas: 1) the use of
adaptive cylindrical bounding envelopes around each hair
wisp, whose number and size can automatically adapt during
motion, depending on the geometry of the wisp, and 2) the
tracking of the closest points between the skeletons (i.e., the
principal axes) of the bounding cylinders.

Figure 4: Left: The three different adaptive representations for the
bounding volume of a wisp segment. Right: Tracking the pairs of
closest points between the skeletons of guide volumes (for smooth
and curly hair) [Ber06].

1. Adaptive bounding envelopes: the bounding volume of
a helical element Qi of the guide hair strand is composed
of a single, large cylinder if the helix’s spires are tight
enough. In other cases (i.e. for straighter strands), we use
one or two cylinders, oriented along the mean local tan-
gent of the element, to approximate the volume of the
wisp (see Figure 4).

2. Tracking pairs of the closest points: we adapted the
algorithm of Raghupathi et al., originally designed for
detecting self-collisions in long and thin deformable ob-
jects [RCFC03], to the collision detection between guide
hair volumes. Since guide hair volumes are composed of

a set of cylinders, the method amounts to computing min-
imal distances between pairs of segments (the principal
axes of the cylinders), as in [RCFC03]. For each pair of
guide-strands, we first initialize a closest point pair near
the root. At each time step, each closest point pair is up-
dated by letting the closest points slide along the asso-
ciated wisp, from the positions they had at the last time
step. They stop in a location that locally minimizes the
distance between the two wisp volumes. When this dis-
tance is under a threshold, new pairs of points are created
at both sides of the initial pair, to track the possible mul-
tiple local minima. When two closest point pairs slide to
the same location, they are merged together. At each time
step, because of temporal coherence, only very few of
these pairs need to be moved, so advancing them is very
fast. Each time the distance between two guide volumes
is locally smaller than the sum of their radii, collision is
detected.

This algorithm ensures that at least one pair of closest points
is maintained between two guide volumes, while keeping the
number of tracked pairs between guide volumes low (merg-
ing occurs when two different pairs slide towards the same
place). The algorithm has thus a n2 complexity where n is
the number of guide hair strands composing the hairstyle in-
stead of the total number of segments composing hair, as it
would be when using a naive algorithm.

The same adaptive wisp volumes and temporal coherence
technique are used for detecting collisions between the hair
and the body of the character. Distance tests are computed
between segments and spheres, as the body is approximated
by a unions of spheres. Using this technique, we obtained a
total frame rate of only 3 seconds per frame for a dynamic
hair style composed of a hundred of guide hair strands, in-
cluding self-interactions and interactions with the body.

5. Response to guide-strand interactions

As already mentioned hair is a very soft and light material.
Seen as a whole, it deforms rather than bouncing when it
collides with a relatively rigid obstacle such as the charac-
ter’s body. Indeed, hair self-collisions should be very soft as
well, and result into frictional rather than bouncing behav-
iors. Therefore, response to guide-strands interactions have
been modeled using soft penalty forces together with friction
forces.

5.1. Anisotropic response in wisp-based methods

As noted by Plante et al. [PCP01, PCP02], accounting for
collisions between hair wisps is fairly different from mod-
elling collisions between standard deformable bodies. Wisps
are highly anisotropic, since they are just a virtual represen-
tation for a group of hair strands. While two perpendicular
colliding wisps should be compressed in order to avoid in-
tersection, interpenetration can be allowed between neigh-

c© The Eurographics Association 2006.

Marie-Paule Cani, Florence Bertails / Hair Interactions

bouring wisps moving roughly in the same plane. In conse-
quence, the authors proposed an anisotropic model for the
interactions between hair wisps: Wisps of similar orienta-
tions are mostly submitted to viscous friction and penetrate
each other, whereas wisps of different orientations actually
collide in a very dissipative way.

Figure 5: The layered wisp model [PCP01] (right) captures
both continuities and discontinuities observed in real long
hair motion (left).

As illustrated in Figure 5, this approach yields convinc-
ing results, even for fast motions: the model adequately cap-
tures the discontinuities that can be observed in long, thick
hair, preserves hair volume and prevents crossing between
hair wisps. Nevertheless, the high number of contacts that
needed to be computed between the different wisps at rest
caused some noticeable artifacts such as unstabilities when
hair comes to rest.

The previous anisotropic collision response model was
re-used and improved by the Adaptive Wisp Tree (AWT)
method [BKCN03]: an AWT implicitly models some of the
mutual hair interactions, since neighboring wisps with sim-
ilar motions merge, thus efficiently yet robustly mimicking
the static friction in real hair. This merging behavior also
avoids subsequent collision processing between these wisps,
thus increasing efficiency as well as gaining stability from
the reduced number of primitives. Typically, an AWT simu-
lation starts with a reduced number of hair wisps. While the
character moves, these wisps refine where and when needed
(see Figure 6), to merge again as soon as they can. When the
character is back at rest, the simulation eventually ends up a
single large hair wisps. This totally avoids the local unstabil-
ities noted in previous approaches.

5.2. Setting up realistic penalty and friction forces

The recent work on Super-Helices tackled the problem of
setting up more accurate response forces between interacting
guide-strands [BAC∗06]. Interactions between guide-hairs,
and between hair and external objects (such as the body) are
performed through penalty forces which include a normal
elastic response together with a tangential friction force.

As in [Dur04], the normal penalty force is stabilized
thanks to a quadratic regularization for small penetrations.

Figure 6: Left: The structure of an AWT at a given anima-
tion step. Most of the parent wisps (in red) have split into
medium-size wisps (in green), which eventually have split
into small ones (in white). Right: Rendering of the same
frame [BKCN03].

From a regularization depth δreg (arbitrarily chosen), the nor-
mal reaction force RNRNRN exerted between the two closest points
of interacting guide-strands is computed as follows:

if (gap ≤ 0) RNRNRN = 000
if (0 ≤ gap ≤ δreg) RNRNRN = kc gap2

2δreg
ncncnc

else RNRNRN = kc (gap− δreg
2)ncncnc

where ncncnc is the unitary vector giving the direction of colli-
sion (calculated as the cross product of the vectors defining
the two closest segments), and kc an arbitrary constant value.

Figure 7: Angle θ between the fiber orientation and its rela-
tive velocity w.r.t the external object in contact with the fiber.

To simulated friction between wisps in contact or friction
with an obstacle, the method extends viscous friction law
in [CK05], defined as :

RT = −ν (vrel − (vrel.nc)nc)

To account for the oriented scales covering individual hair
fibers, the friction coefficient ν is multiplied by a sine func-
tion to account for the orientation of hair fibers with re-
spect to their sliding motion over the external object: ν =
ν0 (1+ sin(θ/2)), where angle θ is defined in Figure 7.

The parameters of interaction forces, as well as the other
parameters of the Super-Helices model, can be set up using
the actual study of real wisps of hair: The friction parame-
ter ν0 between hair and a given material is directly adjusted
from real observations of sliding contacts between the hair
clump and the material.

As Figures 8 and 9 show, the Super-Helices model results
in realistic simulations which can be compared side by side
with videos of real hair in motion.

c© The Eurographics Association 2006.

Marie-Paule Cani, Florence Bertails / Hair Interactions

Figure 8: Validation of the friction model in [BAC∗06] on a sliding
motion of a smooth (left) and curly (right) hair clump over different
kinds of material (left: wooden surface, right: cotton).

Figure 9: Comparison between a real full head of hair and
the model based on interacting Super-Helices [BAC∗06], on
a head shaking motion (straight and clumpy hair type).

6. Conclusion

As we have shown, processing hair interactions requires a
dedicated set of methods, due to the very specific nature
of the hair material. Impressive advances were made in the
last six years, from the first models able to handle hair self-
collisions to efficient, robust and even partly validated meth-
ods. This chapter has detailed several specific solutions that
range from the use of a volumetric approach when a very
quick solution is required to realistic models that still keep
the computational load to an acceptable rate.

In spite of all these advances, there still remains very chal-
lenging issues in the modeling of hair self-interactions: these
interactions are indeed the origin of the complex collective
behavior of hair. Especially they cause hair to group into
clusters during motion; this phenomenon has never been ac-
counted before (except in very simplified models, such as the
AWT), as previous models usually assume that hair granular-
ity is fixed by the number of simulated guide-strands. More-
over, hair interactions vary a lot according to external con-
ditions such as moisture (wet hair being the extreme case),
combing, or the use of cosmetic products. Lastly, hair tribo-
electricity has never been modelled in an accurate way.

Future research should include attempts to make volumet-
ric methods such as the one presented in section 3 more ac-
curate at low cost, by taking local hair directional distribu-
tion into account while setting up the response force. The ap-
proaches that seek for realism should probably extract the in-
ternal damping inside a hair wisp from the preliminary study
of hair chunks actually modeled using a full set of interact-
ing hair strands. This study should also bring more accurate
criteria for splitting a wisp into sub-wisps or merging them,
and could help characterizing the number of hair guides re-

quired according to the natural curliness and smoothness of
a given hair type.

Acknowledgments

The authors would like to thank all the collaborators who
have worked with them on hair animation in the past few
years, and more specifically Eric Plante, Pierre Poulin, Tae-
Yong Kim, Ulrich Neumann, Clément Ménier, Basile Au-
doly, Bernard Querleux, Jean-Luc Lévêque and Frédéric
Leroy.

References
[AUK92] ANJYO K., USAMI Y., KURIHARA T.: A simple

method for extracting the natural beauty of hair. In Proceedings
of ACM SIGGRAPH 1992 (August 1992), Computer Graphics
Proceedings, Annual Conference Series, pp. 111–120.

[BAC∗06] BERTAILS F., AUDOLY B., CANI M.-P., QUERLEUX

B., LEROY F., LÉVÊQUE J.-L.: Super-helices for predicting the
dynamics of natural hair. In ACM Transactions on Graphics (Pro-
ceedings of the SIGGRAPH conference) (August 2006).

[BCN03] BANDO Y., CHEN B.-Y., NISHITA T.: Animating hair
with loosely connected particles. Computer Graphics Forum 22,
3 (2003), 411–418. Proceedings of Eurographics’03.

[Ber06] BERTAILS F.: Simulation de chevelures naturelles. PhD
thesis, Institut National Polytechnique de Grenoble, 2006.

[BKCN03] BERTAILS F., KIM T.-Y., CANI M.-P., NEUMANN

U.: Adaptive wisp tree - a multiresolution control structure
for simulating dynamic clustering in hair motion. In ACM
SIGGRAPH Symposium on Computer Animation (July 2003),
pp. 207–213.

[BMC05] BERTAILS F., MÉNIER C., CANI M.-P.: A practi-
cal self-shadowing algorithm for interactive hair animation. In
Graphics Interface (May 2005). Graphics Interface’05.

[CCK05] CHOE B., CHOI M., KO H.-S.: Simulating complex
hair with robust collision handling. In SCA ’05: Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation (2005), pp. 153–160.

[CJY02] CHANG J. T., JIN J., YU Y.: A practical model for hair
mutual interactions. In ACM SIGGRAPH Symposium on Com-
puter Animation (July 2002), pp. 73–80.

[CK05] CHOE B., KO H.-S.: A statiscal wisp model and pseudo-
physical approcahes for interactive hairstyle generation. IEEE
Transactions on Visualization and Computer Graphics 11, 2
(March 2005).

[CSDI99] CHEN L., SAEYOR S., DOHI H., ISHIZUKA M.: A
system of 3d hairstyle synthesis based on the wisp model. The
Visual Computer 15, 4 (1999), 159–170.

[DTKT93] DALDEGAN A., THALMANN N. M., KURIHARA T.,
THALMANN D.: An integrated system for modeling, animating
and rendering hair. Computer Graphics Forum 12, 3 (1993), 211–
221.

[Dur04] DURVILLE D.: Modelling of contact-friction interac-
tions in entangled fibrous materials. In Procs of the Sixth World
Congress on Computational Mechanics (WCCM VI) (September
2004).

c© The Eurographics Association 2006.

Marie-Paule Cani, Florence Bertails / Hair Interactions

[HMT01] HADAP S., MAGNENAT-THALMANN N.: Modeling
dynamic hair as a continuum. Computer Graphics Forum 20,
3 (2001), 329–338. Proceedings of Eurographics’01.

[KH01] KOH C., HUANG Z.: A simple physics model to animate
human hair modeled in 2D strips in real time. In Computer Ani-
mation and Simulation ’01 (Sept. 2001), pp. 127–138.

[KN00] KIM T.-Y., NEUMANN U.: A thin shell volume for mod-
eling human hair. In Computer Animation 2000 (2000), IEEE
Computer Society, pp. 121–128.

[KN02] KIM T.-Y., NEUMANN U.: Interactive multiresolution
hair modeling and editing. ACM Transactions on Graphics 21, 3
(July 2002), 620–629. Proceedings of ACM SIGGRAPH 2002.

[LK01] LEE D.-W., KO H.-S.: Natural hairstyle modeling and
animation. Graphical Models 63, 2 (March 2001), 67–85.

[PCP01] PLANTE E., CANI M.-P., POULIN P.: A layered wisp
model for simulating interactions inside long hair. In EG work-
shop of Animation and Simulation (sep 2001).

[PCP02] PLANTE E., CANI M.-P., POULIN P.: Capturing the
complexity of hair motion. Graphical Models (Academic press)
64, 1 (january 2002), 40–58.

[RCFC03] RAGHUPATHI L., CANTIN V., FAURE F., CANI M.-
P.: Real-time simulation of self-collisions for virtual intesti-
nal surgery. In Proceedings of the International Symposium on
Surgery Simulation and Soft Tissue Modeling (2003), Ayache N.,
Delingette H., (Eds.), no. 2673 in Lecture Notes in Computer
Science, Springer-Verlag, pp. 15–26.

[RCT91] ROSENBLUM R., CARLSON W., TRIPP E.: Simulating
the structure and dynamics of human hair: Modeling, rendering,
and animation. The Journal of Visualization and Computer Ani-
mation 2, 4 (1991), 141–148.

[Rob94] ROBBINS C. R.: Chemical and Physical Behavior of
Human Hair, third ed. Springer-Verlag, New York, 1994.

[vO91] VAN OVERVELD K.: An iterative approach to dynamic
simulation of 3-d rigid-body motions for real-time interactive
computer animation. The Visual Computer 7 (– 1991), 29–38.

[WFK∗06] WARD K., F.BERTAILS, KIM T.-Y., MARSCHNER

S., CANI M.-P., LIN M.: A survey on hair modeling: Styling,
simulation and rendering. IEEE Transaction on Visualization and
Computer Graphics (2006). To appear.

[WL03] WARD K., LIN M. C.: Adaptive grouping and subdivi-
sion for simulating hair dynamics. In Pacific Graphics Confer-
ence on Computer Graphics and Applications (October 2003),
pp. 234–243.

[Zvi86] ZVIAK C.: The Science of Hair Care. Marcel Dekker,
1986.

c© The Eurographics Association 2006.

EUROGRAPHICS 2006 Tutorial

© The Eurographics Association 2006

Collision Detection on Deformable Surfaces

Pascal Volino and Nadia Magnenat-Thalmann

MIRALab, University of Geneva - CH-1211 Geneva, Switzerland

Abstract
Deformable objects cover a large range of applications in computer graphics and simulation, ranking from
modeling techniques of curved shapes to mechanical simulation of cloth or soft volumes. Efficient collision
detection is used in all these applications for ensuring consistent design and simulation.

1. Collision Detection Strategies

Unlike rigid bodies, deformable objects have evolving
shapes. In most cases, this implies that their surface are
curved. Adequate modeling techniques are needed to
describe these objects. Among the most popular, polygonal
meshes and implicit surfaces (for example metaballs) are
used. Whereas surfaces are usually described as polygonal
meshes (usually flat polygons such as triangles or
quadrangles, but possibly also curved patches such as
Bezier patches or subdivision surfaces), volumes are most
of the time also described by their bounding surfaces.
Collision detection is usually performed on these surfaces.

The usual complexity of collision detection processes result
from the large number of primitives that describe these
surfaces. Most of collision detection applications need to
compute which polygons of large meshes do actually
collide. In most of the cases also, these meshes are animated
(through user interaction or simulation processes) and
collision detection has to be involved at each steps of these
animations for ensuring immediate and continuous feedback
to the animation control.

This creates a particular context that collision detection has
to take advantage for optimal performance.

1.1. Hierarchy Structure

Most of efficient collision detection algorithms take
advantage of a hierarchical decomposition of the complex
scheme. This allows to avoid the quadratic time of testing
extensively collisions between all possible couples of
primitives.

There are two major ways of constructing such hierarchies:

* Space subdivision schemes, where the space is divided in
a hierarchical structure. These are typically octree
methods. Using such structure, a reduced number
geographical neighbors of a given primitive are found in
log(n) time (the depth of a hierarchy separating
geographically n primitives) and tested for collisions
against it.

Figure 1: Space subdivision methods, flat (left) or
hierarchical (right) rely on a partition of space into regions

containing primitives.

* Object subdivision schemes, where the primitives of the
object are grouped in a hierarchical structure. These are
typically methods based on bounding volume hierarchies.
Using such structure, large bunches of primitives may be
discarded in log(n) time (the depth of a well-constructed
hierarchy tree of n primitives) through simple techniques
such as bounding-volume evaluations.

Figure 2: Object subdivision methods rely on a subdivision
of the scene into groups of primitives.

Other methods, such as voxel methods, projection methods
or render overlap methods, usually belong to non-
hierarchical space subdivision schemes.

Any of these methods may be used in the context of
deformable objects. However, maximum efficiency is
obtained by taking advantage of all invariants that could
reduce the amount of time spent in computation. In the
context of deformable surfaces which use extensively
discretized surface animations (polygonal meshes or
patches animated through motion of their control points),
the major invariant to take advantage of is the local
invariance of the mesh topology.

Unlike polygon soups, where the primitives are totally
independent one from another, the primitives of a polygonal

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

mesh maintain a constant adjacency structure which
defines, in a local state, some constant geographic
properties between these primitives. Hence, adjacent
elements of a polygonal mesh have similar positions
whatever the motion of the surface, during all the
animation.

Figure 3: A polygon soup, and a polygonal mesh which
maintains local position constancy.

Considering that the topology of the mesh defines a
constant native geographical neighborhood of the primitives
of the mesh (which are usually non-colliding primitives), a
good idea is to define the collision detection hierarchy
based on this criteria. On the other hand, any topologically
unrelated primitives ("far away" from each other on the
mesh topology) which come to be geographically close to
each other are very likely to be colliding.

This is why object-based hierarchies are very likely to be
the best paradigm for defining an efficient collision
detection algorithm for animated meshes. Compared to
space subdivision methods, the main benefits are the
following:

* In most cases, they can work on a constant hierarchy
structure, which does not need to be updated along the
animation.

* The topology of the hierarchy reflects the adjacency of the
surface regions described in it. Adjacency information
may thus be used in various optimizations, such as the
approach for optimizing self-collision detection, as
discussed later.

2. Bounding Volume Hierarchies

Hierarchical collision detection heavily relies on bounding
volumes. Performance depends on:

* How tight they enclose the object part corresponding to
their hierarchy level, for avoiding at best false positives
in the collision detection tests.

* How efficiently they can be computed from a primitive.

* How efficiently they can be combined, for propagation up
in the hierarchy.

* How efficiently they can be updated if the object is
animated.

* How efficiently a collision test can be performed between
two volumes.

The adequate bounding volume is chosen so as to offer the
best compromise between these factors, and this is quite
dependent on the simulation context (kind and number of
object primitives, kind of animation...).

Among popular choices,

* Bounding spheres or ellipsoids.

* Bounding boxes or Discrete Orientation Polytopes.

2.1. Choosing the Suitable Bounding Volume Scheme

The major choice is to be set between three types of
bounding volumes:

* Axis-independent volumes, such as spheres.

* Axis-aligned volumes which are defined in absolute world
coordinates.

* Object-oriented volumes which are defined in local object
coordinates.

This choice is particularly important when working with
animated objects. In that context, the most important issue
is to reduce the time taken for updating the bounding
volume hierarchy for each step of the animation.

2.1.1. Object-Oriented Volumes

The first idea is to attempt to skip this recomputation
whenever possible. This is possible when working with
rigid objects, which only have rigid motion in the scene
(translation and rotation). In this case, rather than defining
the volumes in world coordinates, attaching them to object
coordinates removes the need of updating them.

Another motivation for using axis-oriented volume is the
optimization of the bounding tightness. Hence, is the object
is flat or elongated, there are large benefits in using an
adequately aligned volume that fits the shape tightly.

The difficulty is however moved to another place in the
collision detection process: Combining and comparing
bounding volumes defined in different coordinate systems.
While the combination process is usually performed once
for all in the hierarchy describing rigid objects, testing for
collisions between bounding volumes require coordinate
transformation computations that may take significant
computation resources. Some schemes also expand the
volumes in order to compensate the change of axis rotation,
at the expense of bounding tightness. This difficulty can
also be avoided by using axis-independent volumes
(spheres), but these are very inefficient in bounding
tightness (specially for flat or elongated objects).

2.1.2. Axis-Aligned Volumes

The other idea is to make perform extensively the
recomputation of the bounding volume hierarchy at each
position change, with operations on bounding volumes
made as simple and efficient as possible. This is actually the
best approach for deformable objects, as there is no way to
efficiently exploit shape invariance.

The most popular choice for this are axis-aligned bounding
boxes. They are essentially defined by the minimum and
maximum coordinates of the enclosed objects, which can be
computed very easily. Combining bounding boxes is also
trivial, and collision test between two boxes is simply
evaluated by testing min-max overlap along all coordinates.

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

Figure 4: A bounding box and a bounding sphere.

One of the biggest issues with axis-aligned bounding boxes
is that they do not always offer good bounding tightness,
particularly when objects are flat or elongated along a
diagonal direction. Of course, reverting to their object-
oriented variant would void the benefits of fast collision
tests. The other solution is to use a generalization of
bounding boxes along more directions than the native axes
alone.

2.2. Beyond Bounding Boxes: Discrete Orientation
Polytopes

Bounding boxes are based on min-max interval
computations on the directions defined by the natural world
coordinate axes. While this is sufficient for defining
bounding volumes, why not adding more directions? It's
like "cutting away" a bounding volume along particular
directions so as to obtain tighter bounding volumes.

Figure 5: Discrete Orientation Polytopes are
generalizations of bounding boxes along arbitrary

directions.

Mathematically, given a set of directions Di, a Discrete
Orientation Polytope (DOP) a set of vertices Vk is defined
by two vectors Mi and Ni such as:

Mi = mink(Di . Vk) and Ni = maxk(Di . Vk)

The union of two DOPs is computed as follows:

Mi = min(Mi1 , Mi2) and Ni = max(Ni1 , Ni2)

Two DOPs do not intersect if the following condition is met
for at least one value of i:

Mi1 > Ni2 or Mi2 > Ni1

The adequate set of directions to be considered should
describe a sampling of the direction space as uniform as
possible. Of course, this sampling is point-symmetric, since
a direction vector also represents its opposite direction.

In 3D, the easiest approach is to construct a set of directions
starting from the cube (standard bounding box, which is a
DOP of 6 directions):

D0=(1,0,0) D1=(0,1,0) D3=(0,0,1)

... and add the cube diagonals (directions to its vertices):

D4=(√3,√3,√3) D5=(√3,-√3,-√3) D6=(-√3,√3,-√3)
D7=(-√3,-√3,√3)

... for obtaining a DOP describing 14 directions. 12
additional directions can be added by using the square
diagonals (directions to its edge centers):

D8=(0,√2,√2) D9=(0,√2,-√2) D8=(√2,0,√2)
D9=(-√2,0,√2) D10=(√2,√2,0) D11=(√2,-√2,0)

Note that for this set, it is not actually necessary to
normalize the direction vectors, relieving the necessity of
performing multiplications for computing a DOP enclosing
a set of vertices. However, normalized direction vectors
offer good evaluation of the size of the DOP through the
min-max interval width in each direction, as well as a
simple expansion scheme for distance-based collision
detection.

Figure 6: The 26 direction set defined by a cube.

When more directions are needed, it is also possible to
construct a set from a dodecahedron (12 directions), adding
to it directions to its vertices (20 additional directions) and

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

to its edge centers (30 additional directions). The benefit of
this set is a better distribution of directions. However,
multiplications cannot be avoided for computing the DOP
of a set of vertices.

Ultimately, with a huge number of directions, DOP tend to
get the shape of the convex hull of the enclosed objects.

The choice to be made is actually to find the optimal
number of directions defining the DOP. In one hand, the
more directions, the tighter the DOP fits to the convex hull
of the object (or to the object itself if it is convex). In the
other hand, the more directions, the more computation is
needed for computing the DOPs and evaluating their
intersections. The best choice is actually dependent on the
shape of the objects (flat or elongated objects will get more
benefits from tight DOPs than round or concave ones), and
also the extra cost of performing explicit collision detection
on object marked as colliding by rough quickly-evaluated
DOPs (for instance, it takes much more time evaluating
collisions between curved patches than flat polygons). The
only way of finding the best compromise is to carry out
experimental benchmarks on various examples typical of
the wanted simulation context.

3. Collision Detection on Polygonal Meshes

Polygonal meshes are the most popular way of describing
deformable objects. They may either represent the surface
object itself (for example, cloth), or the boundary of a
volume object. Collision detection is usually carried out by
finding which of the polygons of the meshes are actually
colliding.

Figure 7: Objects animated and simulated as polygonal
meshes.

Given the considerations discussed above, the typical best
choices for detecting collisions on animated polygonal
meshes are the follows:

* Use of a hierarchical bounding volume scheme
constructed on the objects.

* Use of efficient axis-aligned bounding volumes, such as
DOPs.

Choosing a constant hierarchy built on the mesh seems to
be quite a good assumption, as for typical objects, the
distance on the mesh is quite a good evaluation of the native
distance that should separate features of the mesh, and
bounding volumes enclosing a small region of the mesh are
likely to remain small for any usual deformation.

Figure 8: Moving polygonal meshes describing the cloth
surface.

1.2. Building Mesh Hierarchies

The performance of the collision detection algorithm is
highly dependent on how well-constructed the hierarchy
tree is.

The tree should be well conditioned, meaning:

* Each node should have at maximum O(1) children.

* The tree should be balanced, so the tree should have
O(log n) maximum depth.

Another essential quality of the tree is to offer minimal
bounding volumes for each tree node. This means that the
surface elements represented by a tree node should have
maximum vinicity. Thus, it is important to build the
hierarchy consistently to the topology of the mesh, which is
a good evaluation on the relative positioning of the mesh
elements.

One efficient solution is to build the hierarchy tree using an
ascending process. First the leaf nodes of the tree are
constructed, corresponding to all the individual polygons of
the surface. Then, an upper layer of the hierarchy is built by
grouping two or three nodes in a common parent node. The
tree is built level by level until only one element remains,
which is the root node of the tree.

The grouping can be performed by a region-merging
algorithm. Initially, each surface polygon is assigned a
unique region ID, which identifies a group of polygons.
During the grouping process, candidate edges that separate
two different groups (two polygons having different ID) are
considered. One of these edges is then selected, and all the
polygons of one group (usually the smallest) are assigned
the ID of the polygons of the other group. This algorithm
generates groups of connected regions, within each of
which all the polygons are connected by at least one edge.
A counter should also be included in each group, to keep
track of the number of subgroups that have been merged in
the group. It can be used to limit the number children a
group has. This algorithm is in fact very close to automatic
labyrinth-generation algorithms which are based on the
same region-merging scheme.

It is important to determine efficiently which nodes to
group in order to create the parent node. First, only adjacent

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

surface regions should be connected. Secondly, the regions
generated should be as “well shaped” as possible, i.e. closer
to a disk than a elongated or sprawling branched structure.
The resulting bounding boxes will therefore be as compact
as possible, whatever the result of any reasonable 3D
deformation of the surface.

A good way to characterize “well-shaped” polygons is to
compare its contour length to its surface area. The algorithm
can construct groups by maximizing the “shape factor”
sqrt(SurfaceArea) / ContourLength. At a given hierarchy
level, this ratio is computed for any group that can be
generated by the removal of an edge. The potential groups
are then sorted by this criteria, and new groups are then
constructed wherever possible, according to this sorting.
Between two hierarchy levels, the algorithm first tries to
merge groups into pairs, and then merges the remaining
groups into these new groups.

Figure 9: Building a mesh hierarchy

Though this proposed grouping process does not necessarily
yield hierarchy regions that globally optimize the shape
factors, the results obtained are however quite acceptable
for our application. More precisely, the self-collision
detection algorithm remains efficient as long as the
bounding volumes of non-adjacent hierarchy groups (that
do not share at least a common vertex) do not intersect.
Using the proposed algorithm, this feature is verified almost
everywhere in usual polygonal meshes.

This algorithm should be implemented to build a hierarchy
on any polygonal mesh that will be involved in collision
detection. This computation should only be performed as
preprocessing, and does not have to be performed for each
collision detection when the surfaces have moved.

Figure 10: Hierarchisation of a 50 000 triangle mesh:

Levels 5 to 7.

Figure 11: Hierarchisation of a 50 000 triangle mesh:
Levels 8 to 10.

3. Self-Collision Detection

There are very few algorithmic differences between self-
collision detection within one object and collision detection
between two separate objects. Ultimately, a hierarchical
algorithm will end up splitting a single object into separate
pieces, and perform usual collision detection between these
pieces.

There is actually a major performance issue related to self-
collision detection, related to adjacent elements actually
seen as "colliding" by usual bounding-volume tests.

3.1. Why Self-Collision Detection is so Inefficient

Self-collision detection pertains to collisions between
elements of the same surface. Of course, neighboring
elements of the same surface are naturally in contact to each
other. Any collision detection algorithm is designed to
detect geometric contact between elements, and thus will be
misled by these adjacent elements, and will consider them
as colliding elements.

The number of adjacencies is usually proportional to the
total number of elements in one surface. In a triangular
mesh, the adjacency number is roughly 1.5 times the total
number of triangles for common-edge adjacencies and 6
times the total number of triangles for common-vertex
adjacencies.

The time spent detecting collisions is proportional to the
number of colliding elements multiplied by the logarithm of
the total number of elements. Typically, the number of self-
colliding elements is very small compared to the total
number of elements and often null if no collisions occur.
Thus, “detecting” all the adjacencies as if they were
collisions is a great waste of time, particularly in situations
with very few collisions.

For efficiency, an algorithm should be designed to ignore
all collisions that in fact are only element adjacencies.

3.2. Optimizing Self-Collision Detection with Curvature
Evaluation

The curvature criteria is expressed as follows:

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

A flat surface cannot have self-collisions. On the other
hand, if a surface has self-collisions, it must be bent enough
to form a loop.

Is there a way to formalize this intuition? Curvature appears
to be the key for achieving efficiency in self-collision
detection.

When there are self-collisions on a surface, at any
geometrical intersection point, the surface appears twice.
For obtaining such configuration, the surface has to be bent
enough to form a loop.

Figure 12: Self-collisions only occur if the surface is bent
enough for creating a loop.

This condition cannot be met if there exists a direction for
which the orthogonal projection of the surface does not
exhibit folds. If the surface is continuous, this means that all
the normals of the surface have a dot product of constant
sign with that direction vector.

We also have to consider self-collisions that may occur
because of the shape of the surface boundary. This may also
exhibit loops even if the surface is almost flat, when the
surface contour itself exhibits a loop causing self-
intersection. An additional test has therefore to be done on
the surface contour. Having found a projection direction for
the surface curvature, a sufficient criteria for non-
intersection is that the projection of the surface contour
along this direction should not self-intersect.

Thus, a surface does not have self-collisions if the following
criteria are met:
* Let S be a continuous surface in Euclidean space,

delimited by one contour C.
if
- There exists a vector V for which N.V > 0 at (almost)

every point of S (N being the normal vector of the
surface at the considered point)

and
- The projection of C on a plane orthogonal to V along

the direction of V has no self-intersections
then
- There are no self-collisions on the surface S.

S

C

V

Figure 13: The curvature criteria.

Such criteria allow us to efficiently discard, from the
detection process, “almost flat” surface regions that will not
exhibit internal self-collisions. The union of two adjacent
surface regions may also be “almost flat” so we need not
detect collisions between these two regions. In particular,
adjacent elements need not be checked for collisions.
Implemented efficiently, this criterion will allow us to deal
with the major cause of inefficiency of self-collision
detection.

It is now important to adapt the hierarchical collision
detection scheme to include this criteria. As discussed, the
general hierarchical collision detection algorithm works
with bounding boxes. There are two main processes:

* For detecting collisions within a surface region, collisions
are detected within and between all the children of its
corresponding hierarchy tree node.

* For detecting collisions between two surface regions,
collisions are detected between the respective children
nodes.

Collisions between two nodes may be efficiently detected
using a bounding-box evaluation: if the bounding boxes do
not intersect, there are no intersections. However, in the
standard hierarchical algorithm, there are no bounding box
techniques for self-collision detection within one node.
Replacing the bounding box test by a curvature test can
overcome this limitation.

For the self-collision stage, how to integrate curvature
considerations is clear: Collisions should be detected within
one node only if the corresponding surface does not match
the curvature criteria.

When detecting collisions between two nodes, we should
consider two cases: Dealing with two adjacent surfaces,
collisions should be detected between the nodes only if the
corresponding surface union does not verify the curvature
criteria (obviously, the bounding boxes will always
intersect, so the curvature criteria acts as a good
replacement test). Dealing with non adjacent surfaces, the
standard bounding box criteria should be used.

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

No Detection Between No Detection Between

Detection Within
No Detection Within

Detection Between

Self-Collisions

Inter-Collisions
(Adjacent)

Inter-Collisions
(Non-Adjacent)

Detection Between

Figure 14: Using curvature or bounding volumes: The
different cases.

Thus, the curvature criteria is incorporated into the
hierarchical algorithm by replacing the bounding volume
test by a curvature test within surface regions or between
adjacent surface regions.

Given a curved surface, we need to determine the existence
of, and find, a compatible direction vector that has positive
dot product with all normal vectors of the surface. In our
discrete model of the surface, that means that this vector
should have positive dot product with the normals of all the
surface polygons.

Similar to what was done for the bounding boxes, “direction
boxes” that contain the allowable directions will be
propagated up to the hierarchical parents.

Assimilating the direction space to a sphere, the allowable
direction box of a flat mesh polygon is a half sphere. When
we consider two polygons, the globally allowable direction
is the common part of the corresponding two sphere halves.
This gives us the mechanism that should be propagated
upwards in the tree hierarchy. The resulting direction box at
the root of the tree may be empty, and in this case no
suitable direction can be found for the whole surface. If not
empty, any vector within the direction box is suitable.

Unlike volumes boxes that can be represented efficiently
using space coordinates, there is no easy way to describe
our direction boxes exactly. One solution is to use
"direction cones" defined by a direction and an aperture
angle. The bounding tightness is however very limited and
combining two cones is not an efficient operation.

That difficulty can also be addressed by building a discrete
set of direction vectors that will represent our direction
space. The same set of sample directions can be used as the
ones used for defining the DOPs used as bounding volumes:
Using the 26 directions toward the face centers, vertices and
edge centers of a cube, the angle accuracy is around 25°.
The more directions used, the more accurate are the
direction evaluations, at the expanse of computation time.

During the update process of the bounding volumes in the
hierarchy tree, the direction boxes are updated as well. For
each polygon of the mesh is computed the set of direction
from the sample set that have positive positive dot product
with the normal of the polygon. The result is stored in an
array of boolean. Propagation up in the tree is done by
combining these arrays with element-wise boolean AND
operations. Then for any collision test, the low curvature
criteria is met if TRUE elements remains in the array, and
the corresponding directions are the directions that meet the
dot product requirements for all the corresponding surface
region.

Figure: Combining curvature boxes and bounding volumes
during the detection process.

Another major problem is the adjacency test: Given two
arbitrary nodes in the hierarchy, are the corresponding
surfaces adjacent? (Do they have at least one common
vertex?)

This represents the major difficulty of our algorithm. This
adjacency should be detected efficiently (the computation
complexity should be O(log n)), and the extra storage in the
tree data structure should be reasonable (the extra
information for each node should be O(1)).

For each hierarchical node, a list of vertices should be
defined, these being the vertices surrounding the
corresponding surface region. Several circular lists should
be considered when dealing with non-connected surfaces or
surfaces having holes. Obviously, if two nodes are adjacent,
they have at least one of these vertices in common.

Not all the boundary vertices should be stored, but only the
vertices that separate two different surface regions among
those of the highest hierarchy level that also do not include
the region being considered. “Outside” is considered as a
particular surface region. Whatever the node level and the
total number of polygons surrounding this surface region,
the number of stored vertices is approximately constant, and
for usual meshes hardly exceeds six. As this adjacency
information only depends on the mesh topology, this stage
is usually performed once in the preprocessing stage.

Figure 15: Storing region boundary vertices in the
hierarchy tree: The number remains roughly constant

whatever the level in the hierarchy.

Adjacency testing is then performed easily: Two hierarchy
nodes are adjacent if and only if they have at least one
common vertex among those stored for these two nodes.
This test is performed in O(1).

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

Figure 16: Two adjacent (point-connected) surface regions
of the hierarchy have at least one common stored vertex.

The boundary shape of the surface may also be the cause of
self-collisions. In most cases, this happens when an
elongated strip is fold so as to produce a cone-shaped
surface. Such collisions are also very likely to happen
around sharp concavities of the surface contour, where
minimal folds can also produce self-collisions.

The most systematic solution would be to construct, for any
surface region fulfilling the surface normal criteria, the 2D
projection of the surface boundary on a plane orthogonal to
one of the found directions. Despite flatness, collision
detection should be carried out within or between children
containing boundary intersections. This 2D collision
detection process can also be based on a similar kind of
curvature optimization. This would however require a
significant amount of extra computation, along the data
required for managing a contour-based hierarchies.

Practical test have however shown that these tests are rarely
significant in most "real-world" situations involving for
example garment simulation or deformation of soft objects.
These tests may however improve detection of long objects
with large curvature deformations (simulation of long
ribbons) or surfaces with complex non-convex contours
(cuts, holes).

These marginal situations may be addressed using various
low-cost approximate techniques. The simplest method is to
"expand" the direction boxes with a certain angle for mesh
elements that are located on the boundary of the surface.
This angle may also be increased for elements adjacent to
non-convex boundary locations. The larger the angle, the
most systematic the collision detection is, at the expanse of
computation time.

3.3. Efficiency

The main interest of this algorithm is its efficiency in
detecting self-collisions: Hierarchy regions that are not
curved enough to contain self-collisions are efficiently
omitted from the detection process. The following figure
shows the regions considered when performing collision
detection between two objects, as well as self-collision
detection within these objects also. As a result, the
algorithm efficiently focuses on the intersecting parts of the
surfaces.

Figure 17: Collision detection is focused on the colliding
parts of the surface.

The execution time required for performing collision
detection is subdivided as follows:

* Update of the bounding volumes of the hierarchy tree.

* Update of the direction boxes of the hierarchy tree, if self-
collision detection is required.

* Running the collision detection algorithm on the hierarchy
tree.

The time required for the two first steps is proportional to
the number of mesh elements. The involved computations
are quite reduced for mesh elements (evaluation of min-max
of linear combination of vertex coordinates and normal
computation of polygons usually also required for other
purposes (mechanics, rendering...), and dot product with a
set of directions). Their propagation along the hierarchy tree
is also trivial (min-max interval merges, boolean
operations). These linear-time computations only add a
small overhead to the global simulation process.

Figure 18: During the detection process, surface regions
considered for the detection are similar in size and number

whatever the discretization.

The proposed scheme also behaves very well for highly
discretized surfaces, as extra discretization usually yields
flatter surfaces relatively to the size of the mesh elements.
Hence, unless being near a collision area, the area of the
surface regions considered during the detection process
always have similar sizes whatever their discretization.

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

The major benefit of the curvature-based hierarchical
collision is that full performance of hierarchical bounding-
volume collision detection is preserved for self-collision
detection, as the computation is not crippled by detecting all
the "colliding" adjacent mesh elements of the surface.

Figure 19: Cloth simulation is heavily relying on self-
collision detection.

4. Collision Response

Once the colliding polygons of the mesh have been
extracted, they need to be expressed as geometric
information that carries some meaning on how the surfaces
are colliding. Usually, collisions may be sorted out as
intersections, where two surface elements interpenetrate
each other, and proximities, where two surface elements
are separated by a distance below a given threshold, usually
representing the "thickness" of the surface. In the case of
collisions between polygonal meshes, we can identify the
following cases:

Edge-Vertex

Polygon-Edge

Polygon-Vertex

Edge-Edge Vertex-Vertex

Intersections

Common Proximities Marginal Proximities

Figure 20: Collision configurations in a polygonal mesh.

Collision response intends to enforce the fact that real
surfaces cannot cross each other. It may either handle
intersections usually by backtracking the motion leading to
the surface crossing and integrating the collision effect, and
proximities by maintaining a minimum separation distance
between the surfaces. In either case, the collision effect is
usually applied on the mesh vertices of the colliding
elements, which carries the geometrical information of the
mesh.

4.1. Collision Response Schemes

Collision response has to reproduce reaction and friction
effects through adequate action in the ongoing mechanical
simulation. Its integration in the mechanical simulation
system goes through alteration of the mechanical quantities
from the value they would have without the collision
effects. There are two main ways for handling collision
response:

* Mechanical response, where the collision reaction is
simulated by forces or by force adjustments which
reproduce the contact effect.

* Geometrical response, where the collision reaction is
simulated by direct corrections on the positions and
velocities of the objects.

The mechanical approach is the most formal way of dealing
with the problem. The forces or energetic contributions
generated from the response can directly be integrated into
the mechanical model and simulated. As all the effects are
taken into account in the same computation step, the
resulting simulation produces an animation where collision
response and other mechanical forces add their effects in a
compatible way. Reaction is typically modeled by designing
a collision penalty force which will repulse the colliding
objects from each other and prevent them from intersecting.
The repulsion force function is usually designed as a
continuous function of the collision distance, and as a
piecewise function using simple linear or polynomial
intervals. Designing the optimal shape is difficult, because
of all these compromises which depend on the actual
mechanical context of the simulation. The biggest issue is to
model in a robust way geometrical contact (very small
collision distance), in which collision response forces only
act in a very small range when considered at the
macroscopic scale. This implies the use of very strong and
rapidly evolving reaction forces, which are difficult to
simulate numerically, since a suitable numerical process
should discretize the collision contact duration into
timesteps that are numerous enough for an accurate
reproduction of the collision effects and which cause
problem with the usual simulation timesteps which are
usually too large.

The geometrical approach aims to reproduce directly the
effects of collision response on the geometrical state of the
objects without making use of mechanical forces, and thus
in a process separated from the mechanical simulation. The
advantages are obvious: Geometrical constraints are directly
enforced by a geometrical algorithm, and the simulation
process is relieved from high intensity and highly
discontinuous forces or other mechanical parameters,
making it faster and more efficient. This drawback however
results from this separation: As collision response changes
the geometrical state of the objects separately from the
mechanical process, nothing ensures the compatibility of
this deformation to a correct variation of the mechanical
state that would normally result from it. Furthermore, there
is no compatible “additivity” of geometrical variations as
there is for forces and energy contributions. The resulting
collision effects may be incompatible with mechanics, but
also between several interacting collisions. All these issues
have to be addressed for providing a collision response
model that provides acceptable and steady responses
between all the frames of an animation.

Collision effects are decomposed into reaction effects
(normal components), which are the obvious forces
preventing the object penetrating into each other, and
friction effects (tangential components), which model
additional forces that oppose the sliding of objects. The
most common friction model it the solid Coulombian
friction, where friction forces opposing the motion do not
exceed reaction forces times a friction coefficient.

Bibliography

G. BERGEN, Efficient Collision Detection of Complex
Deformable Models Using AABB Trees, Journal of
Graphics Tools, 2(4), pp 1–13, 1997.

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

G. BERGEN, Collision Detection in Interactive 3D
Environments, Morgan Kaufmann Publishers, 2004.

G. BRADSHAW, C. O’SULLIVAN, Sphere-Tree Construction
Using Dynamic Medial Axis Approximation, ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pp 33–40, 2002.

R. BRIDSON, R. FEDKIW, J. ANDERSON, Robust Treatment of
Collisions, Contact and Friction for Cloth Animation,
ACM Transaction on Graphics, Proceedings of ACM
SIGGRAPH, 21(3), pp 594-603, 2002.

J.D. COHEN, M.C. LIN, D. MANOCHA, M.K. PONAMGI, I-
COLLIDE: An Interactive and Exact Collision Detection
System for Large-Scale Environments, Symposium of
Interactive 3D Graphics, pp 189-196, 1995.

S.A. EHMANN, M.C. LIN, Accurate and Fast Proximity
Queries Between Polyhedra Using Convex Surface
Decomposition. Proceedings of Eurographics, pp 500–
510, 2001.

C. ERICSON, Real-Time Collision Detection,. Morgan
Kaufmann Publishers, 2004.

K. FISHER., B. GARTNER, The Smallest Enclosing Ball of
Balls: Combinatorial Structure and Algorithms,
Symposium on Computational Geometry, pp 292–301,
2003.

K. FUJIMURA, H. TORIYA, K. YAMAGUSHI, T.L. KUNII,
Octree Algorithms for Solid Modeling, Computer
Graphics, Theory and Applications, Proceedings of
InterGraphics’83, Springer-Verlag, pp 96-110, 1983.

F. GANOVELLI, J. DINGLIANA, C. O'SULLIVAN, Buckettree:
Improving Collision Detection Between Deformable
Objects, Proceedings of Spring Conference on Computer
Graphics, 2000.

T. GIANG, C. O’SULLIVAN, Closest Feature Maps for Time-
Critical Collision Handling, Workshop on Virtual Reality
Interaction and Physical Simulation, 2005.

S. GOTTSCHALK, M.C. LIN, D. MANOCHA, OBB-Tree: A
Hierarchical Structure for Rapid Interference Detection,
Computer Graphics, Proceedings of ACM SIGGRAPH,
Addison-Wesley, pp 171-180, 1996.

M. HELD, J.T. KLOSOWSKI, J.S.B. MITCHELL, Evaluation of
Collision Detection Methods for Virtual Reality Fly-
Throughs, 7th Canadian Conference on Computational
Geometry, 1995.

P.M. HUBBARD, Collision Detection for Interactive
Graphics Applications, IEEE Transactions on
Visualization and Computer Graphics, 1(3), pp 218–230,
1995.

P.M. HUBBARD, Approximating Polyhedra with Spheres for
Time-Critical Collision Detection, ACM Transactions on
Graphics, 15(3) pp 179-210, 1996.

D.L. JAMES, D.K. PAI, BD-Tree: Output-Sensitive Collision
Detection for Reduced Deformable Models, ACM
Transactions on Graphics, 23(3), pp 393–398, 2004.

P. JIMENEZ, F. THOMAS, C. TORRAS, 3D Collision Detection:
A Survey, Computer and Graphics, 25(2), pp 269-285,
2001.

J.T. KLOSOWSKI, M. HELD, J.S.B. MITCHELL, Efficient
Collision Detection Using Bounding Volume Hierarchies
of k-DOPs, IEEE transactions on Visualization and
Computer Graphics, 4(1), pp 21-36, 1997.

T. LARSSON, T. AKENINE-MOLLER, Collision Detection for
Continuously Deforming Bodies, Proceedings of
Eurographics, pp 325-333, 2001.

T. LARSSON, T. AKENINE-MOLLER, A Dynamic Bounding
Volume Hierarchy for Generalized Collision Detection,
Workshop on Virtual Reality Interactions and Physical
Simulations, pp 91–100, 2005.

M.C. LIN, J.F. CANNY, Efficient Collision Detection for
Animation, Eurographics Workshop on Animation and
Simulation, 1992.

M.C. LIN, S. GOTTSCHALK, Collision Detection Between
Geometric Models: A Survey, Proceedings of the IMA
Conference on Mathematics of Surfaces, 1998.

J. LOMBARDO, M.P. CANI, F. NEYRET, Real-Time Collision
Detection for Virtual Surgery, Proceedings of Computer
Animation, IEEE Press, pp 82-91, 1999.

J. MEZGER, S. KIMMERLE, O. ETZMUSS, Hierarchical
Techniques in Collision Detection for Cloth Animation,
Journal of WSCG, 11(2), pp 322-329, 2003.

C. O’SULLIVAN.,J. DINGLIANA, Real-time Collision
Detection and Response Using Sphere-Trees, Spring
Conference on Computer Graphics, pp 83–92, 1999.

I.J. PALMER, R.L. GRIMSDALE, Collision Detection for
Animation using Sphere-Trees, Computer Graphics
Forum, 14, pp 105-116, 1995.

X. PROVOT, Collision and Self-Collision Handling in Cloth
Models Dedicated to Design Garments, Proceedings of
Graphics Interface, pp 177-189, 1997.

S. REDON., A. KHEDDAR, S. COQUILLARD, Fast Continuous
Collision Detection between Rigid Bodies, Computer
Graphics Forum (Proceedings of Eurographics), 21(3),
pp 279–279, 2002.

A. SMITH, Y. KITAMURA, H. TAKEMURA, F. KISHINO, A
Simple and Efficient Method for Accurate Collision
Detection among Deformable Polyhedra, Proceedings of
IEEE Virtual Reality Annual International Symposium,
pp 136-145, 1995.

M. TESCHNER, S. KIMMERLE, B. HEIDELBERGER, G.
ZACHMANN, L. RAGHUPATHI., A. FUHRMANN, M.P. CANI,
F. FAURE,N. MAGNENAT-THALMANN, W. STRASSEr,
Collision Detection for Deformable Objects. Computer
Graphics Forum, 24(1), pp 61–81, 2005.

G. VANDENBERGEN, Efficient Collision Detection of
Complex Deformable Models using AABB Trees,
Journal of Graphics Tools, 2(4), pp 1-14, 1997.

P. VOLINO, N. MAGNENAT-THALMANN, Efficient Self-
Collision Detection on Smoothly Discretised Surface

P. Volino, N. Magnenat-Thalmann / Collision Detection on Deformable surfaces

© The Eurographics Association 2006

Animation Using Geometrical Shape Regularity,
Computer Graphics Forum (Proceedings of
Eurographics), Blackwell Publishers, 13(3), pp 155-166,
1994.

R.C. WEBB, M.A. GIGANTE, Using Dynamic Bounding
Volume Hierarchies to improve Efficiency of Rigid Body
Simulations, Communicating with Virtual Worlds
(Proceedings of CGI’92), pp 825-841, 1992.

G. ZACHMANN, Rapid Collision Detection by Dynamically
Aligned DOP-Trees, Proceedings of IEEE Virtual Reality
Annual International Symposium, pp 90-97, 1998.

EUROGRAPHICS 2006 Tutorial

Continuous Collision Detection and Handling
for Rigid and Articulated Bodies

Stephane Redon†

i3D - GRAVIR - INRIA Rhone-Alpes - France

Abstract
In these notes, we present an overview of our recent work on continuous collision detection and handling methods,
which guarantee consistent simulations by computing the time of first contact and the contact state for colliding
objects. We describe techniques to perform continuous collision detection for rigid and articulated bodies. The
time-parameterized equations for continuous collision detection between rigid triangle primitives are presented
and methods are described to solve them efficiently. Continuous overlap tests between hierarchies of bounding
volumes, which help achieve efficient collision detection for complex models, are presented as well. In a second
part, we briefly discuss ways to compute a collision response based on the contact information provided by the
continuous collision detection solver. Especially, we describe how to couple the collision detection and dynamics
modules. Finally, we present some recent applications and extensions of continuous collision detection to motion
planning and six degree-of-freedom haptic display of rigid bodies.

1. Introduction

Collision detection methods can roughly be split into two
categories. Most well-known collision detection methods
are discrete: they sample the objects’ trajectories at discrete
times and report interpenetrations only. Discrete collision
detection methods, whereas generally simpler to implement
and used very frequently in dynamics simulators, may cause
various problems. Besides the lack of physical realism re-
sulting from the penetration, these methods can miss colli-
sions when objects are too thin or too fast. Whereas an adap-
tive timestep and predictive methods can be used to correct
this problem in offline applications, it may not be adapted in
interactive applications when a relatively high and constant
framerate is required.

A second problem due to the discretization of trajecto-
ries is that backtracking methods must be used to com-
pute the time of first contact, which is often required in
constraint-based dynamics simulation methods [FMM77,
MW88,Bar90]. These backtracking methods consist in look-
ing for the time of first contact through a recursive method.
Assume that the current time interval is [tn, tn+1]. Essentially,

† stephane.redon@inria.fr

Figure 1: Allowing interpenetration between objects can
lead to incoherences in the simulation. In this example, the
object that penetrated at time t2 pops out from the wrong side
of the obstacle.

one time of first contact te is estimated in this interval (for ex-
ample, by taking the intermediate instant tn+tn+1

2 , or by a lin-
ear or quadratic interpolation method depending on objects’
velocities and and accelerations). Objects’ positions are then
computed at this instant and an interpenetration detection is
performed again. Depending on whether the objects inter-
penetrate or not, the algorithm decides that the first time of
collision is in [tn, te] or [te, tn+1], respectively, and loops on

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

Figure 2: Interpenetrations between objects may yield un-
stable simulations.

this new interval. The process stops when the amount of in-
terpenetration is smaller than a predetermined threshold.

Such backtracking methods can have a high computa-
tional cost (which may be difficult to predict) when ob-
jects are complex or when they have interpenetrated much.
Besides, since backtracking is only performed when an in-
terpenetration has been detected, non-connected objects, or
even non-convex objects, can enter a configuration from
which they could not get out (consider, for example, the case
of two torii which, at one frame, would not be interlocking
and, at the next one, would be).

One way to avoid using backtracking methods is to allow
interpenetrations between objects, which can be difficult to
justify from a physical point of view, and to determine the
amount of interpenetration. This problem, however, is ex-
tremely difficult for general (non-convex) objects, and the
best present results do not take the trajectory of the object
into account when determining this interpenetration amount
[KOLM02]. Thus, in the case depicted in Figure 1, the mo-
bile point is inside the obstacle at time t2, but at this time
the smallest interpenetration is represented by the vector t,
which leads to take out the mobile point by the top of the
obstacle as time t3. Let us note, however, that the amount of
interpenetration can be used to speed up backtracking meth-
ods by leading to a better estimation of the time of first con-
tact te.

Finally, the interpenetration of objects can be a cause of
instability in the dynamics simulation. What is not a problem
in a purely virtual simulation (i.e. non-interactive) has much
more importance when a haptic device is used to interact
with the virtual environment. For example, if one refers to
the classic benchmark used to evaluate interaction methods,
the peg-in-a-hole test depicted in Figure 2, it is clear that a
first interpenetration of the peg on one side of the hole at time
t (position Pt) creates a large force to remove the interpen-
etration. This force often leads to a greater interpenetration
on the opposite side of the hole at the next instant t +1 (po-
sition Pt+1), which creates a greater reaction force than the

Figure 3: Benefit of using a continuous collision detection
method for an articulated body. The upper half of the figure
shows two successive configurations of a Puma robot which
do not penetrate the environment. The lower half shows a
linear interpolation of the configurations and an intermedi-
ate configuration corresponding to the first time of contact
between the robot and the environment.

previous. This oscillation, by amplifying itself, leads to an
unstable simulation [GMELM00].

We present an overview of some of our recent work on
continuous collision detection methods, which guarantee
consistent simulations by computing the time of first contact
and the contact state for colliding objects. We describe tech-
niques to perform continuous collision detection for rigid
and articulated bodies. The time-parameterized equations for
continuous collision detection between rigid triangle primi-
tives are presented and methods are described to solve them
efficiently. Continuous overlap tests between hierarchies of
bounding volumes, which help achieve efficient collision de-
tection for complex models, are presented as well. Figure 3
shows an example of the benefit of using a continuous col-
lision detection method for an articulated body. The upper
half of the figure shows two successive configurations of a
Puma robot which do not penetrate the environment. The
lower half shows a linear interpolation of the configurations
and an intermediate configuration corresponding to the first
time of contact between the robot and the environment.

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

Figure 4: Use of an arbitrary in-between motion to inter-
polate the known successive positions of the teapot.

2. Arbitrary in-between motions

Most of the time, the actual motion of the objects is not avail-
able. Two major reasons are:

Sampling interface When one or more of the objects are
acted upon trough a user interface (e.g. a simple 2d mouse,
a joystick, or a full-body motion capture system), the user
actions are sent at discrete times only. As a consequence,
the user actions between these discrete instants are lost.
Discretized dynamics formulation When the objects
take part in a dynamics simulation, the dynamics equa-
tions have to be discretized in order to be solved (e.g.
through an Euler or Runge-Kutta scheme). The positions,
velocities and accelerations of the objects are computed at
discrete times only (recall moreover that the discretization
includes approximations, so that even the positions, ve-
locities and accelerations computed at discrete times are
approximations).

In order to prevent any interpenetration of the objects, we
thus need to provide a continuous motion with which we will
perform collision detection. Precisely, we are going to use
an arbitrary in-between motion, which must satisfy several
requirements:

Interpolation The in-between motion must at least inter-
polate positions. Higher order interpolations can be used
depending on the application.
Continuity The interpolation must be at least C0. The mo-
tions we are going to use in these notes will actually be
C∞.

Rigidity The in-between motion needs to preserve the
rigidity of the links. For consistency reasons, we cannot
use a straight segment interpolation for object vertices
when the object rotates.
Application-dependent constraints Depending on the
application, some supplementary constraints might have
to be satisfied by the in-between motion. In robotics appli-
cations, for example, some links might have a pre-defined
special type of motion (e.g. screw motion). The arbitrary
in-between motion chosen for the application needs to be
able to produce these constrained motions.

Provided these requirements are satisfied, we can arbi-
trarily choose an in-between motion. The goal is to deter-
mine an arbitrary in-between motion which makes it effi-
cient to perform the various steps in the continuous collision
detection algorithm.

To better visualize the way the arbitrary motion is used,
let’s consider the case of an interactive dynamics simulator
which computes the position of a teapot and render a new
frame at a fixed rate of 30 frames per second, for example.
Between two frames, the motion of the teapot is not visible
by the user and is replaced by an arbitrary in-between mo-
tion. Since the real positions are respected at the successive
discrete instants, only the local motion of the teapot is mod-
ified, and its global motion is preserved, as shown in Figure
4. In this example, the position of the teapot is known at
seven discrete instants t0, . . . , t6. In the left part ((a), zoomed
in (c)), the real motion of the teapot between these instants
is represented in transparency. In the right part ((b), zoomed
in (d)), the known positions are preserved, but the real mo-
tion of the object between two successive known positions
has been replaced by an arbitrary in-between motion, rep-
resented in transparency. The general aspect of the teapot
trajectory is preserved.

It should be clear, now, that using an arbitrary in-between
motion is more or less equivalent to the underlying princi-
ple of every integration scheme used to solve the dynamics
differential equations: discretizing the differential equations
amounts to make finite-order assumptions on velocities and
accelerations between successive discrete instants.

Let us now formalize the constraints imposed on the ar-
bitrary in-between motion. To do this, let PR(t) denote the
4× 4 matrix describing the real position of the object dur-
ing the time interval [tn, tn+1]. Recall that this matrix allows
us to compute the real (homogeneous) coordinates xR(t) of
a point of the object in the global frame from its (homoge-
neous) coordinates xo in the local frame of the object:

xR(t) = PR(t)xo. (1)

Vectors xR(t) and xo are homogeneous vectors in IR4, for
which the last coordinate is the real number 1.

Let’s denote now the object’s position matrix when using
the arbitrary motion, during the same time interval [tn, tn+1]

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

by PA(t). Similarly, the arbitrary coordinates xA(t) of a point
of the object in the global frame are obtained from its coor-
dinates in the local frame of the object:

xA(t) = PA(t)xo (2)

The three constraints can be formalized simply:

• the interpolation constraint merely imposes that PA(tn) =
PR(tn), as well as PA(tn+1) = PR(tn+1),

• the continuity constraint imposes that the function t 7→
PA(t) is continuous on the interval [tn, tn+1], that is, that
the components of RA(t) and TA(t) are continuous func-
tions of time on this interval.

• the rigidity constraint imposes that the matrix PA(t) is a
position matrix at every time t between tn and tn+1. In
other words, it must not include deformation terms (scal-
ing terms, for example), and must be the combination of
a rotation matrix and a translation vector, according to the
classic form of a homogeneous position matrix:

PA(t) =
(

RA(t) TA(t)
0 1

)
, (3)

Of course, a fourth constraint is implicit: the arbitrary in-
between motion should be close to the real motion. It would
thus be desirable to define a measure allowing to evaluate
the difference between the real object motion and the arbi-
trary one, used to detect collisions between the successive
discrete instants. However, we noticed that this real motion
is rarely available. For this reason, we suggest using the
motion defined by the position and velocity determined by
the dynamics calculator as a reference. Thus, we saw that
for each successive discrete instant the dynamics calcula-
tor computes objects’ positions and velocities from those of
the previous discrete instant and possibly, for higher-order
integration schemes (as the fourth-order Runge-Kutta inte-
gration scheme), of those established to certain intermediate
instants. It is possible, as is done in a way by the dynamics
calculator, to assume that the object’s rotational and trans-
lation velocities are constant during the timestep. A natural
arbitrary motion is then a motion whose velocities remain
close to these reference velocities.

Although it is possible to define this last constraint more
rigorously, for example by defining the maximal error on the
position of points of the object resulting from the use of an
arbitrary motion, we noticed empirically that the arbitrary
motions described in these notes are always sufficiently nat-
ural so that the user is not surprised by the position of the
object that he manipulates at the time of the collision (as one
can expect when examining Figure 4).

Let’s note that replacing the objects’ motions by arbitrary
ones between two successive discrete instants tn and tn+1
has a consequence on the simulation only if a collision oc-
curs between these two instants. If no collision is detected
during the in-between time interval, the objects are placed
to the final positions computed by the dynamics calculator.

Figure 5: To avoid interpenetrations, it is necessary to com-
pute the objects’ positions at the instant of collision from the
in-between motion used for the detection of collisions, and
not from the interpolating motion computed by the dynamics
equations.

However, if a collision between two objects is detected at
time tc, it is necessary to use the arbitrary motions to com-
pute the positions of all the objects at time tc, since these
motions have been used for the detection of collisions.

Otherwise, some interpenetrations could occur, as shown
in Figure 5. In (a), a collision has been detected at time tc
while using the arbitrary in-between motion. In (b), the dy-
namics calculator has been used to compute the real position
of the object at time tc, which results in an interpenetration.
For the same reason, when a collision is detected, the arbi-
trary motion must also be used for objects that did not enter
in contact with another object. To compute their real posi-
tions at time tc using the dynamics calculator could induce
interpenetrations, since these positions have not been used
for the detection of collisions.

Consequently, the use of an arbitrary in-between motion
to detect collisions perturbs the course of the simulation. It is
indeed very unlikely that the real object motion and the arbi-
trary in-between motion would lead to detect collisions at the
same instants and at the same places. It is not even guaran-
teed that a collision which occurs between two objects when
one of the two motions (real or arbitrary) is used would also
occur when the other motion is used. This is the price we
have to pay to perform continuous collision detection when
the actual object motion is not known. This allows, however,
to continuously detect collisions very efficiently, while pre-
serving the benefits of a continuous method that would use
the real object motion. Indeed, with this method, objects are
permanently in a consistent state: no interpenetration is pos-
sible and no collision can be missed.

Besides, for some more rigorous physical applications,
it should be sufficient to reduce the length of the timestep,
thanks to the continuity and interpolation constraints im-

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

posed on the arbitrary motion. Indeed, the instants between
which the motion of the object is replaced are not necessar-
ily instants to which objects are displayed. Let’s assume, for
example, that the object moves very fast on the time interval
[tn, tn+1]. In order to reduce the error between the real object
motion and the arbitrary one used for continuous collision
detection, it can be preferred to divide the time interval in
two smaller intervals [tn, ti] and [ti, tn+1], where ti = tn+tn+1

2 .
At the intermediate time ti, the position of the object is eval-
uated by the dynamics simulator and is used to replace the
real object motion by two successive arbitrary motions, on
[tn, ti] first then on [ti, tn+1]. This ensures that the intermedi-
ate position to the time ti, at least, is the one computed by
the dynamics simulator.

Thus, the error created by the use of an arbitrary in-
between motion relies upon the same approximation prin-
ciple than the one which prevails when discretizing the dy-
namics equations. Overall, we believe that this approxima-
tion problem is largely compensated by the benefits provided
by a continuous collision detection method.

To conclude this section, let’s summarize the (simple) idea
behind the use of an arbitrary in-between motion: since the
real object motion between any two successive discrete in-
stants cannot be used to continuously detect collisions, it is
replaced by an arbitrarily fixed in-between motion, which
must satisfy three constraints: this arbitrary motion must in-
terpolate in a continuous and rigid way the object’s con-
figurations between successive discrete instants. Among the
arbitrary motions which satisfy these constraints, we choose
one which allows us to perform the various steps of the con-
tinuous collision detection algorithm very efficiently.

2.1. Rigid bodies

Let us now describe two possible arbitrary in-between mo-
tions for rigid bodies. Again, recall that we want to choose a
simple motion.

2.1.1. Constant-velocity translation and rotation

One possibility is to assume that the rigid motion over the
timestep is a constant-velocity one, composed of a transla-
tion along a fixed direction, and a rotation along a fixed (po-
tentially distinct) direction.

Let the 3-dimensional vector c0 and the 3× 3 matrix R0

denote the position and orientation of the rigid body in the
world frame at the beginning of the (normalized) time in-
terval [0,1]. Let s denote the total translation during the
timestep, and let ω and u respectively denote the total ro-
tation angle and the rotation axis. For a given time step, c0,
R0, ω, u and s are constants.

The position of the rigid body at a given time t in [0,1] is
thus:

T(t) = c0 + ts, (4)

The orientation of the rigid body is:

R(t) = cos(ωt).A+ sin(ωt).B+C, (5)

where A, B and C are 3× 3 constant matrices which are
computed at the beginning of the time step:

A = R0−u.uT .R0

B = u∗.R0

C = u.uT .R0

(6)

where u∗ denotes the 3×3 matrix such as u∗x = u × x for
every three-dimensional vector x. If u = (ux,uy,uz)T , then:

u∗ =

 0 −uz uy

uz 0 −ux

−uy ux 0

 (7)

Consequently, the motion of the rigid body is described
by the following 4×4 homogeneous matrix:

P(t) =
(

R(t) T(t)
0 1

)
, (8)

in the world frame.

The motion parameters s, u and ω are easy to compute.
Assume c0 and c1 (resp. R0 and R1) are the initial and final
positions (resp. orientations) of the rigid body in the world
frame. Then s = c1− c0, and (u,ω) is the rotation extracted
from the rotation matrix R1(R0)T .

2.1.2. Screw motions

An even simpler motion can be used, for which the rotation
axis and the translation have the same direction. Such a mo-
tion is called a screw motion.

Precisely, a screw motion V(ω,s,O,u) is the commutative
composition of a rotation and a translation along the same
axis. The real parameters ω and s (now a real number) re-
spectively denote the total amount of rotation and the total
amount of translation in the transformation, O is a point on
the the screw motion axis, and u is a unit vector describ-
ing the axis orientation. Note that the total translation is now
s = s.u. A screw motion is depicted in Figure 6. In this ex-
ample, the screw motion transforms the point A into A′. De-
pending on whether the rotation or the translation is applied
first to the point A, the intermediate point is respectively A1
or A2.

The benefit of using screw motions comes from the fact
that they allow us to interpolate any two rigid positions with
less parameters, and thus reduce the computational cost of
evaluating the motion matrix. Whatever the object positions
at times tn and tn+1, Chasles’ theorem states that there exists
an unique screw motion which transforms the initial position
(i.e. at time tn) into the final position (i.e. at time tn+1) (when
O on the screw motion axis is fixed, and when ω is required
to be positive [Cha1831]).

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

Figure 6: A screw motion is the commutative composition
of a rotation and a translation of same axes.

Figure 7: Using a screw motion to replace the real object
motion. a: the real object motion is a pure translation at con-
stant velocity (from top to bottom) combined to a rotation at
constant velocity around the object’s center of mass. b: the
real object motion has been replaced by the equivalent (and
unique) screw motion with positive angle. For applications
which require a very large rotation angle over the time inter-
val [0,1], it might be advisable to subdivide the time interval
into several smaller ones.

In theory, using a screw motion to interpolate two succes-
sive positions could lead to a non natural in-between motion.
In Figure 7, the real object motion (on the left) has been re-
placed by the equivalent screw motion with positive angle
(on the right). For applications which require a very large
rotation angle over the time interval [0,1], it might be advis-
able to subdivide the time interval into several smaller ones.

We can now build a general class of screw motion-based
arbitrary in-between motions. Assume, without loss of gen-
erality, that the current time interval is the interval [0,1]. In
order to get a rigid and continuous motion that interpolates
the initial and final positions, it is sufficient to make the pa-
rameters ωand s vary continuously. This can be achieved
by choosing two functions a : IR2 × [0,1] → IR and b :

IR2× [0,1]→ IR such as, for all pair (ω,s) in IR2, the func-
tions

aω,s :
{

[0,1]→ IR
t 7→ ω(t) = a(ω,s, t) (9)

bω,s :
{

[0,1]→ IR
t 7→ s(t) = b(ω,s, t) (10)

are C1, monotonous, and respect the interpolation constraint,
i.e. aω,s(0) = bω,s(0) = 0, and aω,s(1) = ω and bω,s(1) = s.

The class of screw motion-based arbitrary in-between mo-
tions has the form:

M :
{

[0,1]× IR3 → IR3

(t,A) 7→ A(t) = V(aω,s(t),bω,s(t),O,~u)(A0)
(11)

where A0 is a point of the object at time 0 and A(t) the same
point during the arbitrary in-between motion. It is worth
noticing that the two functions a and b depend on the screw
motion parameters only, and not on the object shape or part.
This guarantees that all points of the object have the same
rigid motion. Besides, thanks to the conditions imposed on
the functions aω,s and bω,s, arbitrary motions of form (11)
are truly rigid, continuous and interpolating.

A motion in the class (11) can be expressed simply in ma-
trix form. Define first a screw motion frame as a frame in
which the Oz axis is the screw motion axis. Because of axial
symmetry, there exists an infinity of such frames, and it is
sufficient to choose one of them. In one of these frames, the
screw motion can be expressed simply:

V(t) =

cos(aω,s(t)) −sin(aω,s(t)) 0 0
sin(aω,s(t)) cos(aω,s(t)) 0 0

0 0 1 bω,s(t)
0 0 0 1

(12)

for t ∈ [0,1]. In the global frame, the screw motion is then:

S(t) = P−1
V V(t)PV (13)

where V(t) is the screw motion with Oz axis, PV is the trans-
formation matrix from the global frame to the screw motion
frame, and P−1

V is the inverse of PV .

Thanks to the expression of the screw motion in the global
frame (13), it is possible to get the coordinates of any object
point x(t) during the arbitrary in-between motion:

x(t) = P(t)xo = P−1
V V(t)PV P0xo (14)

where xo denotes the point coordinates in the object frame,
and P0 is the objects’s position matrix at time 0. The object’s
position matrix during the arbitrary motion is P(t).

2.2. Articulated bodies

An articulated body is defined as a set of rigid bodies, or
links, connected by bilateral constraints. Assume there is no
loop in the articulated body. It is simple to define an arbitrary

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

in-between motion: it suffices to express the motion of each
link in the reference frame of its parent link, and not in the
world frame. The motion of the root link of the articulated
model is still expressed in the world frame.

Assume, for the sake of simplicity of notation, that the
parent of link i is i−1. The index denoting the world frame
is 0. Let Pi−1

i (t) denote the position matrix of link i in the
reference frame of its parent link i−1. Then the matrix

P0
i (t) = P0

1(t).P
1
2(t)...P

i−1
i (t) (15)

describes the motion of link i in the world frame.

3. Interval arithmetic

A simple way to robustly perform the computations involved
in the various steps of a continuous collision detection algo-
rithm is to use interval arithmetic.

Interval arithmetic consists in computing with intervals
instead of numbers. Several good introductions to interval
arithmetic can be found for example in [Moo62, Sny92,
Kea96]. As is well known, the definition of a closed real
interval [a,b] is:

I = [a,b] = {x ∈ IR, a 6 x 6 b} (16)

This definition can be generalized to vectors. A vector in-
terval is simply a vector whose components are intervals:

In = [a1,b1]× ...× [an,bn] (17)

=
{

x = (x1,...,xn) ∈ IRn, ai 6 xi 6 bi ∀i, 1 6 i 6 n
}

(18)

In IIR3, for example, a simple alternate notation can be: [xl ,xu]
[yl ,yu]
[zl ,zu]

 (19)

The set of intervals is denoted IIR, while the set of vector
intervals is denoted IIRn.

Basic operations can be transposed to intervals:

[a,b]+ [c,d] = [a+ c,b+d]

[a,b]− [c,d] = [a−d,b− c]

[a,b]× [c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)]

1/ [a,b] = [1/b,1/a] if a > 0 or b < 0

[a,b]/ [c,d] = [a,b]× (1/ [c,d]) if c > 0 or d < 0

[a,b] 6 [c,d] if b 6 c
(20)

Elementary operations in IIRn are performed component-
wise. Operations between real numbers and real intervals
can be performed by identifying IR and the set of “point”
intervals {[x,x],x ∈ IR}.

Interval arithmetic can be used to bound a function over

an interval very easily, provided the analytic expression of
the function is known, and provided we can bound easily the
sub-expressions in the function.

An example will make this clear. Assume we want to
bound the function t 7→

√
3cos(t)+ sin(t) over the time in-

terval [0,π/2]. This function is very similar to the ones we
obtain when we plug the arbitrary in-between motions de-
scribed above in the continuous collision detection equa-
tions.

Being able to bound the sine and cosine sub-expressions
is all that is required to bound this function. We know that:

t ∈
[
0,

π

2

]
⇒

{
cos(t) ∈ [0,1]
sin(t) ∈ [0,1]

Note that this is not deduced from the elementary interval
operations, but has to be known. This is what is meant by
“we can bound easily the sub-expressions in the function”.
From now on, however, we only need to use the elementary
interval operations to provide some bounds on the function.
Since, by definition,

√
3 ∈

[√
3,
√

3
]
,

and

cos(t) ∈ [0,1],∀t ∈
[
0,

π

2

]
,

we determine that
√

3cos(t) ∈
[√

3,
√

3
]
× [0,1] =

[
0,
√

3
]
,∀t ∈

[
0,

π

2

]
,

by performing a simple interval multiplication.

Similarly, using the interval addition, we know that
√

3cos(t)+ sin(t) ∈
[
0,
√

3
]
+[0,1] =

[
0,
√

3+1
]
,

for all t in
[
0, π

2
]
, and we have thus bounded the function.

Note that the bounds we have obtained are not exact, since
the tightest bounding interval is actually [1,2]. In this ex-
ample, the reason for the looseness of the bounds is that
the sine function is increasing while the cosine function is
decreasing. Provided we know exact bounds on these sub-
expressions, however, it can be shown that the bounds on the
function tend to be exact when the size of the time interval
tends towards zero.

Exact bounds on the sub-expressions we encounter in
these notes are actually very easy to obtain. For example,
since the cosine function is decreasing over [0,π/2], we
know that

a,b ∈
[
0,

π

2

]
,a < b⇒ cos(t) ∈ [cos(b),cos(a)],∀t ∈ [a,b].

The power of interval arithmetic for our purpose comes
from the fact that the interval operations can be simply and
efficiently implemented. We refer the reader to [Red04a] for
some C++ code for elementary interval arithmetic classes
and related code bits.

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

4. Elementary continuous collision detection

Continuous collision detection methods for polyhedral ob-
jects must only detect three types of contact. Indeed, all con-
tacts between two polyhedral objects A and B include at least
one of these three elementary contact types:

• an edge of A contacts an edge of B.
• a vertex of A contacts a face of B.
• a face of A contacts a point of B.

Figure 8: Collision detection between two edges.

These contact types are easily expressed geometrically.
For the edge/edge case, it suffices to detect a collision be-
tween the lines containing the edges. If a(t)b(t) is the first
edge and c(t)d(t) is the second edge, then the lines intersect
when:

a(t)c(t) · (a(t)b(t)∧ c(t)d(t)) = 0, (21)

i.e. when the vector a(t)c(t) is in the plane defined by the two
edges (cf. Figure 8). Once an intersection has been detected
at some instant between the two lines, we check whether it
belongs to the edges or, equivalently, if the edges intersect
at that time (and not only the supporting lines. This can be
robustly performed thanks to a discrete edge/edge proxim-
ity test (in general, due to finite precision computations, the
edges do not exactly touch at the collision time). We then
keep the earliest valid collision. The contact time is the ear-
liest valid collision time. The contact position is the position
of the vertex at that time, and the contact normal is the (nor-
malized) cross-product of the edges at that time.

Figure 9: Collision detection between a point and a face.

For the vertex/face and face/vertex, a collision is first de-
tected between the point and the plane containing the face.

If a(t) is the point and b(t)c(t)d(t) is the triangle, a collision
occurs when:

a(t)b(t) · (b(t)c(t)∧b(t)d(t)) = 0, (22)

that is when the vector a(t)b(t) is in the vector plane defined
by the face normal b(t)c(t)∧b(t)d(t) (cf. Figure 9). When
such a collision is detected, we check whether the point be-
longs to the face at that time. This can be robustly performed
thanks to a vertex/triangle proximity test (in general, due to
finite precision computations, the vertex is not exactly in the
plane at the collision time). We then keep the earliest valid
collision. The contact time is the earliest valid collision time.
The contact position is the position of the vertex at that time,
and the contact normal is the normal to the triangle at that
time.

In practice, interval arithmetic can be used to solve equa-
tions (21) and (22). Formally, these equations have the form

f (t) = 0, t ∈ [0,1],

and we want to determine the smallest root tc. Assume we
are able to bound the function f over the time interval [0,1].
If these bounds do not contain zero, meaning that the func-
tion is strictly positive or strictly negative over the time in-
terval [0,1], then f cannot have any root in [0,1].

However, if these bounds do contain zero, then the func-
tion f might have a root in [0,1] (might only, if the bounds
are not tight or if the function is not continuous. Of course,
the functions involved in these notes are all continuous). In
this case, we refine the time interval and repeat the process:
we bound the function f on the time intervals [0,1/2] and
[1/2,1], and we examine these bounds (first [0,1/2] and then
[1/2,1], since we are looking for the earliest collision). This
process is recursively performed until the examined bounds
do not contain zero (meaning that the function does not have
any root on the time sub-interval), or until the size of the
examined time sub-interval is smaller than a user-defined
threshold (which characterizes the precision of the collision
detection).

This binary subdivision process can be easily imple-
mented. The bounds on the function f are computed us-
ing interval arithmetic, as explained in Section 3, by first
computing bounds on the motion matrices (and interval-
multiplying them, for articulated bodies), and then on the
vertices involved in the collision detection equation using
interval matrix-vector multiplications [Red04a].

It should now be clear why the choice of the arbitrary
in-between motion has a huge impact on the overall effi-
ciency of the continuous collision detection algorithm. The
arbitrary in-between motion is going to be evaluated several
times whenever some bounds on a continuous collision de-
tection function are needed. If acceptable in the application,
it can be advised, for example, to use an in-between motion
which reduces the collision detection equations to polyno-
mial equations [Can86, RKC00].

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

5. Continuous overlap tests between bounding volumes

In order to avoid performing all possible elementary tests
for any object pair, many collision detection algorithms
rely on bounding-volume hierarchies. Basically, if two ob-
jects are enclosed in bounding volumes which don’t over-
lap, then it is known for sure that they don’t collide. Hi-
erarchies of bounding volumes are used to recursively per-
form such overlap tests which can conservatively cull away
large parts of the objects when testing for a collision. Typ-
ical bounding volumes used for collision detection include
spheres [Qui94,Hub95,RKK97,BS02], axis-aligned bound-
ing boxes (AABBs) [VDB98], oriented bounding boxes
(OBBs) [Got99, GLM96], k-dops [KHMSZ98] and DOP-
trees [Zac98].

Since we want to perform continuous collision detection
between objects, we need to design a continuous overlap test
between two bounding volumes. Precisely, we need to deter-
mine whether two bounding volumes will overlap during the
timestep.

What makes the task easier is that it is not necessary to
perform an exact test. We need to be sure that we do not
miss an overlap between two bounding volumes during the
timestep, but it is acceptable to declare that two bounding
volumes overlap when they don’t. The error will be cap-
tured later by smaller bounding volumes in the hierarchy, or
ultimately by the elementary continuous collision detection
tests. Such a test is called conservative.

In the following, we describe continuous overlap tests be-
tween spheres, axis-aligned bounding boxes, and oriented
bounding boxes.

5.1. Spheres

Assume spheres are used as bounding volumes. Let c1 and
c2 denote the centers of the spheres, and let r1 and r2 denote
the radii of the spheres.

The spheres overlap if and only if the distance between
their centers is smaller than the sum of their radii:

||c1c2||6 r1 + r2,

or, equivalently, if and only if

(c2− c1)
2 6 (r1 + r2)

2 . (23)

Using interval arithmetic, we can design a conservative
test to bound the left member of inequality (23) on any time
interval I. If the lower bound of the left member is greater
than the right member, then we know for sure that the dis-
tance between the centers is greater than the sum of the radii
during the whole time interval I, in which case it is safe to
declare that the spheres won’t overlap during this time inter-
val.

If the lower bound of the left member is smaller than the

right member, however, there might be an overlap during the
time interval, and we conservatively declare so.

The bounds on the left member are obtained by first
bounding the coordinates of the center of the spheres, and
then performing the interval evaluation of the function in the
left member.

5.2. Axis-aligned bounding boxes

Axis-aligned bounding volumes are typically recomputed at
the beginning of each time step in discrete methods. As-
suming these boxes are attached to the bodies during the
timestep, they simply become oriented bounding boxes, as
they loose their axis-aligned characteristic during the ob-
jects’ motions. Consequently, the appropriate continuous
overlap test in that case is the one between two oriented
bounding boxes, described in the next section.

However, it is simple to obtain axis-aligned boxes which
bound an object during a whole time interval. Indeed, any
three-dimensional vector interval is actually an axis-aligned
bounding box. Assume we determine bounds on a ver-
tex motion during a time interval. By definition, since the
bounds are computed coordinate per coordinate, we have
actually obtained an axis-aligned box which bounds the
moving vertex during the whole time interval. We can
thus easily determine AABBs which bound the moving ob-
ject during the whole time interval.

Note that the AABBs can be obtained from a simplified
version of the object geometry, provided this simplified ver-
sion contains the original object. Assume, for example, that
the object is included in a sphere. Using interval arithmetic,
the bounds on the coordinates of the center of the sphere can
be obtained easily. These bounds are in fact an AABB which
encloses the moving center of the sphere during the time in-
terval. Enlarging this AABB by the radius of the sphere re-
sults in an AABB which contains the sphere, and thus the
object, during the whole time interval.

More generally, assume the object is enclosed in the con-
vex hull of a set of points. An AABB can be obtained for
each of these points using interval arithmetic. An AABB
which contains all these AABBs is guaranteed to contain the
object during the whole time interval.

When these dynamically generated AABBs have been
computed, the traditional discrete AABB/AABB test can be
used to conservatively determine whether the objects are go-
ing to overlap or not during the time interval.

5.3. Oriented bounding boxes

Let us now proceed to the case of oriented bounding boxes
(OBBs). For a rigid object, a hierarchy of OBBs can be com-
puted offline. Similarly, for an articulated model composed
of rigid links, a hierarchy of OBBs can be computed offline
for each link.

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

Figure 10: The axis e1 separates the two oriented bounding
boxes since, in the axis direction, the projected distance be-
tween the centers of the boxes |e1 ·TATB| is larger than the
sum of the projected radii of the boxes, (a1|e1 · e1|+ a2|e1 ·
e2|)+(b1|e1 · f1|+b2|e1 · f2|).

The goal is thus to (conservatively) determine whether the
boxes are going to overlap during the time interval.

A well-known overlap test for oriented bounding boxes
is the one which relies upon the separating axis theorem
[GLM96]. Lets assume that the first OBB is described by
three axes e1, e2 and e3, a center TA, and its half-sizes along
its axes a1, a2 and a3. Similarly, assume the second OBB
is described by its axes f1, f2 and f3, its center TB, and its
half-sizes along its axes b1, b2 and b3. The separating axis
theorem states that two static OBBs overlap if and only if
all of fifteen separating axis tests fail. A separating test is
simple: an axis a separates the OBBs if and only if:

|a ·TATB|>
3

∑
i=1

ai|a · ei|+
3

∑
i=1

bi|a · fi|. (24)

This test is performed for 15 axes at most. The sufficient set
of fifteen axes is:

{ei, f j, ei∧ f j, 1 6 i 6 3, 1 6 j 6 3} (25)

Intuitively, the left member inequality (24) is the projected
distance between the two centers of the boxes in the direc-
tion of a, and the right member is the sum of the projected
radiuses of the boxes, in the same direction (cf. Figure 10).

We can extend the discrete OBB/OBB overlap test to
the continuous domain using interval arithmetic [RKC02b].
Since each member of inequality (24) is a function of time
depending on the specific arbitrary in-between motion, we
can use interval arithmetic to bound both members over a
time interval I. When the lower bound on the left member is
larger than the upper bound on the right member, the axis a
separates the boxes during the entire time interval I, and the
pair of boxes is discarded, since we know for sure that the
boxes will not overlap during the time interval.

As before, once the bounds on the elements involved in

the test have been computed, the bounds on the two members
are determined easily (C++ code available in [Red04a]).

5.4. Remarks

Again, we have used interval arithmetic to perform the con-
tinuous tests. As opposed to what happens with the elemen-
tary tests, though, the interval computations which occur
during the continuous overlap tests between bounding vol-
umes are generally performed once only, over the full time
interval [0,1]: the bounds on the functions involved in the
tests are computed once and for all on the time interval [0,1]
and these bounds are used to conservatively determine the
overlap status of the bounding volumes during this time in-
terval. This comes from the fact that we do not really need to
know when the bounding volumes will begin to overlap (al-
though that might be a useful information), but only if they
are going to overlap during the given time interval.

However, we have noted in Section 3 that the bounds ob-
tained using interval arithmetic are generally not tight. This
is especially the case when the total amount of rotation is
very large over one single time step (interval arithmetic pro-
duces tight bounds when the motion is a pure linear trans-
lation thanks to the monotony of the functions involved). In
order to reduce the conservativeness of the test, which would
lead to declare that the bounding volumes overlap too of-
ten and would make us loose the benefit of using bounding-
volume hierarchies, it is best to subdivide the time interval
one or several times when the total amount of rotation is very
large. The cost of replacing the single test by several tests
on smaller time sub-intervals is usually compensated by the
early culling, which prevents the need to unnecessarily go
further down the hierarchies of bounding volumes.

For articulated bodies, an intermediate culling step can be
added in order to prevent the increased conservativeness of
interval arithmetic when the depth of the articulated model
increases [RKLM04].

6. Handling constraints

Once the contact information has been computed for the cur-
rent timestep, the dynamics solver needs to be able to de-
termine an appropriate response. In an event-driven multi-
body dynamics simulation, two different problems have to
be solved:

Collision response problemWhenever a new collision occurs, the simulator must de-
termine the objects’ post-impact velocities from their pre-
impact velocities and their dynamic properties.

Constrained motion problemWhen the collision response problem has been solved, the
simulator has to compute the objects’ constrained accel-
erations from their unconstrained accelerations (the ones
the objects would have if there weren’t any constraints
acting on them) and the geometrical constraints imposed
by the transient contacts (those for which the relative ve-
locity is zero, i.e. those which have a non-zero duration).

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

Numerous approaches have been suggested to solve both
problems and traditional algorithms include penalty meth-
ods [MW88, KZ90], impulse-based methods [MC95],
constraint-based methods [Lot84, Bar94, Bar95, AP97,
MS01], time-stepping methods [ST96, APS99], and itera-
tive methods [GBF03, KEP05]. Penalty methods are gener-
ally used when no precise contact information is available,
as they compute the contact forces from the amount of in-
terpenetration between contacting objects. Continuous colli-
sion detection naturally provides all the necessary contact
information: the contact position, the contacting elements
and the contact normal. Consequently, simulation methods
which make use of this contact information are a natural
choice.

Most constraint-based methods formulate both dynam-
ics problems as a linear complementarity problem (LCP) in
the contact-space, which relates contact forces and acceler-
ations. For example, in the frictionless constrained motion
problem, the LCP expresses the relation between the normal
contact forces and the relative normal accelerations at the
contact points. If f and acp are two vectors in IRm describ-
ing the normal contact forces (in a frictionless system, the
contact forces are normal to the contact plane) and the nor-
mal relative accelerations to the m contact points, then there
exists an m×m matrix A and a vector b in IRm such as:

acp = Af+b
acp > 0
f > 0
aT

cpf = 0

(26)

The complementarity relation aT
cpf = 0 expresses the fact

that, for each contact point, either the relative normal accel-
eration is non-zero (the contact breaks) and then the normal
contact force is zero, or the contact force is non-zero (objects
remain in contact) and therefore the relative normal acceler-
ation is zero.

The matrix A is traditional computed from the constraints
created by the contact points [Bar94, RK97]. Let i and j de-
note two contacting objects. I is a contact point, n is the con-
tact normal directed from j to i. Depending on the object it
belongs to, I is denoted Ii or I j.

Note that this distinction is necessary to establish the con-
straint equations. Although these two points are identical in
theory, it is not the case in practice, for example because of
the finite precision of the computations. Moreover, we will
see in the next section that the method we use to combine
the continuous collision detection algorithms to the dynam-
ics algorithms requires us to maintain a distinction between
Ii et I j which become, in practice, the closest points belong-
ing to the polyhedral primitives. In a vertex/face case, for
example, Ii is the vertex and I j is the point in the face which
is the closest to Ii.

With this notation, the non-penetration constraint on the
relative normal acceleration of I is [Bar94]:

(ai(Ii)−a j(I j)).n+2.(vi(Ii)−v j(I j)).
dn
dt

> 0 (27)

Similarly, a collision response constraint on the relative nor-
mal velocity can be derived when a collision occurs, to solve
the collision response problem:

(v+
i (Ii)−v+

j (I j)).n >−e(v−i (Ii)−v−j (I j)).n (28)

where e is the restitution coefficient at the contact point.

We have shown in [RKC02a] that for frictionless systems
Gauss’ least constraint principle provides a motion-space
formulation of both dynamics problems, through a projec-
tion problem which relates the object’s accelerations or ve-
locities and the contact forces. Although the two formula-
tions are mathematically equivalent, the motion-space for-
mulation presents several algorithmic benefits: it is better
conditioned, always sparse, requires less memory and al-
lows to avoid some redundant computations performed by
an algorithm operating in the contact-space. An experimen-
tal comparison has suggested that an algorithm operating in
the motion-space takes advantage of sparsity to perform in-
creasingly better than a contact-space algorithm as the aver-
age number of contact points per object increases. As a re-
sult, our system uses a motion-space algorithm based upon
Wilhelmsen’s projection algorithm [Wil76].

Whatever dynamics solver is used in combination with the
continuous collision detection module, however, some care
has to be taken in order to couple both modules. One possible
solution is presented in the next section.

7. Combining continuous collision detection and
response

Because we use an arbitrary in-between motion to interpo-
late successive objects’ positions, we need to permanently
maintain a small security distance between contacting ob-
jects. Most of the time, indeed, the arbitrarily chosen in-
between motion does not satisfy the dynamics constraints
during the successive time intervals.

Consider for example the case of a rectangular box in tran-
sient contact with a plane surface, as visible in Figure 11.a.
In this example, the contact point I should be permanently
on the contact plane P during the considered time interval
[tn, tn+1]. However, the real object motion during this time
interval is replaced by an arbitrarily fixed motion which, al-
though it preserves the object’s positions at times tn and tn+1,
doesn’t guarantee that the point I remains on the plane P
during the time interval. Depending on the initial and final
positions of the box, which impose the in-between motion
used for the collision detection, this point I might indeed
violate the non-penetration constraint immediately after tn,
leading to the detection of a collision at time tn. In order to

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

Figure 11: a: the arbitrary in-between motion used for the
collision detection doesn’t satisfy the non-penetration con-
straint during the time interval [tn, tn+1]. b: contacting ob-
jects are maintained slightly distant from each other (from
[Red04a]).

avoid that the simulator remains blocked at time tn or, gen-
erally, that it detects these collisions artificially created by
the use of an arbitrary in-between motion too often, we in-
troduce a security distance εs between contacting objects,
as shown in Figure 11.b. As a result, we consider that each
contact point which has been determined by the continuous
collision detection module is characterized by two points Ii
and I j which are the closest points on the polyhedral prim-
itives. These closest points are easily updated whenever the
geometrical constraints are modified, as long as a contact is
considered to be active.

In order to maintain the security distance between con-
tacting objects over time, the constraints imposed to acceler-
ations or velocities are modified slightly. For example, when
the local distance between the two objects (i.e. the one sep-
arating the two points Ii and I j which characterize the con-
tact point) is smaller than the security distance εs, the non-
penetration constraint (27) becomes:

ai(Ii)−a j(I j)).n+

2.(vi(Ii)−v j(I j)).
dn
dt

> K + k(εs−d)
(29)

where k is a coupling constant, and d is the distance between
the points Ii and I j.

Two other values, εb and εr, are used in combination with
the security distance εs. The first one, εb, larger than εs, is the
value beyond which the simulator declares that the contact
between the two objects is broken (thus removing the need
to update Ii and I j). The second, εr, smaller than εs, is an
alert value below which the simulator stops the simulation
time and enters a repositioning cycle, because it didn’t man-
age to maintain the objects at a sufficient distance from each
other during the simulation. This repositioning cycle, simi-
lar to the one introduced by Baraff in [Bar95], is performed
between two successive frames by computing the smallest
objects’ displacements which satisfy the repositioning con-
straints. The repositioning constraints are similar to collision
response constraints (28) which become:

(vi(Ii)−v j(I j)).n > εs−d. (30)

Once these velocities are computed, they are used to move
objects (while detecting collisions). As long as there exists a
contact for which the local distance is below the reposition-
ing distance εr, a new repositioning step is done. We have
observed that repositioning cycles are generally very short,
nearly imperceptible by the user, and don’t hinder the pro-
gression of the interactive simulation.

Let’s note that the repositioning problem is very similar
to the collision response problem, since it consists in com-
puting the smallest possible velocities, in the velocity-space,
among those which satisfy the repositioning constraints.

Let’s note finally that repositioning objects doesn’t corre-
spond to a physical phenomenon, and can add energy in the
system. In order to avoid this, it may be useful to slightly
decrease the objects’ velocities after a repositioning step.
Note however that this problem doesn’t occur in a first-order
(quasi-static) simulation, since objects’ velocities are zeroed
at each frame. More generally, the repositioning problem
is similar to a constraint stabilization problem, for which a
classic solution is the one proposed by Baumgarte [Bau72].
In this case, however, constraints are unilateral ones. More-
over, the more difficult problem of unilateral constraint sta-
bilization is greatly facilitated by the continuous collision
detection.

8. Continuous collision detection for motion planning
and haptics

In this section, we demonstrate how continuous collision de-
tection has been used to design novel algorithms for motion
planning of articulated bodies and six degree-of-freedom
haptic display of rigid bodies.

8.1. Motion planning

We have recently presented an efficient and practical local
planning method in contact-space, i.e. a planning method
which uses continuous collision detection in order to sam-
ple the surface of the C-obstacles (the obstacles in configu-
ration space) [RL05]. Some of the most well-known motion
planning methods rely on probabilistic roadmaps (PRMs)
[KL94, KSLO96, Ove92, OS94]. The simplest PRM algo-
rithms generate a set of configuration in the free space. The
roadmap graph is used to generate a path between the start
and goal configurations. However, the efficiency of these
planners can degrade in configurations containing narrow
passages or cluttered environments. In such cases, a signif-
icant fraction of randomly generated configurations are not
in the free space. Moreover, it is difficult to generate a suffi-
cient number of samples in the narrow passages or connect
all the nodes in the free space using local planning methods.

Traditionally, connecting two sampled configuration in
C-space has often been performed using either discrete col-
lision detection methods, which sample a path connecting

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

the two nodes (most often a straight line) with some finite
resolution, or exact collision checking [Can86, SSL02].
Given the contact information provided by a continuous
collision detection module, this local planning step can be
enhanced in the following ways:

Contact-space sampling: Since continuous collision
detection computes the time of impact as well as the contact
features (contact position and contact normal), it is possible
to efficiently and robustly sample the contact space, and not
only the free space.

Constrained sampling: Given the precise contact informa-
tion provided by the continuous collision detection algo-
rithm, a piecewise-linear characterization of the local tan-
gent space of C-Obstacles around the nodes in the contact
space can be determined. This piecewise-linear characteri-
zation can be used to constrain the search of a new node
when expanding the roadmap from a node belonging to the
contact space.

Figure 12 demonstrates these extensions in a two-
dimensional configuration space. A contact-space mile-
stone, i.e. a configuration in which the robot is in contact
with the environment, has been found by the continuous col-
lision detection module. The corresponding contact informa-
tion (especially, the contact position and the contact normal),
is used to constrain the search of a valid neighboring config-
uration, in order to expand the roadmap. Using this strategy,
we have been able to observe up to 70 times performance
improvement when adding our contact-space sampling and
constrained sampling methods to a freely available planner
(the Stanford MPK planner) in preliminary benchmarks in-
volving cluttered and narrow passages [RL05].

8.2. Six degree-of-freedom haptic display of rigid bodies

Our continuous collision detection solver has recently been
used to help design a novel algorithm six degree-of-freedom
haptic display of rigid bodies [ORC05] (cf. Figure 13).
The algorithm combines continuous collision detection and
constraint-based quasi-statics to generalize the well-known
god-object method for haptic exploration of a rigid body
with a three degree-of-freedom haptic device [ZS95]. The
new algorithm preserves the desirable properties of the orig-
inal god-object method:

• Thanks to the continuous collision detection module, the
god-object never penetrates the environment obstacles,
which is known to improve the perceived stiffness of the
haptic feedback [SBB96].

• The constraint-based forces applied to the user are always
orthogonal to the constraints, and do not suffer from the
artifacts typically encountered in previous methods (e.g.
forces felt at a distance, sticking, artificial friction). The

Figure 12: Local planning in the contact-space. Continu-
ous collision detection allows to extend a probabilistic mo-
tion planner by allowing efficient and robust sampling of
the contact-space (i.e. the surface of the obstacles in the
configuration space). Furthermore, the contact information
can be used to constrain the search of valid neighboring
nodes, when expanding the roadmap. This has been shown
to greatly improve the performance of a planner in the pres-
ence of narrow passages, by allowing the robot to slide on
the surface of the obstacles (cf. [RL05]).

Figure 14: Schematic representation of our method. Our
method for haptic display of six degree-of-freedom manipu-
lation of rigid bodies is divided in three asynchronous blocks
(from [ORC05]).

new method contributes to enhance the realism of the hap-
tic feedback, as it has been shown that an incorrect force
direction perturbs the perceived orientation of the haptic
surface [SPBS00].

Our algorithm is divided in three asynchronous loops: (a)
the god-object simulation loop, which updates the configura-
tion of the god-object based on the configuration of the hap-
tic device and the environment obstacles; (b) the constraint-
based coupling loop, which determines the constraint-based
force applied to the user based on the configurations of the
god-object and the haptic device, as well as the current set of
contact points and normals; (c) the haptics loop, which con-
trols an impedance-like haptic device which reads the force
that has to be applied to the user and writes the current con-
figuration of the haptic device (cf. Figure 14). The separation
into asynchronous processes allows us to satisfy the different

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

Figure 13: Haptic interaction with Stanford Bunnies. The user manipulates the green bunny. a: the ear of the green bunny
slides in a ridge of the blue bunny. b: continuous collision detection and constraint-based quasi-statics allows the manipulated
object to precisely contact and slide on the obstacles. c-d: our method provides the user with the ability to precisely feel the
contact between pairs of triangles, resulting in highly detailed haptic display of contacting rigid bodies (from [ORC05]).

update rates required by the haptic and the visual displays,
and go around the potentially lower update rates of the col-
lision detection module (since the complexity of collision
detection is output-dependent).

This novel approach has been implemented on a 3.2 GHz
Xeon biprocessor and successfully tested on complex bench-
marks. The constraint-based force applied to the user, which
handles any number of simultaneous contact points, is typ-
ically computed within a few microseconds, while the up-
date of the configuration of the rigid god-object is performed
within a few milliseconds for rigid bodies containing up to
tens of thousands of triangles. For more details, we refer the
reader to [ORC05].

9. Conclusion

Because they seem able to alleviate some of the short-
comings of traditional (discrete) collision detection meth-
ods, continuous collision detection methods have re-
cently generated a greater interest, and research, with
applications in several domains. Some examples include
graphics, virtual reality, CAD/CAM, and games (e.g.
[VDB05]). A freely available software library (“Bul-
let", with source code) maintained and developed by E.
Coumans and several developers provides continuous colli-
sion detection modules, and a corresponding discussion fo-
rum (http://www.continuousphysics.com/Bullet) allows re-
searchers and developers to discuss and share information
about continuous collision detection and physics. Further-
more, several commercial physics libraries are beginning
to offer some form of continuous collision detection (e.g.
AgeiaT M , HavokT M , etc.).

In order to accompany these exciting developments, some
more work is needed so that continuous collision detection
can be performed in combination with some of the most re-
cent simulation paradigms (e.g. time-stepping methods, iter-
ative solvers [GBF03], etc.) and handle e.g. numerous bodies
simultaneously. Other active research topics include specific
optimizations or extensions for new object classes (e.g. sub-

division surfaces, closed manifolds, etc.), continuous colli-
sion detection methods for augmented reality, novel resolu-
tion methods, etc. We believe that the need for robust physics
libraries (for example in games) should stimulate further re-
search in those areas.

References

[AP97] M. Anitescu and F. A. Potra. Formulating Dy-
namic Multi-Rigid-Body Contact Problems with Friction
as Solvable Linear Complementarity Problems. Nonlinear
Dynam. 14 (1997), no. 3, 231–247.

[APS99] M. Anitescu, F. A. Potra and D. E. Stewart. Time-
stepping for Three-dimensional Rigid Body Dynamics.
Computational Modeling of Contact and Friction. Com-
put. Methods Appl. Mech. Engrg. 177 (1999), no. 3-4,
183–197.

[Bar90] D. Baraff. Curved Surfaces and Coherence for
Non-penetrating Rigid Body Simulations. In Computer
Graphics (Proc.SIGGRAPH), volume 24, pages 19-28.
ACM, August 1990.

[Bar94] D. Baraff. Fast Contact Force Computation for
Nonpenetrating Rigid Bodies. In SIGGRAPH 94 Confer-
ence Proceedings, Annual Conference Series, pp 23-34.
ACM SIGGRAPH, Addison Wesley, 1994.

[Bar95] D. Baraff. Interactive Simulation of Solid Rigid
Bodies. IEEE Computer Graphics and Applications,
15(3), pp 63-75, May 1995.

[Bau72] J. Baumgarte. Stabilization of constraints and in-
tegrals of motion in dynamical systems. Comp. Meth. in
Appl. Mech. and Eng., 1:1-16, 1972.

[BS02] G. Bradshaw and C. O’Sullivan. Sphere-Tree Con-
struction using Dynamic Medial Axis Approximation. In
Proceedings of ACM Symposium on Computer Anima-
tion 2002.

[BW97] D. Baraff and A. Witkin. Partitioned Dynamics,
Technical Report CMU-RI-TR-97-33, Robotics Institute,
Carnegie Mellon University, 1997.

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

[Cam90] S. A. Cameron.collision detection by four-
dimensional intersection testing. IEEE Trans. Robotics
and Automation. 6, 3 (June 1990), pp 291-302.

[Can86] J. F. Canny. collision detection for moving poly-
hedra. IEEE Trans. Patt. Anal. Mach. Intell. 8,2 (March
1986), pp 200-209.

[Cha1831] M. Chasles. Note sur les Propriétés Générales
du Système de Deux Corps Semblables Entre Eux, Placés
d’une Manière Quelquonque Dans l’Espace; et sur le Dé-
placement Fini, ou Infiniment Petit d’un Corps Solide Li-
bre. Bulletin des Sciences Mathematiques de Ferussac,
XIV, pp. 321-336. 1831.

[CSB95] J. Colgate, M. Stanley, and J. Brown. Issues in
the haptic display of tool use. In Int. Conf. on Intelligent
Robots and Systems, (Pittsburgh), August 1995.

[Duf92] T. Duff. Interval Arithmetic and Recursive Sub-
division for Implicit Functions and Constructive Solid
Geometry. Computer Graphics, 26(2), July 1992, pp. 131-
138.

[FMM77] Forsythe, G.E., Malcolm, M.A., and Moler,
C.B., Computer Methods for Mathematical Computa-
tions, Prentice Hall, Inc., Englewood Cliffs, 1977.

[GRLM03] N. Govindaraju, S. Redon, Ming C. Lin and
Dinesh Manocha. CULLIDE: Interactive Collision Detec-
tion between Complex Models in Large Environments us-
ing Graphics Hardware. ACM SIGGRAPH/ Eurographics
Graphics Hardware Proceedings, 2003.

[Got99] S. Gottschalk. collision queries using oriented
bounding boxes. PhD Thesis. 1999.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha.
OBB-Tree: A Hierarchical Structure for Rapid Interfer-
ence Detection. In SIGGRAPH 96 Conference Proceed-
ings, Annual Conference Series. ACM SIGGRAPH, Ad-
dison Wesley, August 1996.

[GMELM00] A. Gregory, A. Mascarenhas, S. Ehmann, M.
Lin and D. Manocha. Six degree-of-freedom haptic dis-
play of polygonal models.In Proc. IEEE Visualization,
2000.

[GBF03] E. Guendelman, R. Bridson, and R. Fedkiw.
Nonconvex rigid bodies with stacking. ACM Transac-
tions on Graphics. 22(3), pp. 871-878, 2003. (SIGGRAPH
2003).

[Har99] Michael Hardt. Multibody Dynamical Algo-
rithms, Numerical Optimal Control, with Detailed Stud-
ies in the Control of Jet Engine Compressors and Biped
Walking Department of Electrical and Computer Engi-
neering (Intelligent Systems, Robotics, and Control) Uni-
versity of California San Diego, June 1999.

[Hub95] P. M. Hubbard. collision detection for interactive
graphics applications. Ph.D. Thesis, April 1995.

[JTT01] P. Jiménez, F. Thomas and C. Torras. 3D colli-
sion detection: a survey. Computers and Graphics, 25 (2),

pp. 269-285, (April 2001), Pergamon Press / Elsevier Sci-
ence.

[KEP05] D. M. Kaufman, T. E. and D. K. Pai. Fast Fric-
tional Dynamics for Rigid Bodies. ACM Transactions on
Graphics (SIGGRAPH 2005), 24(3), August 2005.

[KL94] L. Kavraki and J. C. Latombe. Randomized pre-
processing of configuration space for fast path planning.
IEEE Conference on Robotics and Automation, pages
2138–2145, 1994.

[KSLO96] L. Kavraki, P. Svestka, J. C. Latombe, and
M. Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans.
Robot. Automat., pages 12(4):566–580, 1996.

[Kea96] R. B. Kearfott. Interval Computations: Introduc-
tion, Uses, and Resources, Euromath Bulletin 2 (1), pp.
95-112 (1996).

[KZ90] M. McKenna and D. Zeltzer. Dynamic simulation
of autonomous legged locomotion. In Computer Graph-
ics (Proc. SIGGRAPH), volume 24, pages 29-38. ACM,
August 1990.

[KOLM02] Young J. Kim, Miguel A. Otaduy, Ming C.
Lin, Dinesh Manocha. Fast Penetration Depth Computa-
tion for Physically-based Animation. ACM Symposium
on Computer Animation, July 21-22, 2002.

[KR03] B. Kim and J. Rossignac. Collision Prediction for
Polyhedra under Screw Motions. ACM Symposium in
Solid Modeling and Applications, pp. 4-10, June 2003.

[KHMSZ98] J.T. Klosowski, M. Held, J.S.B. Mitchell,
H. Sowizral and K. Zikan. Efficient collision Detection
Using Bounding Volume Hierarchies of k-DOPs. IEEE
Transactions on Visualization and Computer Graphics,
March 1998, Volume 4, Number 1.

[LKCGC01] A. Lécuyer, A. Kheddar, S. Coquillart, L.
Graux, and P. Coiffet, A Haptic Prototype for the Simula-
tions of Aeronautics Mounting/Unmounting Operations.
IEEE Int. Workshop on Robot-Human Interactive Com-
munication, Bordeaux and Paris, France, 2001.

[LG98] M. C. Lin and S. Gottschalk. Collision detection
between geometric models: a survey. In IMA Conference
on Mathematics of Surfaces (San Diego (CA), May 1998),
vol. 1, pp. 602– 608.

[Lot84] P. Lötstedt. Numerical simulation of time-
dependent contact friction problems in rigid body me-
chanics. SIAM Journal of Scientific Statistical Comput-
ing, vol. 5, no. 2, pp. 370- 393, 1984.

[MS01] V. J. Milenkovic and H.Schmidl. Optimization
Based Animation. SIGGRAPH 2001

[MC95] B. Mirtich and J. Canny. Impulse-based Simula-
tion of Rigid Bodies. In Proceedings of Symposium on
Interactive 3D Graphics, 1995.

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

[Moo62] R. E. Moore. Interval analysis and automatic er-
ror analysis in digital computation. PhD Thesis, Stanford
University, October 1962.

[MW88] M. Moore and J. Wilhelms. collision Detection
and Response for Computer Animation. In Computers
Graphics (Proceedings of SIGGRAPH 88), Annual Con-
ference Series, pp 289-298. ACM SIGGRAPH, August
1988.

[ORC05] M. Ortega, S. Redon and S. Coquillart. A Six
Degree-of-Freedom God-Object Method for Haptic Dis-
play of Rigid Bodies. In Proceedings of IEEE Interna-
tional Conference on Virtual Reality, 2006.

[ODGK03] O’Sullivan ,C. Dingliana, J., Giang, T. Kaiser.
Evaluating the Visual Fidelity of Physically Based An-
imations. M.K. ACM Transactions on Graphics. 22(3),
Proceedings of SIGGRAPH 2003, July 2003.

[Ove92] M. H. Overmars. A random approach to motion
planning. Report RUU-CS-92-32, Dept. Comput. Sci.,
Utrecht Univ., Utrecht, Netherlands, October 1992.

[OS94] M. H. Overmars and P. Švestka. A probabilis-
tic learning approach to motion planning. In Algorithmic
Foundations of Robotics. A. K. Peters, Wellesley, MA,
1995.

[Qui94] S. Quinlan. Efficient distance computation be-
tween non-convex objects. In Proceedings of International
Conference on Robotics and Automation, pp 3324-3329,
1994.

[Red04a] S. Redon. Fast Continuous Collision Detection
and Handling for Desktop Virtual Prototyping. To appear
in Virtual Reality Journal (Springer Verlag).

[Red04b] S. Redon. Continuous Collision Detection for
Rigid and Articulated Bodies. ACM SIGGRAPH Course
Notes, 2004.

[RKC00] S. Redon, A. Kheddar and S. Coquillart. An Al-
gebraic Solution to the Problem of collision Detection
for Rigid Polyhedral Objects. In Proceedings of IEEE In-
ternational Conference on Robotics and Automation, pp
3733-3738, April 2000.

[RKC01] S. Redon, A. Kheddar and S. Coquillart. CON-
TACT: arbitrary in-between motions for continuous col-
lision detection. In Proceedings of IEEE ROMAN’2001,
Sep. 2001.

[RKC02a] S. Redon, A. Kheddar and S. Coquillart. Gauss’
least constraint principle and rigid body simulations. In
Proceedings of IEEE International Conference on Robot-
ics and Automation, May 2002.

[RKC02b] S. Redon, A. Kheddar and S. Coquillart. Fast
Continuous collision Detection between Rigid Bodies. In
Proceedings of Eurographics 2002. September 2002.

[RKC02c] S. Redon, A. Kheddar and S. Coquillart. Hi-
erarchical Back-Face Culling for collision Detection. In

proceedings of IEEE/RSJ International Conference on In-
telligent Robots and Systems. September 2002.

[RKLM04] S. Redon, Young J. Kim, Ming C. Lin and Di-
nesh Manocha. Fast Continuous Collision Detection for
Articulated Models. In Proceedings of IEEE Solid Mod-
eling 2004.

[RKLMT04] S. Redon, Young J. Kim, Ming C. Lin, Di-
nesh Manocha and Jim Templeman. Interactive and Con-
tinuous Collision Detection for Avatars in Virtual Envi-
ronment. In Proceedings of IEEE International Confer-
ence on Virtual Reality 2004.

[RL05] S. Redon and M. C. Lin. Practical Local Planning
in the Contact Space. In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, 2005.

[RK97] D. Ruspini and O. Khatib. Collision/Contact Mod-
els for the Dynamic Simulation of Complex Environ-
ments. IEEE/RSJ International Conference on Intelligent
Robots and Systems:IROS’97.

[RKK97] D. C. Ruspini, K. Kolarov and O. Khatib. The
Haptic Display of Complex Graphical Environments.
Computer Graphics Proceedings, SIGGRAPH 97 pp 345-
52

[SPBS00] W. L. Sachtler, M. R. Pendexter, J. Biggs, and
M. A. Srinivasan. Haptically perceived orientation of a
planar surface is altered by tangential forces. Fifth Phan-
tom User’s Group Workshop, 2000.

[SSL05] F. Schwarzer, M. Saha, and J.-C. Latombe. Adap-
tive Dynamic Collision Checking for Single and Multiple
Articulated Robots in Complex Environments. IEEE Tr.
on Robotics and Automation, June 2005.

[SSL02] F. Schwarzer, M. Saha, and J.-C. Latombe. Exact
collision checking of robot paths. In Workshop on Algo-
rithmic Foundations of Robotics (WAFR), Dec. 2002.

[SIS96] Yair Shapira, Moshe Israeli, Avram Sidi. Towards
Automatic Multigrid Algorithms for SPD, Nonsymmetric
and Indefinite Problems. Journal on Scientific Computing
Volume 17, Number 2 pp. 439-453, 1996.

[Sny92] J. Snyder. Interval analysis for Computer Graph-
ics. Computer Graphics, 26(2),pages 121-130, July 1992.

[SWFCB93] J. Snyder, A. Woodbury, K. Fleischer, B. Cur-
rin, and A. Barr, Interval Methods for Multi-point colli-
sions between Time-Dependent Curved Surfaces. Com-
puter Graphics, 27(2), pp. 321-334, Aug. 1993.

[SBB96] M. A. Srinivasan, G. L. Beauregard, and D. L.
Brock. The impact of visual information on the haptic per-
ception of stiffness in virtual environments. ASME Win-
ter Annual Meeting, November 1996.

[ST96] D. E. Stewart and J. C. Trinkle. An Implicit Time-
Stepping Scheme for Rigid Body Dynamics with Inelas-
tic collisions and Coulomb Friction. International Jour-
nal of Numerical Methods in Engineering, 39:2673-2691,
1996.

c© The Eurographics Association 2006.

Stephane Redon / Continuous Collision Detection and Handling for Rigid and Articulated Bodies

[TSHBS03] N. Tarrin, S. Coquillart, S. Hasegawa, L.
Bouguila, M. Sato. The Stringed Haptic Workbench: a
New Haptic Workbench Solution. In proceedings of Eu-
rographics, September 2003.

[VDB98] G. Van den Bergen. Efficient collision detection
of complex deformable models using AABB trees. Journal
of Graphics Tools, 2(4):1-14, 1997.

[VDB05] G. Van den Bergen. Continuous Collision Detec-
tion of General Convex Objects Under Translation. Game
Developer Conference, 2005.

[VHBZ90] Von Herzen, B., A.H. Barr, and H.R. Zatz,
Geometric collisions for Time-Dependent Parametric Sur-
faces. Computer Graphics, 24(4), August 1990, pp. 39-
48.

[Wil76] D. R. Wilhelmsen. A Nearest Point Algorithm for
Convex Polyhedral Cones and Applications to Positive
Linear Approximations. Mathematics of computation, 30,
pp 48-57, 1976.

[Zac98] Gabriel Zachmann. Rapid Collision Detection by
Dynamically Aligned DOP-Trees. Proc. of IEEE Virtual
Reality Annual International Symposium. VRAIS ’98.

[ZS95] C. B. Zilles and J. K. Salisbury. A constraint-based
god-object method for haptic display. International Con-
ference on Intelligent Robots and Systems, Proceedings,
August 1995.

c© The Eurographics Association 2006.

1

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

C
ol

lis
io

n
D

et
ec

tio
n

fo
r V

ol
um

et
ric

 D
ef

or
m

ab
le

 O
bj

ec
ts

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
sp

ac
e

is
 d

iv
id

ed
 u

p
in

to
 c

el
ls

•
ob

je
ct

 p
rim

iti
ve

s
ar

e
pl

ac
ed

 in
to

 c
el

ls
•

ob
je

ct
 p

rim
iti

ve
s

w
ith

in
 th

e
sa

m
e

ce
ll

ar
e

ch
ec

ke
d

fo
r c

ol
lis

io
n

•
pa

irs
 o

f p
rim

iti
ve

s
th

at
 d

o
no

t s
ha

re
 th

e
sa

m
e

ce
ll

ar
e

no
t t

es
te

d
(tr

iv
ia

l r
ej

ec
t)

S
pa

tia
l P

ar
tit

io
ni

ng
 -

Id
ea

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
sO
ut

lin
e

•
in

tro
du

ct
io

n
to

 s
pa

tia
l d

at
a

st
ru

ct
ur

es
•

bi
na

ry
 s

pa
ce

 p
ar

tit
io

ni
ng

 tr
ee

s
•

vo
xe

lg
rid

s
•

sp
at

ia
l s

ub
di

vi
si

on
 w

ith
 g

ra
ph

ic
s

ha
rd

w
ar

e

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

vo
xe

lg
rid

oc
tre

e
k-

d
tre

e
B

S
P

-tr
ee

•
ce

lls
 m

ai
nt

ai
n

re
fe

re
nc

es
 to

 p
rim

iti
ve

s
in

te
rs

ec
tin

g
th

e
ce

ll
•

in
fo

rm
at

io
n

is
 u

pd
at

ed
 fo

r e
ac

h
ob

je
ct

 tr
an

sf
or

m
at

io
n

•
oc

tre
e,

 k
-d

tre
e,

 a
nd

 B
S

P
-tr

ee
 a

re
 o

bj
ec

t-d
ep

en
de

nt
•

vo
xe

lg
rid

 is
 o

bj
ec

t-i
nd

ep
en

de
nt

S
pa

tia
l D

at
a

S
tru

ct
ur

es

2

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
sp

ac
e

pa
rti

tio
ni

ng
 in

to
 (u

ni
fo

rm
) r

ec
ta

ng
ul

ar
,

ax
is

-a
lig

ne
d

ce
lls

•
pr

im
iti

ve
s

pe
r c

el
l a

re
 fo

un
d

by
–

sc
an

 c
on

ve
rs

io
n

of
 p

rim
iti

ve
s

to
 th

e
gr

id
 o

r
–

sc
an

 c
on

ve
rs

io
n

of
 A

A
B

B
s

of
 th

e
pr

im
iti

ve
s

•
fa

st
 c

el
l a

cc
es

s
•

op
tim

al
 c

el
l s

iz
e?

–
la

rg
e

ce
lls

 in
cr

ea
se

 th
e

nu
m

be
r o

f p
rim

iti
ve

s
pe

r c
el

l
–

sm
al

l c
el

ls
 c

au
se

 s
pr

ea
di

ng
 o

f p
rim

iti
ve

s
to

 a
 la

rg
e

nu
m

be
r o

f c
el

ls

•
le

ss
 e

ffi
ci

en
t i

n
ca

se
 o

f n
on

-u
ni

fo
rm

 p
rim

iti
ve

 d
is

tri
bu

tio
n

V
ox

el
G

rid

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
hi

er
ar

ch
ic

al
 s

tru
ct

ur
es

•
sp

ac
e

pa
rti

tio
ni

ng
 in

to
 re

ct
an

gu
la

r,
ax

is
-a

lig
ne

d
ce

lls
•

ro
ot

 n
od

e
co

rr
es

po
nd

s
to

 A
A

B
B

 o
f a

n
ob

je
ct

•
in

te
rn

al
 n

od
es

 re
pr

es
en

t s
ub

di
vi

si
on

s
of

 th
e

A
A

B
B

•
le

av
es

 re
pr

es
en

t c
el

ls
 w

hi
ch

 m
ai

nt
ai

n
pr

im
iti

ve
 li

st
s

O
ct

re
e

an
d

k-
d

Tr
ee

oc
tre

e
k-

di
m

en
si

on
al

 b
in

ar
y

tre
e

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
un

ifo
rm

 o
r n

on
-u

ni
fo

rm
 s

ub
di

vi
si

on
•

ad
ap

tiv
e

to
 lo

ca
l d

is
tri

bu
tio

n
of

 p
rim

iti
ve

s
–

la
rg

e
ce

lls
 in

 c
as

e
of

 lo
w

 d
en

si
ty

 o
f p

rim
iti

ve
s

–
sm

al
l c

el
ls

 in
 c

as
e

of
 h

ig
h

de
ns

ity

•
dy

na
m

ic
 u

pd
at

e
–

ce
lls

 w
ith

 m
an

y
pr

im
iti

ve
s

ca
n

be
 s

ub
di

vi
de

d
–

ce
lls

 w
ith

 le
ss

 p
rim

iti
ve

s
ca

n
be

 m
er

ge
d

O
ct

re
e

an
d

k-
d

Tr
ee

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
sO
ut

lin
e

•
in

tro
du

ct
io

n
to

 s
pa

tia
l d

at
a

st
ru

ct
ur

es
•

bi
na

ry
 s

pa
ce

 p
ar

tit
io

ni
ng

 tr
ee

s
•

vo
xe

lg
rid

s

3

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
bi

na
ry

 s
pa

ce
 p

ar
tit

io
ni

ng
 tr

ee
•

hi
er

ar
ch

ic
al

 s
tru

ct
ur

e
•

sp
ac

e
is

 s
ub

di
vi

de
d

by
 m

ea
ns

 o
f

ar
bi

tra
ril

y
or

ie
nt

ed
 p

la
ne

s
•

ge
ne

ra
liz

ed
 k

-d
tre

e
•

sp
ac

e
pa

rti
tio

ni
ng

 in
to

 c
on

ve
x

ce
lls

•
di

sc
re

te
-o

rie
nt

at
io

n
B

S
P

 tr
ee

s
D

O
B

S
P

(fi
ni

te
 s

et
 o

f p
la

ne
 o

rie
nt

at
io

ns
)

B
S

P
 T

re
e

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
[H

en
ry

 F
uc

hs
 e

t a
l.

19
80

] p
ro

po
se

d
a

vi
si

bl
e

su
rfa

ce
 a

lg
or

ith
m

 u
si

ng
 a

 p
re

-c
om

pu
te

d
B

S
P

B
S

P
 T

re
e

fo
r R

en
de

rin
g

or
ig

in
al

 s
ce

ne
sc

en
e

pa
rti

tio
ni

ng
B

S
P

 tr
ee

1

2

3

4

1

2a
3

42b
1

3
4

2b
2a

+

+
+

-
-

-

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
fo

r a
 g

iv
en

 v
ie

w
po

in
t

–
re

nd
er

 fa
r b

ra
nc

h
–

re
nd

er
 ro

ot
 (n

od
e)

 p
ol

yg
on

–
re

nd
er

 n
ea

r b
ra

nc
h

•
re

cu
rs

iv
el

y
ap

pl
ie

d
to

 s
ub

-tr
ee

s
•

ba
ck

 to
 fr

on
t r

en
de

rin
g

•
ex

am
pl

e:
 v

ie
w

po
in

t i
s

in
 1

-
•

re
nd

er
in

g
of

 1
+,

 1
, 1

-
•

ru
le

 re
cu

rs
iv

el
y

ap
pl

ie
d

to
 1

+
an

d
1-

•
vi

ew
po

in
t i

s
in

 3
+

->
 re

nd
er

in
g

of
 3

, 2
b

•
vi

ew
po

in
t i

s
in

 4
--

>
re

nd
er

in
g

of
 2

a,
 4

B
S

P
 T

re
e

fo
r R

en
de

rin
g

vi
ew

po
in

t B
S

P
 tr

ee

1

2a
3

42b

1

3
4

2b
2a

+

+
+

-
-

-

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
B

S
P

 tr
ee

s
ca

n
be

 u
se

d
fo

r
in

si
de

 /
ou

ts
id

e
cl

as
si

fic
at

io
n

of

cl
os

ed
 p

ol
yg

on
s

B
S

P
 T

re
e

fo
r C

ol
lis

io
n

D
et

ec
tio

n

or
ig

in
al

 s
ce

ne
sc

en
e

pa
rti

tio
ni

ng
so

lid
-le

af
B

S
P

 tr
ee

1
2

3

4

1
2

3a

4

3b

1

3b
3a

4
2

+

+
+

-
-

-

ou
t

ou
t

+
-

+
-

ou
t

ou
t

in
in

4

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
qu

er
y

po
in

t i
s

in
si

de

•
qu

er
y

po
in

t i
s

ou
ts

id
e

C
ol

lis
io

n
Q

ue
ry

1
2

3a

4 3b

1

3b
3a

4
2

+

+
+

-
-

-

ou
t

ou
t

+
-

+
-

ou
t

ou
t

in
in

1
2

3a

4 3b

1

3b
3a

4
2

+

+
+

-
-

-

ou
t

ou
t

+
-

+
-

ou
t

ou
t

in
in

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
ke

ep
 th

e
nu

m
be

r o
f n

od
es

 s
m

al
l

•
ke

ep
 th

e
nu

m
be

r o
f l

ev
el

s
sm

al
l

•
in

tro
du

ce
 a

rb
itr

ar
y

su
pp

or
t p

la
ne

s
(e

sp
ec

ia
lly

 in
 c

as
e

of
 c

on
ve

x
ob

je
ct

s,

w
he

re
 a

ll
po

ly
go

n
fa

ce
s

ar
e

in
 th

e
sa

m
e

ha
lf-

sp
ac

e
w

ith
 re

sp
ec

t t
o

a
gi

ve
n

fa
ce

)

B
S

P
 T

re
e

C
on

st
ru

ct
io

n

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
in

tro
du

ct
io

n
to

 s
pa

tia
l d

at
a

st
ru

ct
ur

es
•

bi
na

ry
 s

pa
ce

 p
ar

tit
io

ni
ng

 tr
ee

s
•

vo
xe

lg
rid

s

O
ut

lin
e

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

R
el

at
ed

 A
pp

ro
ac

he
s

•
[L

ev
in

th
al

19
66

]
–

3D
 g

rid
 (“

cu
bi

ng
”)

–
an

al
ys

is
 o

f m
ol

ec
ul

ar
 s

tru
ct

ur
es

–
ne

ig
hb

or
ho

od
 s

ea
rc

h
to

 c
om

pu
te

 a
to

m
 in

te
ra

ct
io

n
•

[R
ab

in
 1

97
6]

–
3D

 g
rid

 +
 h

as
hi

ng
–

fin
di

ng
 c

lo
se

st
 p

ai
rs

•
[T

ur
k

19
89

, 1
99

0]
–

rig
id

 c
ol

lis
io

n
de

te
ct

io
n

–
3D

 g
rid

 +
 h

as
hi

ng

C
yr

us
 L

ev
in

th
al

, M
IT

5

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

D
ef

or
m

ab
le

 C
ol

lis
io

n
D

et
ec

tio
n

•
[T

es
ch

ne
r,

H
ei

de
lb

er
ge

r e
t a

l.
20

03
]

–
co

llis
io

ns
 a

nd
 s

el
f-c

ol
lis

io
ns

 fo
r

de
fo

rm
ab

le
 te

tra
he

dr
al

 m
es

he
s

–
un

ifo
rm

 3
D

 g
rid

–
no

n-
un

ifo
rm

 d
is

tri
bu

tio
n

of
 o

bj
ec

t p
rim

iti
ve

s
ha

sh
in

g
–

no
 e

xp
lic

it
3D

 d
at

a
st

ru
ct

ur
e

–
an

al
ys

is
 o

f o
pt

im
al

 c
el

l s
iz

e

N
C

C
R

 C
o-

M
e

E
pi

da
ur

e,
 IN

R
IA

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 -

S
et

up

im
pl

ic
it

un
ifo

rm
 g

rid
:

ha
sh

 fu
nc

tio
n:

H
(c

el
l)

ha
sh

 ta
bl

e
in

de
x

ha
sh

 ta
bl

e:

...

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 –

S
ta

ge
 1

•
al

l v
er

tic
es

 a
re

 h
as

he
d

ac
co

rd
in

g
to

 th
ei

r c
el

l: ...

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 –

S
ta

ge
 2

•
al

l t
et

ra
he

dr
on

s
ar

e
ha

sh
ed

 a
cc

or
di

ng
 to

th
e

ce
lls

 to
uc

he
d

by
 th

ei
r b

ou
nd

in
g

bo
x

...

6

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 –

S
ta

ge
 3

•
ve

rti
ce

s
an

d
te

tra
he

dr
on

s
in

 th
e

sa
m

e
ha

sh
 ta

bl
e

en
try

 a
re

 te
st

ed
 fo

r i
nt

er
se

ct
io

n:
...

A
)

no
 c

ol
lis

io
n

B
)

co
lli

si
on

C
)

se
lf-

co
lli

si
on

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

V
er

te
x-

in
-T

et
ra

he
dr

on
 T

es
t

(a
)

B
ar

yc
en

tri
c

co
or

di
na

te
s:

(b
)

O
rie

nt
ed

 fa
ce

s:

B
ar

yc
en

tri
c

co
or

di
na

te
s

fa
st

er

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 –

S
um

m
ar

y

•
st

ag
es

:
–

ha
sh

 a
ll

ve
rti

ce
s

–
ha

sh
 a

ll
te

tra
he

dr
on

s
–

in
te

rs
ec

tio
n

te
st

 w
ith

in
 e

ac
h

ha
sh

 ta
bl

e
en

try

•
pa

ra
m

et
er

s:
–

gr
id

 c
el

l s
iz

e
–

gr
id

 c
el

l s
ha

pe
–

ha
sh

 ta
bl

e
si

ze
–

ha
sh

 fu
nc

tio
n

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 -

P
ar

am
et

er
s

im
pl

ic
it

un
ifo

rm
 g

rid
:

ha
sh

 fu
nc

tio
n:

H
(c

el
l)

ha
sh

 ta
bl

e
in

de
x

ce
ll

si
ze

ce
ll

sh
ap

e
ha

sh
ta

bl
e

si
ze

ha
sh

 ta
bl

e:

...

7

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

G
rid

 C
el

l S
iz

e

•
[B

en
tle

y
et

 a
l.

19
77

] s
ug

ge
st

 a
 c

el
l s

iz
e

eq
ua

l t
o

th
e

si
ze

 o
f t

he

bo
un

di
ng

 b
ox

 o
f a

n
ob

je
ct

 p
rim

iti
ve

•
[T

es
ch

ne
r,

H
ei

de
lb

er
ge

r e
t a

l.
20

03
]

te
st

 s
ce

na
rio

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

H
as

h
Ta

bl
e

S
iz

e

•
la

rg
er

 h
as

h
ta

bl
e

re
du

ce
s

ha
sh

 c
ol

lis
io

ns

te
st

 s
ce

na
rio

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

H
as

h
Fu

nc
tio

n

H
(i,

 j,
 k

) :
=

(i
⋅p

1
xo

r
j ⋅

p 2
xo

r
k

⋅p
3)

 m
od

n

i,
j,

k
:

ce
ll

co
or

di
na

te
s

p 1
, p

2,
p 3

:
la

rg
e

pr
im

es

n
:

ha
sh

 ta
bl

e
si

ze

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
[T

es
ch

ne
r,

H
ei

de
lb

er
ge

r e
t a

l.
20

03
]

co
llis

io
n

an
d

se
lf-

co
llis

io
n

de
te

ct
io

n

P
er

fo
rm

an
ce

te
st

 s
ce

na
rio

s
17

4

7234156

m
ax

 ti
m

e
[m

s]

58
98

20
51

4
2

48
40

10
00

0
20

24
20

0
50

00
0

10
0

19
36

40
00

8

12
00

10
00

10
0

ve
rti

ce
s

te
tra

s
ob

je
ct

s

P
en

tiu
m

 4
, 1

.8
G

H
z

8

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

U
ni

fo
rm

 V
ox

el
G

rid
s

•
co

llis
io

n
an

d
se

lf-
co

llis
io

n
de

te
ct

io
n

of
 te

tra
he

dr
al

 m
es

he
s

•
no

 e
xp

lic
it

sp
at

ia
l p

ar
tit

io
ni

ng

(A
A

B
B

 a
nd

 c
el

ls
 a

re
 n

ot
 e

xp
lic

itl
y

re
pr

es
en

te
d)

•
ha

sh
 m

ap
•

pe
rfo

rm
an

ce
 d

ep
en

de
nt

 o
n

nu
m

be
r o

f o
bj

ec
t p

rim
iti

ve
s

•
pe

rfo
rm

an
ce

 in
de

pe
nd

en
t o

fn
um

be
r o

f o
bj

ec
ts

•
al

go
rit

hm
 c

an
 w

or
k

w
ith

 v
ar

io
us

 o
bj

ec
t p

rim
iti

ve
s

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
si

m
pl

e
an

d
ef

fic
ie

nt
 te

ch
ni

qu
e

•
es

pe
ci

al
ly

 in
te

re
st

in
g

fo
r d

ef
or

m
ab

le
, n

-b
od

y,
 a

nd
se

lf-
co

llis
io

n
de

te
ct

io
n

•
in

 c
as

e
of

 n
on

-u
ni

fo
rm

 o
r s

pa
rs

e
sp

at
ia

l d
is

tri
bu

tio
n

of
 o

bj
ec

t
pr

im
iti

ve
s,

 h
as

hi
ng

 is
 a

 g
oo

d
ch

oi
ce

•

pa
ra

m
et

er
s

ha
ve

to
 b

e
in

ve
st

ig
at

ed

U
ni

fo
rm

 V
ox

el
G

rid
s

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

•
C

. L
ev

in
th

al
, “

M
ol

ec
ul

ar
 m

od
el

-b
ui

ld
in

g
by

 c
om

pu
te

r,”
Sc

ie
nt

ifi
c

Am
er

ic
an

,
pp

. 4
2-

52
, J

un
e

19
66

.
•

J.
 L

. B
en

tle
y,

 D
. F

. S
ta

na
t,

E.
 H

. W
illi

am
s,

 “T
he

 c
om

pl
ex

ity
 o

f f
ix

ed
-r

ad
iu

s
ne

ar
 n

ei
gh

bo
r s

ea
rc

hi
ng

,”
In

f.
P

ro
ce

ss
. L

et
te

rs
, v

ol
. 6

, 2
09

-2
12

, 1
97

7.
•

G
. T

ur
k,

 “I
nt

er
ac

tiv
e

co
llis

io
n

de
te

ct
io

n
fo

r m
ol

ec
ul

ar
 g

ra
ph

ic
s,

”T
R

90
-0

14
,

U
ni

ve
rs

ity
 o

f N
or

th
 C

ar
ol

in
a

at
 C

ha
pe

l H
ill,

 1
99

0.
•

S.
 B

an
di

, D
. T

ha
lm

an
n,

 “A
n

ad
ap

tiv
e

sp
at

ia
l s

ub
di

vi
si

on
 o

f t
he

 o
bj

ec
t

sp
ac

e
fo

r f
as

t c
ol

lis
io

n
de

te
ct

io
n

of
 a

ni
m

at
in

g
rig

id
 b

od
ie

s,
”P

ro
c.

 o
f

E
ur

og
ra

ph
ic

s,
 p

p.
 2

59
-2

70
, 1

99
5.

•
A.

 G
re

go
ry

, M
. L

in
, S

. G
ot

ts
ch

al
k,

 R
. T

ay
lo

r,
“H

-C
O

LL
ID

E
: A

 fr
am

ew
or

k
fo

r f
as

t a
nd

 a
cc

ur
at

e
co

llis
io

n
de

te
ct

io
n

fo
r h

ap
tic

in
te

ra
ct

io
n,

”T
R

98
-0

32
,

U
ni

ve
rs

ity
 o

f N
or

th
 C

ar
ol

in
a

at
 C

ha
pe

l H
ill,

 1
99

8.
•

S.
 M

el
ax

, “
D

yn
am

ic
 p

la
ne

 s
hi

fti
ng

 B
SP

 tr
av

er
sa

l,”
P

ro
c.

 G
ra

ph
ic

s
In

te
rfa

ce
,

pp
. 2

13
-2

20
, 2

00
0.

•
M

. T
es

ch
ne

r,
B

. H
ei

de
lb

er
ge

r,
M

. M
ue

lle
r,

D
. P

om
er

an
et

s,
 M

. G
ro

ss
,

“O
pt

im
iz

ed
 S

pa
tia

l H
as

hi
ng

 fo
r C

ol
lis

io
n

D
et

ec
tio

n
of

 D
ef

or
m

ab
le

 O
bj

ec
ts

,”
P

ro
c.

 V
is

io
n,

 M
od

el
in

g,
 V

is
ua

liz
at

io
n

VM
V

’0
3,

 p
p.

 4
7-

54
, N

ov
 2

00
3.

•
G

. v
an

 d
en

 B
er

ge
n,

 “C
ol

lis
io

n
D

et
ec

tio
n

in
 In

te
ra

ct
iv

e
3D

 E
nv

iro
nm

en
ts

,”
El

se
vi

er
, A

m
st

er
da

m
, I

SB
N

: 1
-5

58
60

-8
01

-X
, 2

00
4.

R
ef

er
en

ce
s

•1

C
ol

lis
io

n
R

es
po

ns
e

fo
r

V
ol

um
et

ric
 D

ef
or

m
ab

le
 O

bj
ec

ts

C
om

pu
te

r
G

ra
ph

ic
s

F
re

ib
ur

g
U

ni
ve

rs
ity

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

M
ot

iv
at

io
n

co
m

pu
te

 c
on

si
st

en
t p

en
et

ra
tio

n
de

pt
h

in
fo

rm
at

io
n

fo
r

al
l i

nt
er

se
ct

in
g

po
in

ts
 o

f a
 te

tr
ah

ed
ra

l m
es

h

ca
n

be
 u

se
d

to
 c

om
pu

te
 p

en
al

ty
 fo

rc
es

 w
hi

ch
 p

ro
vi

de
re

al
is

tic
 c

ol
lis

io
n

re
sp

on
se

 fo
r

de
fo

rm
ab

le
 te

tr
ah

ed
ra

l
m

es
he

s

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

C
ha

lle
ng

es

in
co

ns
is

te
nt

 p
en

et
ra

tio
n

de
pt

h
in

fo
rm

at
io

n
du

e
to

di
sc

re
te

 s
im

ul
at

io
n

st
ep

s
an

d
ob

je
ct

 d
is

cr
et

iz
at

io
n

in
co

ns
is

te
nt

 p
en

et
ra

tio
n

de
pt

h
re

su
lts

 in
 o

sc
ill

at
io

n
ar

tif
ac

ts
 o

r
no

n-
re

al
is

tic
 c

ol
lis

io
n

re
sp

on
se

in
co

ns
is

te
nt

in
co

ns
is

te
nt

co
ns

is
te

nt
co

ns
is

te
nt

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 –

S
ta

ge
 1

ob
je

ct
 p

oi
nt

s
ar

e
cl

as
si

fie
d

as
 c

ol
lid

in
g

or
 n

on
-c

ol
lo

di
ng

po
in

ts
 →

sl
id

es
 o

n
sp

at
ia

l h
as

hi
ng

no
n-

co
lli

di
ng

 p
oi

nt
co

lli
di

ng
 p

oi
nt

•2

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 –

S
ta

ge
 2

bo
rd

er
 p

oi
nt

s,
 in

te
rs

ec
tin

g
ed

ge
s,

 a
nd

 in
te

rs
ec

tio
n

po
in

ts

ar
e

de
te

ct
ed

 →
ex

te
ns

io
n

of
 s

pa
tia

l h
as

hi
ng

in
te

rs
ec

tio
n

ed
ge

bo
rd

er
 p

oi
nt

in
te

rs
ec

tio
n

po
in

t
in

te
rs

ec
tio

n
no

rm
al

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 –

S
ta

ge
 3

pe
ne

tr
at

io
n

de
pt

h
d(

p)
 o

f a
 b

or
de

r
po

in
t p

 is

ap
pr

ox
im

at
ed

 u
si

ng
 th

e
ad

ja
ce

nt
 in

te
rs

ec
tio

n
po

in
ts

 x
i
an

d
no

rm
al

s
n i

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

A
lg

or
ith

m
 –

S
ta

ge
 4

co
ns

is
te

nt
 p

en
et

ra
tio

n
de

pt
h

in
fo

rm
at

io
n

at
 p

oi
nt

s
p j

is
pr

op
ag

at
ed

 to
 o

th
er

 c
ol

lid
in

g
po

in
ts

 p

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

R
es

ul
ts

co
ns

is
te

nt
 c

ol
lis

io
n

re
sp

on
se

in
co

ns
is

te
nt

 c
ol

lis
io

n
re

sp
on

se

•3

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

S
um

m
ar

y

co
ns

is
te

nt
 p

en
et

ra
tio

n
de

pt
h

in
fo

rm
at

io
n

in
 c

as
e

of
di

sc
re

te
 o

bj
ec

t r
ep

re
se

nt
at

io
n

di
sc

re
te

 ti
m

e
si

m
ul

at
io

n

ad
dr

es
se

s
th

e
pr

ob
le

m
 o

f d
is

co
nt

in
ui

tie
s

in
 m

ag
ni

tu
de

an

d
di

re
ct

io
n

of
 th

e
pe

ne
tr

at
io

n
de

pt
h

pr
ov

id
es

 r
ea

lis
tic

 p
en

al
ty

-b
as

ed
 c

ol
lis

io
n

re
sp

on
se

F
re

ib
ur

g
U

ni
ve

rs
ity

 -
C

om
pu

te
r

S
ci

en
ce

 D
ep

ar
tm

en
t -

C
om

pu
te

r
G

ra
ph

ic
s

B
. H

ei
de

lb
er

ge
r,

 M
. T

es
ch

ne
r

et
 a

l.,
 “

C
on

si
st

en
t

P
en

et
ra

tio
n

D
ep

th
 E

st
im

at
io

n
fo

r
D

ef
or

m
ab

le
 C

ol
lis

io
n

R
es

po
ns

e,
”

P
ro

c.
 V

M
V

, S
ta

nf
or

d,
 U

S
A

, 2
00

4.

R
ef

er
en

ce
s

1

Collision Detection on
Point Clouds

Gabriel Zachmann

Clausthal University, Germany

zach@in.tu-clausthal.de

EG ’06, Sep 2006, Vienna, Austria

Motivation Abschn2 Abschn3 Conclusion

 Renaissance of points as object representation because of 3D

scanners

 Goal:

 Fast collision detection between 2 given point clouds

 No polygonal reconstruction

Point Clouds

Motivation

Motivation Abschn2 Abschn3 Conclusion

Contents

1. Definition of surfaces over point clouds (PCs)

2. Hierarchical PC collision detection

3. Intersection detection at leaf level (stochastic)

4. Kinetization of BVHs (PC hierarchies)

Motivation Abschn2 Abschn3 Conclusion

 Idea: assume "distance function" f from surface,

then surface S is

 "Distance" function f :

Definition of the surface

Point Clouds

2

Motivation Abschn2 Abschn3 ConclusionPoint Clouds

 Definition of n by Weighted Least

Squares:

 Weighting function (kernel):

Motivation Abschn2 Abschn3 Conclusion

 Visualization f(x) using Euclidean distance:

 Problems:

Point Clouds

Motivation Abschn2 Abschn3 Conclusion

 Cause and solution:

 Which neighborhood graph?

→ k-SIG (sphere-of-influence graph)

proximity graph

Point Clouds Motivation Abschn2 Abschn3 Conclusion

 Result:

Point Clouds

3

Motivation Abschn2 Abschn3 Conclusion

Point Cloud Hierarchy

 Build BVH according to some

local criterion (.e.g., volume of

child BVs)

 Construct subsampling and

sphere covering at inner nodes

→ Efficient storage

Point Clouds Motivation Abschn2 Abschn3 Conclusion

 Observation: surface stays (usually) within set of convex hulls Ci

 Randomised technique:

 Basic operation: construct random point inside

 Draw set of samples from orig. point set for sphere centeres

 Compute common radius like Monte-Carlo integration

Sphere covering

Point Clouds

Motivation Abschn2 Abschn3 Conclusion

Automatic bandwidth detection

 Which bandwith h in kernel ?

 Too small → noisy surface

 Too large → no details

 Introduce "Sampling Radius" of a point cloud:
Given point cloud P in BV A, P' ⊆ P.

Sampling radius r(P') := smallest radius,

so that spheres about P' with this radius cover

surface SP, defined by P, within A.

P

P'

r(P')

SP

Point Clouds Motivation Abschn2 Abschn3 Conclusion

 Compute bandwidth h from r(P):

η = sampling-independent bandwith,

Θε = small threshold (e.g., machine precision)

r(P) = sampling radius of (sub-) point cloud

 Estimate r(P') :

Point Clouds

4

Motivation Abschn2 Abschn3 Conclusion

Geometric Proximity Graph

 Here: Sphere-of-Influence graph

 Estimate r(P) by edge lengths

 Better yet: make bandwidth h local, i.e., h(x)

 Replace h(P) or h(P') by h(x;P) and h(x;P')

 From local neighborhood in graph

Point Clouds Motivation Abschn2 Abschn3 Conclusion

Result

tim
e

/
m

ill
is

ec

distance

Point Clouds

Motivation Abschn2 Abschn3 Conclusion

Coll.Det. of PCs using Stochastic Sampling

 Given two point clouds A and B (or subsets thereof), construct

a sampling of

 Overall method:

A,B
(pi,pj) ∈ A

on different
sides of B

Approx.
intersection

points

Refined
intersection

point

Point Cloud Intersection Motivation Abschn2 Abschn3 Conclusion

A

B

Algorithm Overview

1. Bracket intersections by pairs of points

2. Find approximate intersection point (AIP) by interpolation search

3. Refine AIP by (randomized) sampling

Point Cloud Intersection

5

Motivation Abschn2 Abschn3 Conclusion

1. Root Bracketing

 Goal:
 The pairs should evenly sample the surface A

 The two points should not be too far apart

 Do it without explicit spatial data structure

a) First step: draw number of points
(to be one side of the root brackets)

 Thought experiment:
 Assume surface is covered by p surfels.

 Draw enough points from PC A so that
each surfel is hit by at least one point

b) Second step: for each point, try to find another
point from A lying on the "other" side of B
(completing the brackets)

Point Cloud Intersection Motivation Abschn2 Abschn3 Conclusion

a) drawing the points

 Avoid spatial data structure (e.g., grid)

 Pursue probabilistic approach: occupy all p surfels with high

probability

 Assumption: PC A is uniformly sampled

 Lemma [WSCG'05] →

draw random and independent points

from ,

then each surfel is hit by probability

 Depending on app: choose p constant or adapt p to sampling

density

Point Cloud Intersection

Motivation Abschn2 Abschn3 Conclusion

b) completing the brackets

 Use as an indicator

 Test only points pj that

 belong to the randomly chosen points

 are close to each other

→ Only very few points pj need to be tested

 Solution: neighborhood graph

(e.g., Sphere-of-Influence graph)

 Complexity of finding brackets:

where d = max. out-degree

Point Cloud Intersection Motivation Abschn2 Abschn3 Conclusion

Calculating
fB(…) …

Calculating
fB(…) …

Calculating
fB(…) …Calculating

fB(…) …Calculating
fB(…) …

AB

2. Interpolation Search

 Find along shortest path in the geometric

proximity graph, such that is minimal.

 Utilize interpolation search → O (log log m), m = # pts on path

pi

pj

Point Cloud Intersection

6

Motivation Abschn2 Abschn3 Conclusion

3. Precise Intersection Points

 Intercept Theorem (assuming surface is not curved):

 True intersection point is in sphere S(x,r), with

 Sample sphere by points on regular grid

Point Cloud Intersection Motivation Abschn2 Abschn3 Conclusion

Results

28,000 points
0

5

10

15

20

25

0 0,5 1 1,5 2 2,5 3

RS T (old)

iSearch (new)

 Benchmarking old vs. new method

Point Cloud Intersection

distance (relatve to bbox size)

tim
e

/
m

se
c

Motivation Abschn2 Abschn3 Conclusion

 Theoretical complexity:

 Assumptions: f(x) monotone along paths ; and, evenly

sampled point cloud.

 Experimental complexity:

0

0,5

1

1,5

2

2,5

a
v

g
.

ti
m

e
/

m
s

e
c

.

b uddha

a phrodite

8,000 20,000 32,000 44,000 56,000 68,000

number of points per object

Point Cloud Intersection Motivation Abschn2 Abschn3 Conclusion

Conclusion of Stochastic Point Cloud CD

 Technique:

 utilizes a proximity graph for collision detection and surface definition

 needs no BV hierarchies and no spatial partitioning data structure

 any BV hierarchy can be augmented by this technique to increase

performance

 Runtime:

 fast (approximate) collision detection

 overall runtime: O(log log N) in average case

 Quality/resolution of output (intersection points) can be adjusted
 (→ "surfel" radius)

Point Cloud Intersection

7

Motivation Abschn2 Abschn3 Conclusion

Conclusions on Stochastic Approach

 Cannot be proven error-free

 Good for plausible & fast simulations

 Interesting alternative to BVHs in specific cases

 Can often be combined with BVHs

 Naturally yield time-critical collision detection

Finis Motivation Abschn2 Abschn3 Conclusion

Kinetic AABB Trees

 Not just for collision detection (ray-tracing, occlusion culling,

collision detection)

 Pre-processed hierarchy becomes invalid when object deforms

→ BVH must be rebuilt or updated after deformations

Introduction

C
ou

rte
sy

 G
R

IS
, T

üb
in

ge
n

Motivation Abschn2 Abschn3 Conclusion

Brute Force Updates

Introduction Motivation Abschn2 Abschn3 Conclusion

Our Approach

 Observation:

 Motion in the physical world is normally continuous

 Changes in the combinatorial structure of the BHVs occur only at

discrete time points

We store only the combinatorial structure of the BVH and use an

event-based approach for updating (kinetization)

Overview

8

Motivation Abschn2 Abschn3 Conclusion

Kinetic Updates

Overview Motivation Abschn2 Abschn3 Conclusion

Advantages

 Fewer update operations

 Valid BVHs at every point in time

 Independent of query sampling frequency

 Can handle all kinds of objects

 Polygon soups, point clouds, and NURBS models

 Can handle insertions/deletions during run-time

 Can handle all kinds of deformations

 Only a flightplan is required for every vertex

 These flightplans may change during simulation

Overview

Motivation Abschn2 Abschn3 Conclusion

Kinetic AABB Tree

 Kinetization of the AABB tree

 Pre-processing: Build the tree by any algorithm suitable for static

AABB trees

 It is only required that the height of the BVH is logarithmic

 Store with every node the indices of those points that determine

the BV

 Initialize the event queue

Kinetic AABB Motivation Abschn2 Abschn3 Conclusion

Simulation Loop

while simulation runs

determine time t of next rendering

e ← min event in event queue

while e.timestamp < t

processEvent(e)

 e ← min event in event queue

check for collisions (or cast ray, or …)

render scene

Kinetic AABB

9

Motivation Abschn2 Abschn3 Conclusion

Analysis

 Theorem 1:

The kinetic AABB tree is requires only O(n) space. Each vertex

participates in only O(log n) events. Consequently, the kinetic

AABB tree can be updated in only O(log n) time when an

event occurs.

Finally, it is a valid BVH at every point of time.

 Theorem 2:

Given n vertices, we assume that the number of intersections

for each pair of vertex flightplans is bounded by a constant.

Then, the total number of events is in O(n log n), i.e., it is

independent of the number of in-between frames or queries.

Kinetic AABB Motivation Abschn2 Abschn3 ConclusionExperiments

Results

 Total number of BV updates for complete animation sequence

(note logarithmic scale):

Motivation Abschn2 Abschn3 ConclusionExperiments

 Average update time per frame:

Motivation Abschn2 Abschn3 Conclusion

 Total time incl. collision detection time:

Experiments

10

Motivation Abschn2 Abschn3 Conclusion

Summary of kinetic AABB Tree

 Novel data structure for updating an AABB tree under

deformation

 Efficiency due to event-based approach

 Theoretical analysis:

 O(n log n) for the updates required to keep a BVH valid

 Up to 20 times faster than bottom-up updates in practically

relevant scenarios

End Motivation Abschn2 Abschn3 Conclusion

Future Work

 Use our kinetic Data Structures also for continuous collision

detection

 Utilize our data structures for other kinds of motion

 physical based simulations

 other animation schemes

 Use our KDS for other applications like ray-tracing or occlusion

culling

End

Motivation Abschn2 Abschn3 Conclusion

References

 Jan Klein and Gabriel Zachmann, “ADB-Trees: Controlling the Error of Time-Critical Collision
Detection”, Proc. VMV ’03

 Jan Klein and Gabriel Zachmann, “Time Critical Collision Detection Using an Average Case
Approach”, Proc. VRST ’03

 M.C. Lin and J.F. Canny “Efficient Collision Detection for Animation”, Eurographics
Workshop on Animation and Simulation ’92

 Stephane Guy and Gilles Debunne, “Monte Carlo Collision Detection”, INRIA Technical
Report RR-5136, 2004

 Laks Raghupathi et al. “Real-time Collisions and Self-Collisions for Virtual Intestinal
Surgery”, Surgical Simulation and Soft Tissue Modeling, pp.38-46, Springer, 2003

 Laks Raghupathi et al. “An Intestinal Surgery Simulator: Real-Time Collision Processing and
Visualization”, IEEE TVCG, Vol. 10, No. 6,

 Stefan Kimmerle, Matthieu Nesme and Francois Faure, “Hierarchy Accelerated Stochastic
Collision Detection”, Proc. VMV ‘04

 Jan Klein and Gabriel Zachmann: "The Expected Running Time of Hierarchical Collision
Detection", SIGGRAPH 2005, Poster

 Jan Klein and Gabriel Zachmann: "Interpolation Search for Point Cloud Intersection", Proc.
of WSCG 2005

Finis Motivation Abschn2 Abschn3 Conclusion

 Jan Klein and Gabriel Zachmann: "Nice and Fast Implicit Surfaces over Noisy Point Clouds",

SIGGRAPH 2004, Sketches and Applications

 Adams & Dutre: "Interactive boolean operations on surfel bounded solids", 2003

 Hubbard: "Approximating Polyhedra with Spheres for Time-Critical Collision Detection", 1996

 Dingliana, O‘Sullivan: "Graceful Degradation of Collision Handling in Physically Based
Animation", 2000

 Adamson & Alexa: "Approximating and Intersecting Surfaces from Points", 2003

 Jan Klein and Gabriel Zachmann: "Point Cloud Collision Detection", Proc. EUROGRAPHICS

2004

 Otaduy & Lin: "Sensation Preserving Simplification for Haptic Rendering", 2003

 Otaduy & Lin:"CLODs: Dual Hierarchies for Multiresolution Collision Detection", Symp. on

Geometry Processing (2003)

 Weller, Zachmann: "Kinetic Bounding Volume Hierarchies for Deformable Objects", VRCIA

(2006)

Finis

	T13_introduction.pdf
	t13_courseNotes.pdf

