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Abstract

In this paper, we propose an experimental study of an inexpensive off-the-shelf sort-last volume visualization

architecture based upon multiple GPUs and a single CPU. We show how to efficiently make use of this architecture

to achieve high performance sort-last volume visualization of large datasets. We analyze the bottlenecks of this

architecture. We compare this architecture to a classical sort-last visualization system using a cluster of commodity

machines interconnected by a gigabit Ethernet network. Based on extensive experiments, we show that this solution

competes very well with a mid-sized PC cluster, while it significantly improves performance compared to a single

standard PC.

1. Introduction

Thanks to the advent of dedicated graphics hardware, paral-
lel architectures have been widely used to solve high-scale,
large dataset graphics problems. Lately, commodity clusters
are being used in the visualization field as well, and can
lead to interactive performance even with very large datasets.
These clusters make use of multiple machines, each hav-
ing its own CPU and GPU interconnected by a network,
usually gigabit Ethernet, Myrinet or Infiniband. However,
because they require communication between multiple ma-
chines, visualization clusters add complexity and cost both
on the hardware and on the software front. Furthermore, the
interconnection network is often a performance bottleneck
of such clusters, especially when high resolution pictures,
such as those required for immersive environments, are to
be produced.

The purpose of this paper is to resolve the problem of
sort-last volume rendering for large datasets using a simple,
inexpensive, off-the-shelf architecture that takes advantage
of multiple graphics cards in a single machine instead of
a full cluster of PCs. To the extent of our knowledge, no
such off-the-shelf system has been explored in the sort-last
context before, nor has a specific pipeline for such a hard-
ware setup been proposed. We show that architectural dif-
ferences between the multi-GPU system and the cluster lead
to different system bottlenecks and therefore impact the re-
sulting performance. We propose to adapt the sort-last vol-
ume rendering pipeline commonly used on clusters onto this
multi-GPU architecture. Through a series of benchmarks, we

show the influence of different parameters (such as the brick
size or the rendering method) on the global rendering speed.
This allows us to identify optimal parameters. Using a 1 GB
dataset (e.g. too large to be visualized without degradation
on a single GPU) we compare visualization performance on
the multi-GPU system and the cluster. It shows that both re-
sult in similar performance, while the multi-GPU system is
simpler, cheaper and easier to program. This study demon-
strates that such a system is a promising solution for volume
visualization of large datasets.

In the next section, we introduce related works. Section
3 details the sort-last pipeline for cluster-based volume vi-
sualization and points out the architectural differences of a
multi-GPU system. This pipeline is described in Section 4.
Section 5 is dedicated to implementation and experimental
results, and compares the behaviour of our multi-GPU sys-
tem to that of a similar visualization cluster. Finally, conclu-
sions and future works are given in Section 6.

2. Related works

Large data visualization 3D texture-based volume visual-
ization remains one of the most efficient techniques for di-
rect volume rendering, but the memory limitations of current
GPUs represent a serious hurdle that many methods attempt
to circumvent, often by lowering the visual quality.

The first kind of technique uses simplification-based
methods by decomposing the data into a number of equally-
sized parallelepiped bricks (this is commonly called brick-
ing). Each of these bricks is handled separately, and it is
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therefore possible to discard invisible bricks, or use mul-
tiresolution techniques. More generally, this provides a finer
data manipulation granularity in the whole volume render-
ing pipeline. In this context, Weiler et al. [WWH∗00] and
Lamar et al. [LHJ99] use 3D textures at different levels of
detail to achieve large dataset visualization without using
too much texture memory. In both approaches the algorithm
decides which level to use for each brick depending on the
brick contents, its distance to the observer and other parame-
ters. Guthe et al [GS04] achieve large volume dataset visual-
ization by compressing the data offline using wavelets. The
data is then reconstructed on-the-fly at different detail lev-
els depending on the viewing conditions, and the rendering
makes use of advanced techniques such as occlusion culling
and empty space skipping to gain further speed up. Lamar
et al. [LHJ03] propose a technique which allows efficient
error calculation in the context of level of detail volume ren-
dering. By decomposing the data into bricks and storing the
histogram of each brick, they are able to determine the visi-
bility of the brick as well as the approximation error by look-
ing at the histogram only, thereby make interactive transfer
function changes together with bricking possible. However,
some of these techniques incur data degradation, and in or-
der to handle large datasets without degrading the quality of
the pictures, one has to resort to parallel systems.

Parallel rendering Molnar et al. [MCEF94] classify paral-
lel rendering systems according to the placement of the sort-
ing phase in the parallel graphics pipeline, and derive three
categories: sort-first, sort-middle and sort-last. When sorting
is done prior to both primitive transforming and rasteriza-
tion, the approach is of the sort-first kind. When sorting is
done between those phases, it is of the sort-middle kind. Fi-
nally, if sorting is at the end of the pipeline, after rasterizing
the primitives, the approach is called sort-last. Among these
approaches, we will focus on sort-last, since it is the most
suited for large dataset visualization tasks.

For volume visualization, sort-last algorithms allow vi-
sualizing large datasets, as demonstrated by Wylie et al.
[WPLM01]. Ma et al. [MPHK94] propose the binary swap
technique, which is a highly scalable compositing algorithm
for sort-last rendering. Stompel et al. [SML∗03] present
a parallel image compositing algorithm minimizing the
amount of composited data and scheduling the composit-
ing tasks on the processors of a cluster. Strengert et al.
[SMW∗04] propose an efficient hierarchical sort-last vol-
ume rendering technique, and report interactive results on
a Myrinet interconnection network. Roth et al. [RR06] op-
timize the sort-last pipeline by splitting the screen into tiles
and taking advantage of occlusion and full transparency of
tiles in that context.

In order to achieve good performance and scalability with
sort-last volume visualization, one also has to load bal-
ance the volume data between the nodes. This is not easily
achieved, since transfer function or viewpoint changes can

both result in unbalancing a previously balanced data distri-
bution. Therefore, Marchesin et al. [MMD06] and Müller et
al. [MSE06] use a hierarchical decomposition of the dataset
into a KD-tree which is mapped onto the cluster nodes. The
tree is then rebalanced in real time according to the node’s
respective load values. Even though parallel visualization
machines can easily handle large datasets, they often incur
significant additional complexity both on the hardware side,
since an interconnection network is required, and on the soft-
ware side, since code to implement the data communication
must be developed. Using multiple graphics accelerators in
a single machine would avoid these issues, at a lower cost.

Multicard Humphreys et al. [HHN∗02] introduce
Chromium, which is a framework for cluster-based ren-
dering. This framework allows both sort-first and sort-last,
and can distribute an application over a cluster of machines
without requiring changes to it. Bhaniramka et al. [BRE05]
introduce the SGI multipipe SDK. This SDK allows mul-
tiple card rendering to be used in common applications.
However, this API is designed for expensive high-end
SGI workstations and requires hardware composition for
maximum efficiency. NVIDIA introduced SLI [nvib] and
Quadro Plex [nvia] which transparently distributes the
rendering workload to multiple cards in a sort-first fashion.
However, such setups are limited to sort-first configurations
and therefore do not scale well with the data size. Further-
more, it is limited to a number of specific NVIDIA cards
only. Penner et al. [PSC] implement a drop-in replacement
for the Direct3D library that parallelizes all the Direct3D
applications over multiple graphics cards and multiple
screens on a single system. This allows transparent render-
ing over multiple displays. Again, this technique is limited
to sort-first situations. Unlike the previously described
multicard-based methods, our technique implements a
sort-last visualization algorithm on a single machine. Using
sort-last as opposed to sort-first is known to allow better
scalability when increasing the input data size. Since it
does not replicate the data, sort-last is the most appropriate
algorithm for large dataset visualization on parallel systems.

3. Comparing sort-last pipelines: cluster vs. multi-GPU

In this section, we detail our new sort-last multi-GPU
pipeline. Figure 1 depicts the differences between sort-last
on a two-node cluster and sort-last on a single multi-GPU
machine with two GPUs. Each of the rendering nodes (in
a cluster) or GPUs (in a multi-GPU machine) is called a
client, and the node in charge of the compositing is called the
server. The blue stages are done by the CPU and the green
stages are done by the GPU, and the memory buffers are
shown in yellow. Since a single machine differs from a clus-
ter at an architectural viewpoint, one has to adapt the com-
monly used sort-last volume visualization methods to such
an architecture. The classical sort-last pipeline is shown on
the left of the figure. This pipeline works as follows. The

c© The Eurographics Association 2008.

2



S. Marchesin & C. Mongenet & J-M. Dischler / Multi-GPU Sort-Last Volume Visualization

Figure 1: The sort-last rendering pipeline on a cluster (left)

and on a multi-GPU machine (right). The green stages run

on the GPU, while the blue stages run on the CPU. Memory

buffers are shown in yellow. Notice that we tried compositing

on the CPU and on the GPU for the multi-GPU case.

data is initially partitioned across the client nodes. For each
frame, each client first renders its own data and then reads
back the rendered images to system memory. The next phase
consists in compositing the images together. In a typical
sort-last system, this is done using the direct send algorithm
[Hsu93]. To achieve composition, the screen is first parti-
tioned into as many areas as there are clients, and each client
is then in charge of compositing one of these areas. The rel-
evant pictures for each area are sent to the corresponding
client node during a communication phase as shown on the
left of Figure 1. Once the client has received all the pictures
for its area, it composes them together to form a part of the
final picture. Finally, those composited pictures are gathered
on the server node for final display. The case of direct send
where multiple nodes are in charge of the compositing al-
lows better scalability with an increasing number of nodes
than the case where a single server node does the whole com-
positing itself.

In the multi-GPU case, we can notice a number of dif-
ferences on the hardware which have implications on the
pipeline of the parallel rendering algorithm. Let us now
review the main stages of the sort-last volume rendering
pipeline as depicted on Figure 1 and compare them in both
situations:

Rendering This stage is in charge of rendering the data in a
distributed fashion. In order to handle large scale datasets,
the data is split into bricks, and visible bricks are deter-
mined and rendered. Level of detail techniques have been
implemented and tested, but the benchmarks presented in
this paper do not include such techniques, which makes the
results more easily reproducible. Volume rendering itself is
achieved using a classical 3D texture-based approach that
slices the volume into multiple polygons or using raycast-
ing. However, when using a slice-based approach, only one
CPU will compute and send the slices to all the GPUs in
the multi-GPU case as opposed to a cluster where each CPU
computes and sends its vertex data to only one GPU. There-
fore, this stage can become a bottleneck and we have to op-
timize it carefully as detailed in Section 4.

Readback The bricks that were previously determined to be
visible are projected, and their footprint is read back. How-
ever, in the case of a multi-GPU machine, all reads are done
to the same system memory, which could result in band-
width starvation. We have experimented a number of differ-
ent techniques to optimize this stage as detailed in the next
section.

Compositing In the case of a visualization cluster, the com-
positing stage requires a communication phase to gather
pieces of partial images to the compositing nodes. However,
in the case of the multi-GPU machine, no communication
phase has to take place. Although this might sound like an
advantage at first, one has to keep in mind that all the com-
positing will be done on a single CPU and through a sin-
gle memory bus. Therefore, in order to spare memory band-
width, we have to reduce memory pressure as much as pos-
sible. An alternative is to have the composition done on the
GPU.

Final display Once the image is ready, it is sent to the
screen for final display. This stage presents no difference on
a multi-GPU machine or on a visualization cluster.

From the previous qualitative comparison, one can notice
that there are major differences between the classical cluster-
based sort-last visualization pipeline and our multi-GPU sys-
tem, which we will address in the next section.

4. Multi-GPU sort-last pipeline

Based on the previous comparative study, this section de-
scribes our modified multi-GPU sort-last pipeline and its im-
plementation.

Rendering The rendering phase takes place first, in which
each client process renders its own bricks. The rendering is
done using either a 3D texture-based slicing approach or a
GPU-based raycasting approach. In order to achieve good
scalability, we have to minimize the overhead of sending
the vertex data to the card. A solution to this problem is to
use bigger bricks. Since each brick has to be sliced sepa-
rately and therefore generates its own set of polygons, the
more bricks there are, the more polygons must be sent to
the card. However, increasing the brick size also reduces
the granularity at which invisible data is culled, and reduces
culling efficiency. Therefore, additional improvements can
be obtained without changing the brick size by making use
of OpenGL extensions for efficient vertex submission. We
have experimented three ways of sending the vertex data to
the OpenGL API and tested their respective performance:
immediate mode, vertex arrays and vertex buffers objects.
The first technique generates a single OpenGL call for each
vertex, whereas the two latter techniques generate calls in
batches, thereby reducing the overhead. Since the CPU has
to send vertex data to all the cards at once, minimizing the
overhead of such calls is of primary importance. For that rea-
son, we have also implemented a GPU-based raycaster that
avoids computing and sending slices altogether.
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Figure 2: Readback techniques: the 10 visible bricks are

shown in red wireframe, span based readback is depicted

in green, the screen-aligned bounding box is shown in blue

and the same box aligned over a 32 pixel alignment is shown

in yellow. Each of these areas is a super-set of the previous

one.

Readback Once the data has been rendered, the produced
pictures have to be read back from video memory. We have
implemented three techniques in order to reduce the amount
of data to be read back from video memory as shown on
Figure 2. These techniques are:

• Projecting the visible bricks, and using the screen-aligned
bounding rectangle as a readback area as shown in blue
on Figure 2.

• Projecting the visible bricks, and using the screen-aligned
bounding rectangle as a readback area, as depicted in yel-
low on Figure 2. Aligning the bounding rectangle width
over powers of two will help the subsequent CPU-based
compositing phase, since this aligns memory access to
each pixel. We have tested alignments of 2, 4, 8, 16 and
32.

• Projecting the visible bricks, and turn their footprint into
single-line spans (in green on Figure 2). This results in
more readback operations, but in a smaller readback area.

Since all GPUs read back their contents to a common mem-
ory area, the memory bandwidth can easily become a limit-
ing factor. Therefore, we use a Unix System V shared mem-
ory buffer to exchange image data between the clients and
the server, which results in a copy-less system between the
clients, thereby reducing the strain on the memory band-
width (obviously copying still happens from GPU memory
to system memory for readback, and from system memory
to GPU memory for final display).

Compositing We have experimented with two ways to
compose the intermediate pictures into a final image. The
first way is to use the CPU, in which case the composition
is achieved by blending the pictures in a back-to-front or-
der using the OVER operator as defined by Porter and Duff
[PD84]. In that case, the intermediate picture from each GPU
is read to system memory, the CPU does all the compositing,
and the final picture is sent back to the GPU used for display
(called the target GPU). The second way is to use the GPU
for composition and take advantage of the fact that one of the
pictures is already residing on the target GPU. To do so, we

first read all the intermediate pictures except the one from
the target GPU into system memory. These pictures are then
sorted, and sent to the target GPU. We compose the pictures
that are behind the target GPU’s picture in a front-to-back
fashion using the UNDER operator, and then those that are
in front of the target GPU’s picture in a back-to-front order
using the OVER operator. In that case, all but one of the in-
termediate pictures have to be read to system memory, and
those pictures must also be sent to the target GPU. As shown
on the right of Figure 1, we use a double buffering scheme
for communication between the clients and the server, and
therefore we can overlap the final display and the rendering
computation.

Final display Once the final picture is produced, it is sent to
the screen for final display, similarly to a cluster-based sort-
last visualization system. However, instead of sending the
result to a server node, one of the GPUs is reused. We have
measured that doing so has minimal impact on the volume
rendering performance of this GPU since the cost of display-
ing a 2D picture is low (we measured it to be approximately
3% of the GPU time for a 1024×768 screen).

5. Implementation and results

This section presents our implementation, shows bench-
marks for each stage of our sort-last pipeline, both using
our multi-GPU sort-last volume rendering approach and the
classical cluster-based approach, and discusses these results.

The commonly accepted solution for parallel visualization
is to use a cluster of machines. We compared our architecture
to a 9 node off-the-shelf visualization cluster running Linux
(consisting of 8 client nodes and one server node). Each clus-
ter node is equipped with an Athlon X2 4200+ processor,
2GB of memory and a GeForce 7800GT graphics card with
256MB of memory. The interconnection network used is gi-
gabit Ethernet. This cluster runs a direct send sort-last vol-
ume visualization algorithm where the readback, communi-
cation and compositing phases work on the footprint of the
data. An alternative would be to use binary swap, but exper-
iments showed that direct send was faster in our case. For
scalability tests, we run this cluster either as a 8+1, 4+1 or
2+ 1 setup (n clients + 1 server). The multi-GPU machine
used for these tests is equipped with a motherboard that sup-
ports 4 PCI Express slots, all at 8× speed. The processor is a
Pentium-D at 3.4 GHz and has 4GB of memory. Tests were
conducted both with the same graphics cards as the cluster
(GeForce 7800GT 256MB) in order to compare the architec-
tures, and with better cards (GeForce 7950GT 512MB). We
have implemented our multi-GPU sort-last volume visual-
ization algorithm under Linux. In order to access the differ-
ent GPUs independently, we configure the X server with ex-
actly one X screen per card, even though no physical screen
is actually connected to the card.

Let us assume we have n GPUs available. On startup, the
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Figure 3: Influence of the brick size using CPU-based slice

computation (top) and GPU-based raycasting (bottom).

server spawns n processes (in the CPU compositing case)
or n− 1 processes (in the GPU compositing case). Each of
these processes opens a connection to a different X screen,
and creates an OpenGL pbuffer. All rendering is then done
through this pbuffer. Therefore, each client is able to ex-
plicitly access its own graphics card. The multi-GPU sort-
last volume visualization implementation used is the same
as that of the cluster, except that the communication stage
is removed. It is therefore possible to directly compare the
performance of the two architectures. The benchmarks have
been conducted with multiple datasets: one is the 128MB
(5123 voxels) Christmas tree dataset and the other one is
a 1GB (10243 voxels) geological core dataset (respectively
seen on Figure 9). The volume rendering implementation
uses bricking, brick-based empty space skipping and pre-
integration [EKE01], both for slice-based and raycasting-
based rendering. Unless specified, a 1024×768 viewport is
used. All the datasets were sampled at 1.5 voxel’s width for
rendering, both for slice-based rendering and for raycasting.

Rendering The first stage of the pipeline is the render-
ing stage. In order to find out the best parameters for this
stage, we compare results on a 4+ 1 nodes cluster with
the multi-GPU system using its 4 GPUs. Figure 3 shows
the influence of the choice of the brick size on the ren-
dering speed, using respectively a slicing-based rendering
approach (top) and a raycasting-based one (bottom). Since
bricks overlap by one voxel in order to achieve rendering
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Figure 4: Performance impact of the vertex submission tech-

niques.

continuity, there is a trade-off to make between the brick
size and the memory overhead. These figures show that us-
ing GPU-based raycasting is not as efficient as using slice-
based volume rendering. Indeed, for an optimal brick size,
the CPU-based slicing method produces a framerate in-
crease over the GPU raycasting approach: about 10% for
the smaller dataset, and approximately 20% for the larger
dataset. One can notice that the optimal brick size depends
on the dataset and the rendering technique used. On the
multi-GPU machine, the 1GB dataset seems to perform bet-
ter with 128× 128× 128 bricks with both rendering ap-
proaches. On the same machine the 128MB dataset has bet-
ter framerates with 64×64×64 bricks for the slicing-based
approach, and 32× 32× 32 bricks for the slicing-based ap-
proach. On the cluster, the optimal brick size for the 128MB
dataset remains 64×64×32 for both rendering techniques,
whereas the optimal brick size for the 1GB dataset depends
on the rendering approach: 64×64×64 for CPU-based slic-
ing and 128× 128× 128 for raycasting. In order to reduce
the per-vertex overhead of our system, we have tried dif-
ferent rendering techniques. Figure 4 shows three slicing-
based approaches, namely vertex arrays combined with the
GL_EXT_multi_draw_arrays OpenGL extension, vertex ar-
rays, and vertex buffer objects, and one raycasting-based ap-
proach, namely GPU-based raycasting which should avoid
the computation and sending of the vertices by the CPU
altogether. The figure demonstrates that vertex arrays com-
bined with the GL_EXT_multi_draw_arrays OpenGL exten-
sion result in the best performance, improving the framerates
by more than 10% over the baseline in the case of a Multi-
GPU machine with GeForce 7950GT cards. Although it re-
quires less work to be done on the CPU and less data to travel
over the bus, the GPU-based raycasting approach is not glob-
ally faster. This is due to the locality of texture access in the
shader which is lower than with bare texturing. However, the
pictures produced using GPU raycasting have slightly better
quality especially when using a small sampling step, thanks
to the intermediate computations being done in GPU regis-
ters at full 32-bit floating point accuracy inside each brick.
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Figure 5: Readback optimization techniques.
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Figure 6: Scalability with the screen resolution using CPU

composition (top) and GPU composition (bottom).

Readback The second stage of a sort-last rendering system
is the readback of intermediate pictures from the cards to
system memory. Figure 5 shows the influence of the read-
back optimization techniques we tried. In particular, this fig-
ure outlines that using pixel spans as the readback primitive
does not result in performance increase, but instead degrades
the framerate, both on a cluster and on the multi-GPU ma-
chine. Indeed, numerous small readbacks result in a smaller
global readback bandwidth, and therefore cause a slowdown.
On the other hand, projecting the data bounding box and
aligning the boundary of this box over a multiple of 16 pixels
results in the best performance in all cases.

Compositing The next stage of the pipeline is the composi-
tion stage. Figure 6 shows the global rendering speed when
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Figure 7:Multi-GPU vs. cluster scalability with the number

of GPUs.

using CPU-based (top) and GPU-based composition (bot-
tom) with two different datasets using the optimal brick size
as previously found. These figures show that GPU-based
compositing is more interesting when the number of com-
posited pixels per second is high (that is using the smaller
dataset), while CPU-based compositing prevails for a lower
number of pixels (that is when using the bigger dataset). We
have measured that GPU-based compositing (including the
readback from screen and display of the final picture oper-
ations) can compose up to 146 millions of pixels per sec-
ond, while CPU-based compositing using SSE assembly can
only achieve 105 millions of pixels per second. Notice that
our multi-GPU system scales well with the screen resolu-
tion. In particular, it achieves 28 frames per second when
viewing a 128MB dataset on a single multi-GPU machine
with a 1600×1200 viewport and GeForce 7800GT cards. In
contrast, a cluster with the same graphics hardware achieves
approximately only 10 frames per second with the same res-
olution and dataset.

Scalability Figure 7 compares the global performance of
our multi-GPU approach with that of a similar visualiza-
tion cluster, with both datasets and a 1024×768 resolution.
CPU-based composition is used for these tests. These re-
sults show good scalability for both the 128MB and the 1GB
datasets: using 4 GPUs, we are able to achieve a speedup
factor of 3.5 with the 128MB dataset, and a speedup factor
of 8 with the 1GB dataset, thanks to the increase of avail-
able texture memory. These tests also show that our sys-
tem is consistently faster than a similarly equipped clus-
ter for the smaller 128MB dataset, and is a little slower or
reaches similar performance levels for the 1GB dataset. The
fact that our multi-GPU setup performs almost as well as
a similarly-equipped 4+ 1 node visualization cluster with
the 1GB dataset is very promising as its cost is significantly
lower, since it is based on a single machine and does not
require an efficient and therefore expensive interconnection
network. If one considers a 1.5 voxels width sampling dis-
tance, an approximation of the number of vertices to be han-
dled per second can be obtained by muliplying the optimal
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brick size’s width with the number of bricks and the num-
ber of frames per second. For the 10243 dataset rendered at
12 frames per second and 1283 bricks (which was shown
experimentally to have no discarded bricks), this gives us
128× 83× 12 = 786432 polygons per second. Considering
a cluster or a multi-GPU setup with n GPUs, the CPU of
a given cluster node (in charge of computing the slicing) is
dedicated to a single card, and therefore computes 1/n of
that an amount of slices. In the case of our multi-GPU ma-
chine, the CPU is shared between the cards and has to com-
pute all the slices. Also, one has to keep in mind that the CPU
from the multi-GPU machine is slower (3.4 GHz Pentium-
D dual core) than the one in a single cluster node (Athlon
X2 4200+ dual core). Furthermore, if one considers that a
plane slicing a cube has 4 vertices on average, and that each
vertex is 36 bytes (each vertex carries 3 3-component float-
ing point attributes), that is 108MB per second of data to be
sent to the cards. While the PCI Express bus for the cluster
nodes operates at 16× speed, the the bus in the multi-GPU
machines operates at 8× because of technical limitations of
the motherboard used. In the case of the 128MB dataset, our
multi-GPU system outperforms the cluster because the clus-
ter becomes communication-limited by the bandwidth of the
Ethernet network, while the multi-GPUmachine does not re-
quire this time-costly communication phase. When switch-
ing to the GeForce 7950GT cards, the multi-GPU setup sees
higher performance. This shows that our system remains
scalable with improvements on the graphics hardware side.
This is promising, as future improvements in graphics hard-
ware will thus warrant related improvements in the perfor-
mance of our sort-last volume visualization system. One last
thing we noticed during our tests is that our system does not
introduce any additional latency because of the communica-
tion phase, and no jittering was observed, both of which are
commonly seen on clusters when low-cost interconnection
networks such as Ethernet are used.

Time breakup Finally, Figure 8 shows how the workload
is distributed among the different pipeline stages and among
the nodes on both architectures. Using the 1GB dataset, a
CPU-based compositing and slicing approach and the opti-
mal brick size as computed previously, we have measured
the time taken by each pipeline stage when rendering to
a 1024× 768 frame. On the multi-GPU machine, the ren-
dering time prevails over the other stages. This is also the
case on the cluster where it overlaps with the communication
and compositing stages. This figure shows that the readback
times differ significantly between both platforms. This sug-
gests that the use of a PCI Express 8× bus on the multi-GPU
machine partly accounts for the performance difference be-
tween these platforms.

6. Conclusions and future works

In this paper, we have introduced an architecture for sort-last
volume rendering based on a multi-GPU setup. As opposed
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Figure 8: Breakup of the times of the pipeline stages.

to a cluster, this architecture does not require the use of mul-
tiple machines or an interconnection network. It is there-
fore much simpler, cheaper and easier to realize. The perfor-
mance that we achieved by adapting the rendering pipeline
to this new setup demonstrates that our parallel solution
represents a highly competitive alternative to graphics clus-
ters for large volume visualization tasks. Indeed, our system
achieves interactive rendering of 1GB datasets at very large
resolutions on a single machine, which is not possible on a
single GPU, unless the data is degraded.

Our experiments show that the optimal brick size seems
to depend on the dataset characteristics (both its size and
nature) and the rendering method used. We would like to
investigate with more datasets what parameters determine
this optimal brick size, and how to automatically find it.

To our knowledge this work represents the first study of a
multi-GPU setup used in a sort last volume rendering con-
text. It therefore opens the way for further research. The tight
coupling of such an architecture should allow us to make in-
tensive use of information exchange between the GPUs to
improve performance, which is only hardly possible on clus-
ters because of the network latency and limited interconnec-
tion bandwidth available. In the future, we would also like
to experiment with more graphics cards to see how scalable
this solution is. However, as of today, no motherboard able
to host more than 4 PCI Express graphics cards is available.
It is therefore not possible right now to further test scalabil-
ity on a single machine. Instead, two different ways could
be investigated. First, multi-core machines could help dis-
tribute the compositing load among more CPUs, or allow
computing real time brick occlusion. Second, we would like
to experiment with hybrid systems, i.e. clusters of multi-
GPU machines. In particular, we would like to derive hybrid
hierarchical compositing schemes (across multiple cards in a
single machine, and across numerous multi-GPU machines
over a network) that are suited to such a cluster. In fact, from
a conceptual viewpoint this adds a new level of parallelism
between the internal parallelism of the graphics card and the
parallelism of the cluster. Such hybrid approaches could also
make use of the high data locality within a single machine to
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increase the performance. Achieving good locality on such
a system will also require smart data distribution, which we
plan to investigate further.
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