
A Low-Cost Memory Architecture For PCI-Based Interactive Ray Casting

Michael Doggett, Michael MeiBner*, Urs Kanust

WSI/GRIS’ DD&T GmbH§
University of Tiibingen, Germany Reutlingen, Germany

Abstract

In this paper we present a low-cost memory architecture running
at 100 MHz which is suited for any PCI-based volume rendering
accelerator using the ray-casting approach.

Current SDRAM technology, parallel access to all voxels re-
quired for trilinear interpolation, a cubic addressing scheme, and a
buffering mechanism accommodating memory latency are applied
to achieve high frame-rates. A total of four off-the-shelf standard
DIMM modules are required enabling up to 9 Hz (averaged over a
representative set of views) for datasets of 2563 voxels, using early
ray termination as the only algorithmic optimization.

The presented memory architecture is a good balance of cost ver-
sus feasibility on a standard PC1 card - accepting data replication -
and will be used for the VIZARD II ray casting accelerator.

CR Categories: B.3.2 [Memory Structures]: Design Style, Asso-
ciative andcache Memories; 1.3.1 [Computer Graphics]: Hardware
Architecture, Graphics Processors; 1.3.3 [Computer Graphics]: Pic-
ture/Image Generation, Display Algorithms

Keywords: Graphics hardware, volume visualization, volume ren-
dering accelerator, raycasting, memory architecture.

1 Introduction

Numerous architectures for hardware accelerated volume rendering
have been proposed over the last decade [9, 10, 3, 13, 1, 121. De-
spite the large number of proposals, only a few implementations are
available [4,14, 111, including [21] which is expected in June 1999.
The reasons for the rarity of implemented systems are varied.

Volume Rendering is a computationally intensive process and
puts high demands on the memory interface. Furthermore, features
like over-sampling, cut-planes, multiple classification spaces, seg-
mentation, etc. require trade-offs depending on the individual ar-
chitecture. The computational complexity of volume rendering, and

*e-mail : {miked,meissner} @gris.uni-tuebingen.de
te-mail: urs@dd-t.com
i UniversitLt Tiibingen, Wilhelm Schickard Institut fiir Informatik,

Graphisch Interaktive Systeme (WSVGRIS), Auf der Morgenstelle 10, C9,
D-72076 Tiibingen Germany, phone: +49 7071 29 76356, fax : +49 7071
29 5466

5 “Digital Design & Technology”, Kr;imerstraOe 13, D-72764 Reutlingen
Germany, phone: +49712143308 11, fax : +49 712143308 19

Permission 10 make digital or hard copies ol‘all or pati orthis work for
Personal or classroom use is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. ~0 copy
otherwise, 10 republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
19%) Eurographics LosAngcles CA USA
Cowkh~ ACM 1999 l-581 13-170-4/99/08...$5.00

hence the required real estate, is no longer the major issue’. How-
ever, as in polygonal graphics, the requirements for the memory
interface are very high (even higher) and currently the ultimately
limiting factor of any volume rendering accelerator. Nevertheless,
while different memory architectures for ray-casting based volume
rendering have been presented only a few have been described in
detail or analyzed with respect to their feasibility and correct tim-
ing behavior.

1 .l Related Work

Kaufman et al. [8] presented an early approach for hardware accel-
erated volume rendering. Using parallel operating pipelines - each
containing one memory unit - the memory requirements are re-
duced by exchanging data locally between pipelines. Furthermore,
a skewing scheme is used to guarantee a conflict-free access to any
axis-parallel beam of voxels. While this scheme aggravates the
integration of features like multiple classification spaces or over-
sampling of the viewplane, a high memory bandwidth can be ac-
complished enabling real-time volume rendering [22,7]. However,
the Cube architectures are more of an object space approach sim-
ulating ray-casting by limiting the process to parallel projections,
than a true ray-casting accelerator providing perspective projections
and requiring random access. Therefore, the memory requirements
and the memory architecture are highly specialized and outside the
range of what is presentedin this paper. For example, the EM-Cube
architecture [20] works on the assumption that all voxels are read
from memory to generate one image so that burst mode reading of
sub-cubes or blocks can be used.

In Verve, Knittel presented a memory interface that uses eight
different memories, such that all eight voxels necessary for trilinear
interpolation can be fetched in parallel [9]. A total of 16 SIMMs
were estimated for a 5123 dataset. Similar to Verve, VIRIM uses
eight memory units to allow parallel access for each sample. Ad-
ditionally, each unit contains two banks allowing for ping-pong
readout. Although the authors refer to “data cubes“, it is not clear
whether a cubic addressing scheme, like the one presented here, is
used or not.

The DIV’A system, as proposed by Lichtermann, uses multi-
ple image processors, each having its own private voxel memory
[141. To meet the timing of the processor’s clock frequency, static
memory is used and hence, no special memory architecture is nec-
essary. However, this prevents the system from being considered as
a low-cost volume rendering accelerator, feasible on a PC1 card.

In 1995, Knittel presented the first PCI-based volume rendering
accelerator - later named VIZARD - which can be plugged into
any PC [lo, 111. Instead of using - back then - expensive ded-
icated volume memory, the main memory of the PC is used via
DMA. Memory bandwidth was reduced using a Redundant Block
Compression scheme. Additionally, a SRAM-based Cache which
enabled the exploitation of ray-to-ray coherence was included, re-
sulting in up to seven frames per second on a 2563 dataset. How-

’ When higher order interpolation methods are applied this might be dif-
ferent.

ever, ray-to-ray coherence only improved the frame-rate for close-
ups and fly-throughs. The successor of VIZARD - VIZARD II [171
currently in development-uses dedicated memory to store the vol-
ume data on the PCI-card. This step has been driven by the dramatic
price-reduction of standard memory modules.

In 1996 de Boer et al. presented a volume memory architecture
based on RAMBUS DRAM [2]. Similar to the VIRIM system, vol-
ume data is distributed among eight memory units. Additionally,
two or more SRAM caches are used for each memory unit (non-
blocking caches). Depending on the size of the sub-cubes, the total
cache size can range from 32 MByte to 100 MByte of SRAM. Ob-
viously, this is not feasible within a single PC1 card, nor low-cost;
RDRAM requires a special interface chip (ASK) to accomodate
the 400MHz or higher clock speed and non-standard signal volt-
ages of RDRAM. Furthermore, for a true ray-casting accelerator,
short transfers are frequent and this is handled very inefficiently by
the RAMBUS protocol [163.

In [6] a cubic memory addressing scheme for access to 64 binary
voxel values in parallel was presented. While the cubic addressing
presented here is similar much larger voxel sizes such as 32bit and
the use of modem memory devices such as SDRAM are now re-
quired to enable high quality images and interactivity.

Very recently and independently, a memory architecture similar
to the one in section 3.2 has been presented [23]. The architec-
ture uses standard SDRAMs making use of the four internal banks.
However, an accurate simulation and timing analysis - as given in
this paper - has not been presented.

Within the remainder of this paper we will present several
SDRAM based volume memory architectures suited for ray-casting
based volume rendering accelerators. Section 2.1 introduces the
memory terminology we use and goes through the performance en-
hancing mechanisms we will use in our architecture. Section 3.1
shows an “optimal“ interface providing SRAM access time. A more
realistic but feasible memory architecture is presented in Section
3.2. Finally, we present a feasible low-cost memory interface based
on standard SDRAMs using four DIMMs in Section 3.3. In Sec-
tion 4 timing results are presented and the architectures discussed.
Finally, we conclude and present future work.

2 Memory Access

To describe and measure the performance of a memory architecture
the addressing and behaviour of modem memory devices must be
considered first. In this Section, we will first go through the use of
SDRAMs for ray casting and propose a model that can be used for
measuring an SDRAM’s performance when used with an applica-
tion that requires constant random access. We will then describe
the cubic addressing scheme which uses a subcube as the basic unit
of addressing, unlike traditional addressing schemes. The cubic
addressing scheme will be extended to show the calculation of ad-
dresses when using eight parallel memory modules as shown in [9].

2.1 SDRAM terminology

Interactive ray casting places very specialised demands on the use
of SDRAMs and a clear model of SDRAM behaviour is necessary
to correctly estimate performance. All SDRAM providers readily
supply datasheets that reveal a varying range of information con-
cerning their product. This information ranges from electrical spec-
ifications right through to command descriptions. Using the device
datasheets and the requirements of our application we must deter-
mine the suitability and performance of the device.

The first restraint we have is that a new read command with a ran-
dom address is sent to the SDRAM every clock cycle. This means
that the SDRAM must be used with a burst length of one and there-
fore we cannot use one of the main features of SDRAMs which is

the ability to issue precharge and bank select commands while long
burst reads are in progress. We want to minimise these precharge
and bank select commands since they represent an increase in the
memory latency. To model the operation of a memory architecture
and determine its performance given these constraints and limita-
tions we have designed a simplified SDRAM state diagram shown
in Figure 1.

Reads = 1, Delay 1011s -____________________

Reads > 1, No Delay -------____-----_____

Memory State Controller Test Manual input

Figure 1: Simplified SDRAM State Diagram for continuous reads
with burst length 1 and absolute values based on NEC SDRAM.

The SDRAM state diagram focuses on read operations only and
the delays experienced in consecutive reads. At power on, the
SDRAM starts in the precharge state and moves to the idle state.
To save precharge time, precharge is issued for all four banks and
four registers are set to indicate all banks are precharged. When a
bank activate is required a check is made on the bank’s precharge
register to see if the bank is precharged and and if so then an ac-
tivate command can be issued without precharge. Once in the idle
state a row activate command is issued to select a.bank and row ad-
dress followed by a read command which sends the column address
to the SDRAM.

Before the next read, the memory controller checks its address
and compares it to the previous read to check if a bank active or
precharge is required. Firstly, the memory controller checks if the
next read is within the currently active row and in this case another
read is issued with the next address. In this paper we will use the
terms caches and pages to refer to the currently active row in one
bank of an SDRAM. If it is not in the same row, then the appropriate
bank will need to be activated. Before bank activation the memory
controller checks the bank has been precharged, if not, a precharge
will need to be issued otherwise the memory controller issues an
activate command for that bank.

There are several other timing constraints that affect the bank
switching time of an SDRAM. Firstly, an interleaved bank activate

command cannot occur within a time period of tnRo. The test for

the number of reads in the previous bank ensures that this condition
is met by adding a small delay if not enough time has passed while
reading in the current bank. ‘Iwo further conditions are the mini-
mum time interval between successive bank activate commands to
the same bank, tnc, and the minimum time between an activate
bank command and a precharge command tRAS. These conditions
can be met by adding delay time after the number of reads in the
current bank is tested.

The perfomance and requirements of SDRAMs from different
manufacturers can vary affecting the precharge times, bank switch-
ing times and other timing constraints. Figure 1 and the simula-
tion results are based on the timing information for NEC 256Mbit
4 bank SDRAMs [18]. These were chosen because they have the
fastest performance when continuous single reads are required. The
timings are shown in Table 1. There are SDRAMs that run at speeds
greater than IOOMHz, but the SDRAMs performance will be lim-
ited by the board and its components onto which they are finally in-
corporated. Since we are aiming for a 100 MHz VIZARD II board,
we have chosen the 1OOMHz chips.

Parameter 1 Time (ns)
Clock cvcle time I 10

I

Precharge time, tRP
Row Activate, tRCD

Read data (CAS) latency, 2 20
Minimum Times I ,
Activate one to activate another, tnno
Activate one to activate same, tRc
Activate to precharge, tRAS

20
70
50

Table 1: Characteristics for NEC SDRAM

2.2 Cubic Addressing Scheme

The main difference between traditional addressing and the cubic
addressing scheme is that the basic unit for address calculation is a
s3 sub-cube instead of a single voxel. Sub-cube addressing has been
used previously in the field of parallel volume rendering [15, 19,5].
However, in this paper voxels are grouped into sub-cubes which fit
into a row of an SDRAM. A cubic address first divides the x, y
and z coordinates by s to find the s3 sub-cube that the voxel is in
and then finds the modulus by s of the x, y and z coordinates to
determine the voxel position within the s3 sub-cube. The address,
A, is calculated using the following set of equations :

A=s3AC+Av

Av = V, mod s + s(V, mod s) + s2(Vz mod s)

where,
A is the cubic address,

AC is the address of the voxel’s sub-cube,
Av is the voxel address inside the sub-cube,

V,,V,,and$
is the size of the sub-cube,
are the voxel coordinates,

D,,D,,andD, are the dimensions of the dataset.

If s = 8 and a cache size of 5 12 voxels is used, one sub-cube of
83 voxels is stored in the cache. Assuming the traditional method
of calculating the address, A, is z + ny + n2z is used and the cache
is filled linearly then a ray travelling parallel to the x axis would

only require a cache refresh at the beginning of the ray and have a
100% cache hit to miss ratio. But when the ray traces parallel to the
z axis and a cache refresh is required for every trilinear neighbour-
hood read the cache is missed every time. When comparing cubic
addressing to traditional memory addressing the cache results for
ray casting along the x,y and z axes all have a 87.5% cache hit to
miss ratio since every eighth voxel requires a cache refresh.

2.3 Parallel Memory Access

Figure 2 shows the arrangement of data in eight parallel memory
modules. In Figure 2, MO to It47 represent the eight parallel mem-
ories and for each sample point each one of the eight parallel mem-
ories is required to deliver one voxel. If (Vz, Vy , vt) is divisable
by two then the coordinates used to calculate the address for each
memory are the original coordinates divided by two. The calcu-
lation of the addresses becomes more complex when the sample
point is between two neighbourhoods of the previously mentioned
case. This is discussed in [9] and the base address of a neighbour-
hood is modified using an address modification unit (incrementer)
before each memory bank. The combination here of both Cubic
Addressing and Parallel Memory Access results in address modi-
fication affecting the calculation of both the sub-cube address and
voxel address within the sub-cube. Therefore the recalculation of
only the voxel coordinates for each parallel memory is presented.

For example, consider the set of new memory addresses for sam-
ple S2 compared to the addresses for sample Sl, where samples are
depicted as a cross marked on the ray in Figure 2. If MO for sam-
ple Sl is the origin then all eight memory addresses are identical.
But, the address calculations for sample 52 will result in new ad-
dresses for memories MO, Ml, M2 and MS, while the addresses
for memories M4, M5, M6 and M7 will remain the same.

When calculating the eight memory addresses for the current
sample point, the sample address must first be divided by two be-
fore memory addresses are calculated (implemented as a shift op-
eration), because each memory stores only every second voxel. For
example, given that memory MO is at the origin, for each memory
address calculation the sample’s x coordinate must be divided by
two and the modulus by two of the x coordinate added to it. For
memory M 1 the sample’s x coordinate only needs to be divided by
two. The newly calculated coordinates to be used when calculating
the address for each of the eight memories are as follows :

M Y= 2 + V, mod 2

M I= !$ + V, mod 2

MO : (Mm My, Mz) Ml : (U,, My, Mz)
1142 : (Ma Uy, Mz) M3 : (Uz, Uy, Mz)
M4 : (Ms, My, U,) M5 : (Uz, My, Uz)
M6 : (M,,Uy, Uz) 1147 : (Uz, Uy, uz)

2.4 Memory Access Buffering

Using the cubic addressing scheme described above, consider the
situation when the ray in Figure 2 crosses the y-z plane of the next
s3 sub-cubeof voxels and causes memories MO, M2, M4 and M6
to change their coordinates and refresh their cache with the values
of the next s3 sub-cube. At this point the memories Ml, MS, M5

pendent on only the performance of the slowest SDRAM, whereas
with unbuffered memory access the frame time is dependent on the
sum of the slowest SDRAM access at every read of a trilinear neigh-
bourhood.

3 Memory Architectures

The memory architecture chosen for implementation is dependent
on a number of factors which are constantly changing given cur-
rently available technology. This section presents three memory ar-
chitectures and shows the progression from solutions with optimal
performance and poor feasibility to increased practicalility using
four DIMMs and maintaining high performance.

Figure 2: The positioning of voxels in eight parallel memory banks
and two sample points along a ray. 3.1 Sixty Four Memories

and M7 will not yet have left their current sub-cube of voxels and
so have not had a cache refresh. If the individual memory cache
refreshes described above happen in separate cycles of the pipeline,
then the pipeline will have to stall twice. Once for the first four
memories to refill their caches and also at a later time when the
second four memories refill their caches. This is a simplified ex-
ample and depending on the direction in which the ray crosses be-
tween sub-cubes a particular memory can have up to 2 cache misses
consecutively. To minimise the effect of cache misses and subse-
quent pipeline stalling a FIFO buffer is introduced into a ray casting
pipeline as shown in Figure 3.

Figure 3: The FIFO buffers for addresses and voxel values.

With this buffering the only time the pipeline must stall is when
the voxel FIFO of a particular memory is empty at the same time
that this memory requires a cache refill. The frame time is now de-

An ideal solution for an arbitrary, but conflict free memory ac-
cess without any danger of pipeline stalls is the use of 64 inde-
pendantly accessible SDRAMs. For simplicity, the principle idea
is depicted in 2D with 16 SDRAMs in Figure 4. The four cur-
rently accessed SDRAMs are highlighted (0,1,2,3). Ensuring there
is no access penalty while crossing a page boundary, the 2 x 2
Neigborhoods across the page boundary have to be in four of the
other 12 SDRAMs not currently accessed. SDRAMs 4-15 can be
precharged and activated while accessing SDRAMs l-4, so the new
voxels are available within the next clock cycle when crossing the
page boundary. This configuration works for two principal axes di-
rections, with 64 SDRAMs, it can be extended for accesses along

___-________-____________
j SDRAM 8,9,10,11

SDRAM page boun

SDRAM page boundary

Figure 4: Memory access across page boundaries with 64
SDRAMs. Interpolation neigborhoods consist of 2 x 2 squares,
the numbers denote SDRAM delivering the voxel.

all three principal axes directions, no matter if we use cubic ad-
dressing or not. While giving us the fastest possible access time,
this solution has a severe limitation. It requires the calculation and
distribution of 64 independant addresses which is expensive to build
and exceeds the board space budget for a PCI-Card by far.

One alternative is to simply use 8 SDRAMs, which is the min-
imum required to fetch a trilinear interpolation subcube with one
memory access. While this is more likely to fit on a PC1 board, the
solution suffers from unbalanced access times and a smaller solu-
tion is possible if we employ the banks in SDRAMs.

10

3.2 Eight Logical Memories

By taking advantage of the shorter switching times between banks
in modem SDRAMs, a near optimal and more practical solution us-
ing eight logical memory banks can be used. If we take the row size
of one bank of a SDRAM and place the neighbouring subcubes in
the x,y and z directions into neighbouring SDRAM banks we can
place three into the same SDRAM and use a second SDRAM to
provide four more banks for the remaining neighbouring subcubes,
assuming 4 banks per SDRAM. This results in another level of cu-
bic hierarchy in the memory architecture. If we want to have 32
bits per voxel as proposed in the original VIZARD II design then
two 16bit wide devices will be required per logical memory. The
resulting layout of the memory architecture and the positioning of
SDRAM banks in the dataset’s coordinates is shown in Figure 5.
When a ray passes into the neighbourhood of the eight banks a
precharge is issued across all eight banks so that a switch between
banks will only take as much time as a bank activate instead of a
precharge and activate command. This design means that the same
results can be expected in each of the three principal axes direc-
tions. Using the distance between voxels in the original dataset the
effective size of each individual bank, A - H in Figure 5, is 163 and
the size of the cube between precharge commands is now 323.

Figure 5: Memory architecture using 8 logical memories.

Vetterman et. al. [23] plan to build exactly this memory structure
for their new interactive volume rendering architecture. However,
an important consideration when building any hardware accelerator
is the maximum speed of the system and effectively the speed that
the memory can operate at. We would prefer to make use of low
cost off-the-shelf memory boards and maintain a system clock of
1OOMHz by having a simpler overall design.

3.3 Four DlMMs

When considering the previously presented memory architectures,
it is apparent that favourable access times can be achieved by ex-
ploiting the SDRAM caches to store large voxel neighborhoods.
However, for a low-cost single PC1 board solution, these architec-
tures are not well suited.

Targeting low-cost, makes the use of standard off-the-shelf com-
ponents mandatory. Dual In-line Memory Modules (DIMMs) are
readily available, extremely cheap, and in daily use. Another advan-
tage is that DIMMs can easily be exchanged allowing for “upgrad-
ability“ of the memory. However, aiming for a single PC1 board so-
lution constrains the possible implementation. In discussions with
industrial partners it has become clear that more than four DIMMs
is not realistic for a single PC1 board solution. A memory architec-
ture using four DIMMs is shown in Figure 6.

Using only four DIMM modules limits the number of individual
memory addresses. Hence, fetching the eight voxels - required for

' D/B

8 SDRAMs

A-D

Figure 6: Memory architecture using 4 DIMMs.

trilinear interpolation - in parallel, is only feasible using either two
cycles (as presented in [171) or by replicating data. The memory ad-
dresses used to fetch a trilinear neighbourhood using four DIMMs
in shown in Figure 7 Although data replication is not a desirable
solution, the feasibility means that it is an acceptable trade off. Fur-
thermore, DIMM modules are relatively inexpensive, for example,
a dataset of 5123 voxels with eight bit data stored using data repli-
cation would be in the range of a few hundred US$.

Y

Z
tr, X

Figure 7: The addressing values for voxels in the four DIMMs
memory architectre. Address value Mn is sent to DIMM (n mod
4).

As a result of the data replication, we need to store two consecu-
tive voxels instead of one. This means an addressing scheme where
only four addresses are calculated is required. These four addresses
are the same as those presented in Section 2.3 and will be addresses
MO - M3 when the z coordinate is divisable by two and M4 - Mi’
when it is not. Additionally, only four internal banks per SDRAM
on the DIMM are available (A-D), and hence, the voxel neighbor-
hood contained over all caches of all memory devices is reduced
by 50% compared to the previous architecture. This increases the
number of bank activates and precharge commands therefore re-
ducing the average access-time. However, as is shown in Section 4,
this reduction has hardly any impact on the frame-rate, due to the
relatively large page caches.

11

4 Results

To show the benefits of using buffered memory accessing and de-
termine the performance difference between the presented mem-
ory architectures (sixty four memories, eight logical memories, and
four DIMMs), a software simulation was used to determine timings
using the SDRAM model as described in Section 2.1 was applied.

To gain a good perspective on the performance that a system
would give, the results have been averaged over a set of twenty rep-
resentative views. The views are rendered with their view direction
determined by the center point of each triangle in an icosahedron
centered around the dataset. Furthermore, all measurements have
been performed on a total of three different datasets, which are:

Foot: This is a CT scan of the front part of a human foot with
2563 voxels. Images of this dataset are given in Figure 8(a)
and (b). Two different materials can be classified; Bone and
flesh.

Arteries: CT angiography has been used as the acquisition device
to generate this dataset of 2563 voxels. A single material -
the blood vessels of one half of the human brain - can be
classified, see Images in Figure 8(c) and (d).

Statue: The foot of a bronze statue has been scanned, resulting
in a dataset of 3412 x 91 voxels with a non uniform spacing
of 1, 1,0.25. Up to four materials can be classified; Bronze,
an iron cylinder which is behind the foot, resin, and plaster.
Images of this dataset are shown in Figure 8(e) and (f).

For each presented memory architecture, measurements have been
performed casting 2562 rays onto each of the datasets using per-
spective projection. As a result, an average frame rate, average
memory access time, and cache hit ratio have been calculated using
the twenty views, as mentioned above. The results of these mea-
surements are shown in Table 2.

On average, the number of frames per second achievable if in
each voxel neighbourhood a sample is generated - assuming a 2563
dataset - is 5 for buffered memory and 4 for unbuffered memory.
However, due to early ray termination and perspective projection
much higher frame rates can be achieved, except the worst case
where all voxels values are classified semi-transparent, thus pre-
venting any early ray termination at all. Fortunately, for most ap-
plication fields, this happens rarely. Overall, this frame rate gives
an upper bound to the number of samples possibly being generated
per second. The last row of the table using 2563 samples shows
frames per second of 7 for buffered and 6 for unbuffered where the
speed up is due only to the reduction in the number of samples due
to perspective projection.

The buffered accessing scheme as presented in Section 2.4 per-
forms very well, as shown in Table 2. For all datasets, the aver-
age access time is reduced and hence more samples can be gen-
erated which adds between two and four more frames per second.
The Four DIMMs architecture doesn’t need buffering in z direction,
therefore buffering does not improve frame-rates as much as for the
eight logical memories. In the above described case, where in each
sample neighbourhood a sample is generated, the access buffering
increases the frame rate by 20%.

An advantage of the memory architectures are the caches
once applying oversampling. Figure S(f) shows the impact of
oversampling along the viewing direction and Figure 8(d) for
oversampling in all dimensions. In general, higher sampling rates
along the cast rays decrease the average frame rate according to the
oversampling rate. At the same time, the average access time to
the SDRAMs is decreased because more samples occur within the
same cache. This increases the overall cache hit ratio and hence,
the frame rate is not reduced by 50 % but only by 40 %, as it can
be seen in Table 2 (Statue 1 and Statue 2). The average cache hit

ratio increases from approximately 90 % to 95 % while at the same
time reducing the impact of the access buffering scheme.

As expected, the non feasible memory architecture using sixty
four memories always reaches the optimum of 10 ns and a 100 %
cache hit ratio. However, the difference between the results for
the four DIMMs and eight logical memories is always less than 1
frame per second. As it can be seen, the four DIMMs architecture
can be used with virtually no loss in performance but large gains
in practicality, implementability and upgradeability, thus enabling
a single PC1 board solution running at full 1OOMHz.

5 Conclusion

We presented a low-cost memory architecture based on off-the-
shelf DIMM modules running at 100 MHz. Using parallel accesses,
a cubic addressing scheme, FIFOs accomodating memory latency,
and data replication, we achieve high frame-rates. Averaged over a
set of representative views, up to 9Hz can be achieved. Using such
an onboard memory interface makes ray-to-ray coherence caches
- as presented in [11, 17]- redundant. The presented memory ar-
chitecture will be part of the VIZARD II system (first prototype
estimated for fall 1999).

So far, early ray termination has been applied as the only algo-
rithmic optimization. However space-leaping can greatly increase
the frame-rate by skipping homogeneous areas. Due to the latency
of current SDRAMs (addressing to data out), the integration of a
threading scheme as presented by [23] might be worth-while and
its integration is currently being investigated.

Acknowledgements

This work is funded by the Commission of the European Commu-
nities (CEC) and by the German Research Council (DFG) grant
SFB 382. Thanks to Dr. Bernhard Illerhaus from the Bundesanstalt
fi.ir Materialforschung und Materialpriifung, Berlin for the Statue
dataset and Roland Proksa from Philips Research, Hamburg for the
Arteries and Foot datasets.

References

PI

PI

[31

[41

[51

I. Bitter and A. Kaufman. A ray-slice-sweep volume ren-
dering engine. In Proceedings of the 1997 EUROGRAPH-
ICSISIGGRAPH Hardware Workshop, Los Angeles, CA,
1997.

M de Boer, A Grijpl, J Hesser, and R Manner. Latency and
hazard-free volume memory architecture for direct volume
rendering. In Eurographics Workshopon Graphics Hardware,
pages 109-l 19, August 1996.

Michael Doggett. An array based design for real-time volume
rendering. In Eurographics Workshopon Graphics Hardware,
pages 93-101. EuroGraphics, August 1995.

T. Giinther, C. Poliwoda, C. Reinhart, J. Hesser, R. Mlnner,
H.-P. Meinzer, and H.-J. Baur. VIRIM: A massively parallel
processor for real-time volume visualization in medicine. In
Eurographics workshop on Graphics Hardware, pages 103-
108, September 1994.

W. M. Hsu. Segmented ray-casting for data parallel volume
rendering. In Proceedings of the 1993 Parallel Rendering
Symposium, pages 7-14, San Jose, CA, 1993.

12

161

[71

PI

t91

DOI

IllI

u21

v31

v41

[151

Sixty Four Memories 9.8 9.8 10 10 100
Eight Logical Memories 8.7 6.6 11.2 14.8 95.4
Four DIMMs 7.7 6.6 12.7 14.7 90.9

Table 2: Memory timing for three different datasets.

D. Jackel. The graphics parcum system: A 3d memory
based computer architecture for processing and display of
solid models. Computer Graphics Forum, 4(1):21-32,198s.

U. Kanus, M. MeiRner, W. StraRer, H. Pfister, A. Kaufman,
R. Amerson, R. J. Carter, B. Culbertson, P. Kuekes, and
G. Snider. Implementations of Cube-4 on the teramac custom
computing machine. Computers & Graphics, 21(2): 199-208,
1997.

Arie Kaufman and Reuven Bakalash. Memory and process-
ing architecture for 3D voxel-based imagery. IEEE Computer
Graphics and Applications, 8(11): 10-23, November 1988.

Gtinter Knittel. VERVE : Voxel Engine for Real-time Vi-
sualization and Examination. Computer Graphics Forum,
12(3):37-48,1993.

Gtinter Knittel. A PCI-based volume rendering accelerator.
In Eurographics Workshop on Graphics Hardware, pages 73-
82, August 1995.

Gtinter Knittel and Wolfgang StraRer. VIZARD: Visualiza-
tion accelerator for realtime display. In 1997 Eurogruph-
its/SIGGRAPH Workshop on Graphics Hardware, pages
139-147,August 1997.

K. Kreeger and A. Kaufman. PAVLOV: A Programmable
Architecture for Volume Processing. In Proc. of Eurogruph-
its/SIGGRAPH workshop on graphics hardware 1998, pages
77-86, Lisboa, Portugal, 1998.

B. Lichtenbelt. Design of a high performance volume
visualization system. In Proceedings of the 1997 Euro-
graphics/SIGGRAPH Hardware Workshop, Los Angeles, CA,
1997.

J. Lichtermann. Design of a fast voxel processor for paral-
lel volume visualization. In Proceedings of the IOth Euro-
graphics Hardware Workshop, pages 83-92, Maastricht, The
Netherlands, 1995.

K. Ma, J. Painter, C. Hansen, and M. Krogh. A Data Dis-
tributed Parallel Algorithm for Ray-Traced Volume Render-
ing. In Proceedings of IEEE Symposium on Parallel Render-
ing, pages 15-22. ACM Press, October 1993.

[I61

[I71

1181

[I91

PO1

WI

P4

v31

Joel McCormack, Robert McNamara, Christopher Gianos,
Larry Seiler, Norman P. Jouppi, and Ken Correll. Neon:
A single-chip 3d workstation grapihcs accelerator. In Eu-
rographics/SIGGRAPH Workshop on Graphics Hardware,
pages 123-132, August 1998.

Michael Meil3ner, Urs Kanus, and Wolfgang StraSer.
VIZARD II, A PCI-Card for Real-Time Volume Rendering.
In EurographicsLSIGGRAPH Workshop on Graphics Hard-
ware, pages 61-67, August 1998.

NEC, http://www.necel.com. pPD45256163 256M-bit Syn-
chronous DRAM, 1998.

U. Neumann. Parallel volume-rendering algorithm perfor-
mance on mesh-connected multicomputers. In 1993 Parallel
Rendering Symposium Proceedings, pages 97-104, San Jose,
CA, October 1993.

Randy Osborne, Hanspeter Pfister, Hugh Lauer, Neil McKen-
zie, Sarah Gibson, Wally Hiatt, and TakaHide Ohkami. EM-
Cube: an architecture for low-cost real-time volume render-
ing. In EurographicsBIGGRAPH Workshop on Graphics
Hardware,pages 131-138,August 1997.

Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer,
and Larry Seiler. The volumepro real-time ray-casting system.
In Computer Graphics, Proc. of SIGGRAPH 99. ACM, 1999.

Hanspeter Pfister and Arie E. Kaufman. Cube-4 - A scalable
architecture for real-time volume rendering. In 1996 Volume
Visualization Symposium, pages 47-54. IEEE, October 1996.

B. Vettermann, J. Hesser, and R. Manner. Solving the haz-
ard problem for algorithmically optimized real-time volume
rendering. In International Workshop on Volume Graphics,
March 1999.

13

(a>

(4

(e) (0

Figure 8: The dataset of (a) and (b) is a CT scan of the upper part of a human food. The dataset is of size 256 x 256 x 256, casting 256 x 256
rays. (a) Bone is displayed in opaque white and meat in pink using high transparency. (b) Bone only. (c) and (d), a CT angiography scan of
human brain vessels is shown. The dataset is of size 256 x 256 x 256 casting 256 x 256 rays. (c) unifrom sampling in all three dimensions.
(d) oversampling in all dimension by two. Finally, (e) and (f) show a dataset of a foot of a statue casting 371 x 371 rays. The dataset is of
size 341 x 341 x 91 with spacing 1, 1,0.25. (e) Uniform sampling in all dimensions. (f) Oversampling in viewing direction by a factor of
two.

14

(b)

Figure 8: The dataset of t a) and t b1 is a CT scan of the upper part of a human food. The dataset is of size ;'.jCj X _'.jG x z.jC;. casting z.jG X i.jG

rnys. ta) Bone is displayed in opaque white and meat in pink usin;! high transparency. (b) Bone only-. (c) and cd). a CT angiography scan of
liumun brain vessels is shown. The dataset is of size 2.X x Z-56 x 2.X castin p 2.56 x 2.X rays. (c) unifrom sampling in all three dimensions.
cd1 oversamplinp in all dimension by t\vo. Finally. te) and it7 show a dataset of a foot of a statue casting ,371 x 371 ra)-s. The dataset is of
size: :3-l1 x li-ll x 91 with spacin g 1. 1.0.2.5. te) LTniform sampling in all dimensions. Cf, Oversampling in vievving direction by a factor of
t\\‘o.

A Low-Cost Memory Architecture for PCI-based Interactive Ray Casting
Michael Doggett, Michael MeiOner, Urs Kanus

137

