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Abstract 

In this paper we present a low-cost memory architecture running 
at 100 MHz which is suited for any PCI-based volume rendering 
accelerator using the ray-casting approach. 

Current SDRAM technology, parallel access to all voxels re- 
quired for trilinear interpolation, a cubic addressing scheme, and a 
buffering mechanism accommodating memory latency are applied 
to achieve high frame-rates. A total of four off-the-shelf standard 
DIMM modules are required enabling up to 9 Hz (averaged over a 
representative set of views) for datasets of 2563 voxels, using early 
ray termination as the only algorithmic optimization. 

The presented memory architecture is a good balance of cost ver- 
sus feasibility on a standard PC1 card - accepting data replication - 
and will be used for the VIZARD II ray casting accelerator. 

CR Categories: B.3.2 [Memory Structures]: Design Style, Asso- 
ciative andcache Memories; 1.3.1 [Computer Graphics]: Hardware 
Architecture, Graphics Processors; 1.3.3 [Computer Graphics]: Pic- 
ture/Image Generation, Display Algorithms 

Keywords: Graphics hardware, volume visualization, volume ren- 
dering accelerator, raycasting, memory architecture. 

1 Introduction 

Numerous architectures for hardware accelerated volume rendering 
have been proposed over the last decade [9, 10, 3, 13, 1, 121. De- 
spite the large number of proposals, only a few implementations are 
available [4,14, 111, including [21] which is expected in June 1999. 
The reasons for the rarity of implemented systems are varied. 

Volume Rendering is a computationally intensive process and 
puts high demands on the memory interface. Furthermore, features 
like over-sampling, cut-planes, multiple classification spaces, seg- 
mentation, etc. require trade-offs depending on the individual ar- 
chitecture. The computational complexity of volume rendering, and 
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hence the required real estate, is no longer the major issue’. How- 
ever, as in polygonal graphics, the requirements for the memory 
interface are very high (even higher) and currently the ultimately 
limiting factor of any volume rendering accelerator. Nevertheless, 
while different memory architectures for ray-casting based volume 
rendering have been presented only a few have been described in 
detail or analyzed with respect to their feasibility and correct tim- 
ing behavior. 

1 .l Related Work 

Kaufman et al. [8] presented an early approach for hardware accel- 
erated volume rendering. Using parallel operating pipelines - each 
containing one memory unit - the memory requirements are re- 
duced by exchanging data locally between pipelines. Furthermore, 
a skewing scheme is used to guarantee a conflict-free access to any 
axis-parallel beam of voxels. While this scheme aggravates the 
integration of features like multiple classification spaces or over- 
sampling of the viewplane, a high memory bandwidth can be ac- 
complished enabling real-time volume rendering [22,7]. However, 
the Cube architectures are more of an object space approach sim- 
ulating ray-casting by limiting the process to parallel projections, 
than a true ray-casting accelerator providing perspective projections 
and requiring random access. Therefore, the memory requirements 
and the memory architecture are highly specialized and outside the 
range of what is presentedin this paper. For example, the EM-Cube 
architecture [20] works on the assumption that all voxels are read 
from memory to generate one image so that burst mode reading of 
sub-cubes or blocks can be used. 

In Verve, Knittel presented a memory interface that uses eight 
different memories, such that all eight voxels necessary for trilinear 
interpolation can be fetched in parallel [9]. A total of 16 SIMMs 
were estimated for a 5123 dataset. Similar to Verve, VIRIM uses 
eight memory units to allow parallel access for each sample. Ad- 
ditionally, each unit contains two banks allowing for ping-pong 
readout. Although the authors refer to “data cubes“, it is not clear 
whether a cubic addressing scheme, like the one presented here, is 
used or not. 

The DIV’A system, as proposed by Lichtermann, uses multi- 
ple image processors, each having its own private voxel memory 
[ 141. To meet the timing of the processor’s clock frequency, static 
memory is used and hence, no special memory architecture is nec- 
essary. However, this prevents the system from being considered as 
a low-cost volume rendering accelerator, feasible on a PC1 card. 

In 1995, Knittel presented the first PCI-based volume rendering 
accelerator - later named VIZARD - which can be plugged into 
any PC [lo, 111. Instead of using - back then - expensive ded- 
icated volume memory, the main memory of the PC is used via 
DMA. Memory bandwidth was reduced using a Redundant Block 
Compression scheme. Additionally, a SRAM-based Cache which 
enabled the exploitation of ray-to-ray coherence was included, re- 
sulting in up to seven frames per second on a 2563 dataset. How- 

’ When higher order interpolation methods are applied this might be dif- 
ferent. 



ever, ray-to-ray coherence only improved the frame-rate for close- 
ups and fly-throughs. The successor of VIZARD - VIZARD II [ 171 
currently in development-uses dedicated memory to store the vol- 
ume data on the PCI-card. This step has been driven by the dramatic 
price-reduction of standard memory modules. 

In 1996 de Boer et al. presented a volume memory architecture 
based on RAMBUS DRAM [2]. Similar to the VIRIM system, vol- 
ume data is distributed among eight memory units. Additionally, 
two or more SRAM caches are used for each memory unit (non- 
blocking caches). Depending on the size of the sub-cubes, the total 
cache size can range from 32 MByte to 100 MByte of SRAM. Ob- 
viously, this is not feasible within a single PC1 card, nor low-cost; 
RDRAM requires a special interface chip (ASK) to accomodate 
the 400MHz or higher clock speed and non-standard signal volt- 
ages of RDRAM. Furthermore, for a true ray-casting accelerator, 
short transfers are frequent and this is handled very inefficiently by 
the RAMBUS protocol [ 163. 

In [6] a cubic memory addressing scheme for access to 64 binary 
voxel values in parallel was presented. While the cubic addressing 
presented here is similar much larger voxel sizes such as 32bit and 
the use of modem memory devices such as SDRAM are now re- 
quired to enable high quality images and interactivity. 

Very recently and independently, a memory architecture similar 
to the one in section 3.2 has been presented [23]. The architec- 
ture uses standard SDRAMs making use of the four internal banks. 
However, an accurate simulation and timing analysis - as given in 
this paper - has not been presented. 

Within the remainder of this paper we will present several 
SDRAM based volume memory architectures suited for ray-casting 
based volume rendering accelerators. Section 2.1 introduces the 
memory terminology we use and goes through the performance en- 
hancing mechanisms we will use in our architecture. Section 3.1 
shows an “optimal“ interface providing SRAM access time. A more 
realistic but feasible memory architecture is presented in Section 
3.2. Finally, we present a feasible low-cost memory interface based 
on standard SDRAMs using four DIMMs in Section 3.3. In Sec- 
tion 4 timing results are presented and the architectures discussed. 
Finally, we conclude and present future work. 

2 Memory Access 

To describe and measure the performance of a memory architecture 
the addressing and behaviour of modem memory devices must be 
considered first. In this Section, we will first go through the use of 
SDRAMs for ray casting and propose a model that can be used for 
measuring an SDRAM’s performance when used with an applica- 
tion that requires constant random access. We will then describe 
the cubic addressing scheme which uses a subcube as the basic unit 
of addressing, unlike traditional addressing schemes. The cubic 
addressing scheme will be extended to show the calculation of ad- 
dresses when using eight parallel memory modules as shown in [9]. 

2.1 SDRAM terminology 

Interactive ray casting places very specialised demands on the use 
of SDRAMs and a clear model of SDRAM behaviour is necessary 
to correctly estimate performance. All SDRAM providers readily 
supply datasheets that reveal a varying range of information con- 
cerning their product. This information ranges from electrical spec- 
ifications right through to command descriptions. Using the device 
datasheets and the requirements of our application we must deter- 
mine the suitability and performance of the device. 

The first restraint we have is that a new read command with a ran- 
dom address is sent to the SDRAM every clock cycle. This means 
that the SDRAM must be used with a burst length of one and there- 
fore we cannot use one of the main features of SDRAMs which is 

the ability to issue precharge and bank select commands while long 
burst reads are in progress. We want to minimise these precharge 
and bank select commands since they represent an increase in the 
memory latency. To model the operation of a memory architecture 
and determine its performance given these constraints and limita- 
tions we have designed a simplified SDRAM state diagram shown 
in Figure 1. 

Reads = 1, Delay 1011s -____________________ 

Reads > 1, No Delay -------____-----_____ 

Memory State Controller Test Manual input 

Figure 1: Simplified SDRAM State Diagram for continuous reads 
with burst length 1 and absolute values based on NEC SDRAM. 

The SDRAM state diagram focuses on read operations only and 
the delays experienced in consecutive reads. At power on, the 
SDRAM starts in the precharge state and moves to the idle state. 
To save precharge time, precharge is issued for all four banks and 
four registers are set to indicate all banks are precharged. When a 
bank activate is required a check is made on the bank’s precharge 
register to see if the bank is precharged and and if so then an ac- 
tivate command can be issued without precharge. Once in the idle 
state a row activate command is issued to select a.bank and row ad- 
dress followed by a read command which sends the column address 
to the SDRAM. 

Before the next read, the memory controller checks its address 
and compares it to the previous read to check if a bank active or 
precharge is required. Firstly, the memory controller checks if the 
next read is within the currently active row and in this case another 
read is issued with the next address. In this paper we will use the 
terms caches and pages to refer to the currently active row in one 
bank of an SDRAM. If it is not in the same row, then the appropriate 
bank will need to be activated. Before bank activation the memory 
controller checks the bank has been precharged, if not, a precharge 
will need to be issued otherwise the memory controller issues an 
activate command for that bank. 

There are several other timing constraints that affect the bank 
switching time of an SDRAM. Firstly, an interleaved bank activate 



command cannot occur within a time period of tnRo. The test for 

the number of reads in the previous bank ensures that this condition 
is met by adding a small delay if not enough time has passed while 
reading in the current bank. ‘Iwo further conditions are the mini- 
mum time interval between successive bank activate commands to 
the same bank, tnc, and the minimum time between an activate 
bank command and a precharge command tRAS. These conditions 
can be met by adding delay time after the number of reads in the 
current bank is tested. 

The perfomance and requirements of SDRAMs from different 
manufacturers can vary affecting the precharge times, bank switch- 
ing times and other timing constraints. Figure 1 and the simula- 
tion results are based on the timing information for NEC 256Mbit 
4 bank SDRAMs [18]. These were chosen because they have the 
fastest performance when continuous single reads are required. The 
timings are shown in Table 1. There are SDRAMs that run at speeds 
greater than IOOMHz, but the SDRAMs performance will be lim- 
ited by the board and its components onto which they are finally in- 
corporated. Since we are aiming for a 100 MHz VIZARD II board, 
we have chosen the 1OOMHz chips. 

Parameter 1 Time (ns) 
Clock cvcle time I 10 

I 

Precharge time, tRP 
Row Activate, tRCD 

Read data (CAS) latency, 2 20 
Minimum Times I , 
Activate one to activate another, tnno 
Activate one to activate same, tRc 
Activate to precharge, tRAS 

20 
70 
50 

Table 1: Characteristics for NEC SDRAM 

2.2 Cubic Addressing Scheme 

The main difference between traditional addressing and the cubic 
addressing scheme is that the basic unit for address calculation is a 
s3 sub-cube instead of a single voxel. Sub-cube addressing has been 
used previously in the field of parallel volume rendering [ 15, 19,5]. 
However, in this paper voxels are grouped into sub-cubes which fit 
into a row of an SDRAM. A cubic address first divides the x, y 
and z coordinates by s to find the s3 sub-cube that the voxel is in 
and then finds the modulus by s of the x, y and z coordinates to 
determine the voxel position within the s3 sub-cube. The address, 
A, is calculated using the following set of equations : 

A=s3AC+Av 

Av = V, mod s + s(V, mod s) + s2(Vz mod s) 

where, 
A is the cubic address, 

AC is the address of the voxel’s sub-cube, 
Av is the voxel address inside the sub-cube, 

V,,V,,and$ 
is the size of the sub-cube, 
are the voxel coordinates, 

D,,D,,andD, are the dimensions of the dataset. 

If s = 8 and a cache size of 5 12 voxels is used, one sub-cube of 
83 voxels is stored in the cache. Assuming the traditional method 
of calculating the address, A, is z + ny + n2z is used and the cache 
is filled linearly then a ray travelling parallel to the x axis would 

only require a cache refresh at the beginning of the ray and have a 
100% cache hit to miss ratio. But when the ray traces parallel to the 
z axis and a cache refresh is required for every trilinear neighbour- 
hood read the cache is missed every time. When comparing cubic 
addressing to traditional memory addressing the cache results for 
ray casting along the x,y and z axes all have a 87.5% cache hit to 
miss ratio since every eighth voxel requires a cache refresh. 

2.3 Parallel Memory Access 

Figure 2 shows the arrangement of data in eight parallel memory 
modules. In Figure 2, MO to It47 represent the eight parallel mem- 
ories and for each sample point each one of the eight parallel mem- 
ories is required to deliver one voxel. If (Vz, Vy , vt) is divisable 
by two then the coordinates used to calculate the address for each 
memory are the original coordinates divided by two. The calcu- 
lation of the addresses becomes more complex when the sample 
point is between two neighbourhoods of the previously mentioned 
case. This is discussed in [9] and the base address of a neighbour- 
hood is modified using an address modification unit (incrementer) 
before each memory bank. The combination here of both Cubic 
Addressing and Parallel Memory Access results in address modi- 
fication affecting the calculation of both the sub-cube address and 
voxel address within the sub-cube. Therefore the recalculation of 
only the voxel coordinates for each parallel memory is presented. 

For example, consider the set of new memory addresses for sam- 
ple S2 compared to the addresses for sample Sl, where samples are 
depicted as a cross marked on the ray in Figure 2. If MO for sam- 
ple Sl is the origin then all eight memory addresses are identical. 
But, the address calculations for sample 52 will result in new ad- 
dresses for memories MO, Ml, M2 and MS, while the addresses 
for memories M4, M5, M6 and M7 will remain the same. 

When calculating the eight memory addresses for the current 
sample point, the sample address must first be divided by two be- 
fore memory addresses are calculated (implemented as a shift op- 
eration), because each memory stores only every second voxel. For 
example, given that memory MO is at the origin, for each memory 
address calculation the sample’s x coordinate must be divided by 
two and the modulus by two of the x coordinate added to it. For 
memory M 1 the sample’s x coordinate only needs to be divided by 
two. The newly calculated coordinates to be used when calculating 
the address for each of the eight memories are as follows : 

M Y= 2 + V, mod 2 

M I= !$ + V, mod 2 

MO : (Mm My, Mz) Ml : (U,, My, Mz) 
1142 : (Ma Uy, Mz) M3 : (Uz, Uy, Mz) 
M4 : (Ms, My, U,) M5 : (Uz, My, Uz) 
M6 : (M,,Uy, Uz) 1147 : (Uz, Uy, uz) 

2.4 Memory Access Buffering 

Using the cubic addressing scheme described above, consider the 
situation when the ray in Figure 2 crosses the y-z plane of the next 
s3 sub-cubeof voxels and causes memories MO, M2, M4 and M6 
to change their coordinates and refresh their cache with the values 
of the next s3 sub-cube. At this point the memories Ml, MS, M5 



pendent on only the performance of the slowest SDRAM, whereas 
with unbuffered memory access the frame time is dependent on the 
sum of the slowest SDRAM access at every read of a trilinear neigh- 
bourhood. 

3 Memory Architectures 

The memory architecture chosen for implementation is dependent 
on a number of factors which are constantly changing given cur- 
rently available technology. This section presents three memory ar- 
chitectures and shows the progression from solutions with optimal 
performance and poor feasibility to increased practicalility using 
four DIMMs and maintaining high performance. 

Figure 2: The positioning of voxels in eight parallel memory banks 
and two sample points along a ray. 3.1 Sixty Four Memories 

and M7 will not yet have left their current sub-cube of voxels and 
so have not had a cache refresh. If the individual memory cache 
refreshes described above happen in separate cycles of the pipeline, 
then the pipeline will have to stall twice. Once for the first four 
memories to refill their caches and also at a later time when the 
second four memories refill their caches. This is a simplified ex- 
ample and depending on the direction in which the ray crosses be- 
tween sub-cubes a particular memory can have up to 2 cache misses 
consecutively. To minimise the effect of cache misses and subse- 
quent pipeline stalling a FIFO buffer is introduced into a ray casting 
pipeline as shown in Figure 3. 

Figure 3: The FIFO buffers for addresses and voxel values. 

With this buffering the only time the pipeline must stall is when 
the voxel FIFO of a particular memory is empty at the same time 
that this memory requires a cache refill. The frame time is now de- 

An ideal solution for an arbitrary, but conflict free memory ac- 
cess without any danger of pipeline stalls is the use of 64 inde- 
pendantly accessible SDRAMs. For simplicity, the principle idea 
is depicted in 2D with 16 SDRAMs in Figure 4. The four cur- 
rently accessed SDRAMs are highlighted (0,1,2,3). Ensuring there 
is no access penalty while crossing a page boundary, the 2 x 2 
Neigborhoods across the page boundary have to be in four of the 
other 12 SDRAMs not currently accessed. SDRAMs 4-15 can be 
precharged and activated while accessing SDRAMs l-4, so the new 
voxels are available within the next clock cycle when crossing the 
page boundary. This configuration works for two principal axes di- 
rections, with 64 SDRAMs, it can be extended for accesses along 

___-________-____________ 
j SDRAM 8,9,10,11 

SDRAM page boun 

SDRAM page boundary 

Figure 4: Memory access across page boundaries with 64 
SDRAMs. Interpolation neigborhoods consist of 2 x 2 squares, 
the numbers denote SDRAM delivering the voxel. 

all three principal axes directions, no matter if we use cubic ad- 
dressing or not. While giving us the fastest possible access time, 
this solution has a severe limitation. It requires the calculation and 
distribution of 64 independant addresses which is expensive to build 
and exceeds the board space budget for a PCI-Card by far. 

One alternative is to simply use 8 SDRAMs, which is the min- 
imum required to fetch a trilinear interpolation subcube with one 
memory access. While this is more likely to fit on a PC1 board, the 
solution suffers from unbalanced access times and a smaller solu- 
tion is possible if we employ the banks in SDRAMs. 

10 



3.2 Eight Logical Memories 

By taking advantage of the shorter switching times between banks 
in modem SDRAMs, a near optimal and more practical solution us- 
ing eight logical memory banks can be used. If we take the row size 
of one bank of a SDRAM and place the neighbouring subcubes in 
the x,y and z directions into neighbouring SDRAM banks we can 
place three into the same SDRAM and use a second SDRAM to 
provide four more banks for the remaining neighbouring subcubes, 
assuming 4 banks per SDRAM. This results in another level of cu- 
bic hierarchy in the memory architecture. If we want to have 32 
bits per voxel as proposed in the original VIZARD II design then 
two 16bit wide devices will be required per logical memory. The 
resulting layout of the memory architecture and the positioning of 
SDRAM banks in the dataset’s coordinates is shown in Figure 5. 
When a ray passes into the neighbourhood of the eight banks a 
precharge is issued across all eight banks so that a switch between 
banks will only take as much time as a bank activate instead of a 
precharge and activate command. This design means that the same 
results can be expected in each of the three principal axes direc- 
tions. Using the distance between voxels in the original dataset the 
effective size of each individual bank, A - H in Figure 5, is 163 and 
the size of the cube between precharge commands is now 323. 

Figure 5: Memory architecture using 8 logical memories. 

Vetterman et. al. [23] plan to build exactly this memory structure 
for their new interactive volume rendering architecture. However, 
an important consideration when building any hardware accelerator 
is the maximum speed of the system and effectively the speed that 
the memory can operate at. We would prefer to make use of low 
cost off-the-shelf memory boards and maintain a system clock of 
1OOMHz by having a simpler overall design. 

3.3 Four DlMMs 

When considering the previously presented memory architectures, 
it is apparent that favourable access times can be achieved by ex- 
ploiting the SDRAM caches to store large voxel neighborhoods. 
However, for a low-cost single PC1 board solution, these architec- 
tures are not well suited. 

Targeting low-cost, makes the use of standard off-the-shelf com- 
ponents mandatory. Dual In-line Memory Modules (DIMMs) are 
readily available, extremely cheap, and in daily use. Another advan- 
tage is that DIMMs can easily be exchanged allowing for “upgrad- 
ability“ of the memory. However, aiming for a single PC1 board so- 
lution constrains the possible implementation. In discussions with 
industrial partners it has become clear that more than four DIMMs 
is not realistic for a single PC1 board solution. A memory architec- 
ture using four DIMMs is shown in Figure 6. 

Using only four DIMM modules limits the number of individual 
memory addresses. Hence, fetching the eight voxels - required for 

' D/B 

8 SDRAMs 

A-D 

Figure 6: Memory architecture using 4 DIMMs. 

trilinear interpolation - in parallel, is only feasible using either two 
cycles (as presented in [ 171) or by replicating data. The memory ad- 
dresses used to fetch a trilinear neighbourhood using four DIMMs 
in shown in Figure 7 Although data replication is not a desirable 
solution, the feasibility means that it is an acceptable trade off. Fur- 
thermore, DIMM modules are relatively inexpensive, for example, 
a dataset of 5123 voxels with eight bit data stored using data repli- 
cation would be in the range of a few hundred US$. 

Y 

Z 
tr, X 

Figure 7: The addressing values for voxels in the four DIMMs 
memory architectre. Address value Mn is sent to DIMM (n mod 
4). 

As a result of the data replication, we need to store two consecu- 
tive voxels instead of one. This means an addressing scheme where 
only four addresses are calculated is required. These four addresses 
are the same as those presented in Section 2.3 and will be addresses 
MO - M3 when the z coordinate is divisable by two and M4 - Mi’ 
when it is not. Additionally, only four internal banks per SDRAM 
on the DIMM are available (A-D), and hence, the voxel neighbor- 
hood contained over all caches of all memory devices is reduced 
by 50% compared to the previous architecture. This increases the 
number of bank activates and precharge commands therefore re- 
ducing the average access-time. However, as is shown in Section 4, 
this reduction has hardly any impact on the frame-rate, due to the 
relatively large page caches. 

11 



4 Results 

To show the benefits of using buffered memory accessing and de- 
termine the performance difference between the presented mem- 
ory architectures (sixty four memories, eight logical memories, and 
four DIMMs), a software simulation was used to determine timings 
using the SDRAM model as described in Section 2.1 was applied. 

To gain a good perspective on the performance that a system 
would give, the results have been averaged over a set of twenty rep- 
resentative views. The views are rendered with their view direction 
determined by the center point of each triangle in an icosahedron 
centered around the dataset. Furthermore, all measurements have 
been performed on a total of three different datasets, which are: 

Foot: This is a CT scan of the front part of a human foot with 
2563 voxels. Images of this dataset are given in Figure 8(a) 
and (b). Two different materials can be classified; Bone and 
flesh. 

Arteries: CT angiography has been used as the acquisition device 
to generate this dataset of 2563 voxels. A single material - 
the blood vessels of one half of the human brain - can be 
classified, see Images in Figure 8(c) and (d). 

Statue: The foot of a bronze statue has been scanned, resulting 
in a dataset of 3412 x 91 voxels with a non uniform spacing 
of 1, 1,0.25. Up to four materials can be classified; Bronze, 
an iron cylinder which is behind the foot, resin, and plaster. 
Images of this dataset are shown in Figure 8(e) and (f). 

For each presented memory architecture, measurements have been 
performed casting 2562 rays onto each of the datasets using per- 
spective projection. As a result, an average frame rate, average 
memory access time, and cache hit ratio have been calculated using 
the twenty views, as mentioned above. The results of these mea- 
surements are shown in Table 2. 

On average, the number of frames per second achievable if in 
each voxel neighbourhood a sample is generated - assuming a 2563 
dataset - is 5 for buffered memory and 4 for unbuffered memory. 
However, due to early ray termination and perspective projection 
much higher frame rates can be achieved, except the worst case 
where all voxels values are classified semi-transparent, thus pre- 
venting any early ray termination at all. Fortunately, for most ap- 
plication fields, this happens rarely. Overall, this frame rate gives 
an upper bound to the number of samples possibly being generated 
per second. The last row of the table using 2563 samples shows 
frames per second of 7 for buffered and 6 for unbuffered where the 
speed up is due only to the reduction in the number of samples due 
to perspective projection. 

The buffered accessing scheme as presented in Section 2.4 per- 
forms very well, as shown in Table 2. For all datasets, the aver- 
age access time is reduced and hence more samples can be gen- 
erated which adds between two and four more frames per second. 
The Four DIMMs architecture doesn’t need buffering in z direction, 
therefore buffering does not improve frame-rates as much as for the 
eight logical memories. In the above described case, where in each 
sample neighbourhood a sample is generated, the access buffering 
increases the frame rate by 20%. 

An advantage of the memory architectures are the caches 
once applying oversampling. Figure S(f) shows the impact of 
oversampling along the viewing direction and Figure 8(d) for 
oversampling in all dimensions. In general, higher sampling rates 
along the cast rays decrease the average frame rate according to the 
oversampling rate. At the same time, the average access time to 
the SDRAMs is decreased because more samples occur within the 
same cache. This increases the overall cache hit ratio and hence, 
the frame rate is not reduced by 50 % but only by 40 %, as it can 
be seen in Table 2 (Statue 1 and Statue 2). The average cache hit 

ratio increases from approximately 90 % to 95 % while at the same 
time reducing the impact of the access buffering scheme. 

As expected, the non feasible memory architecture using sixty 
four memories always reaches the optimum of 10 ns and a 100 % 
cache hit ratio. However, the difference between the results for 
the four DIMMs and eight logical memories is always less than 1 
frame per second. As it can be seen, the four DIMMs architecture 
can be used with virtually no loss in performance but large gains 
in practicality, implementability and upgradeability, thus enabling 
a single PC1 board solution running at full 1OOMHz. 

5 Conclusion 

We presented a low-cost memory architecture based on off-the- 
shelf DIMM modules running at 100 MHz. Using parallel accesses, 
a cubic addressing scheme, FIFOs accomodating memory latency, 
and data replication, we achieve high frame-rates. Averaged over a 
set of representative views, up to 9Hz can be achieved. Using such 
an onboard memory interface makes ray-to-ray coherence caches 
- as presented in [ 11, 17]- redundant. The presented memory ar- 
chitecture will be part of the VIZARD II system (first prototype 
estimated for fall 1999). 

So far, early ray termination has been applied as the only algo- 
rithmic optimization. However space-leaping can greatly increase 
the frame-rate by skipping homogeneous areas. Due to the latency 
of current SDRAMs (addressing to data out), the integration of a 
threading scheme as presented by [23] might be worth-while and 
its integration is currently being investigated. 
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Figure 8: The dataset of (a) and (b) is a CT scan of the upper part of a human food. The dataset is of size 256 x 256 x 256, casting 256 x 256 
rays. (a) Bone is displayed in opaque white and meat in pink using high transparency. (b) Bone only. (c) and (d), a CT angiography scan of 
human brain vessels is shown. The dataset is of size 256 x 256 x 256 casting 256 x 256 rays. (c) unifrom sampling in all three dimensions. 
(d) oversampling in all dimension by two. Finally, (e) and (f) show a dataset of a foot of a statue casting 371 x 371 rays. The dataset is of 
size 341 x 341 x 91 with spacing 1, 1,0.25. (e) Uniform sampling in all dimensions. (f) Oversampling in viewing direction by a factor of 
two. 

14 



(b) 

Figure 8: The dataset of t a) and t b1 is a CT scan of the upper part of a human food. The dataset is of size ;'.jCj X _'.jG x z.jC;. casting z.jG X i.jG 

rnys. ta) Bone is displayed in opaque white and meat in pink usin;! high transparency. (b) Bone only-. (c) and cd). a CT angiography scan of 
liumun brain vessels is shown. The dataset is of size 2.X x Z-56 x 2.X castin p 2.56 x 2.X rays. (c) unifrom sampling in all three dimensions. 
cd1 oversamplinp in all dimension by t\vo. Finally. te) and it7 show a dataset of a foot of a statue casting ,371 x 371 ra)-s. The dataset is of 
size: :3-l1 x li-ll x 91 with spacin g 1. 1.0.2.5. te) LTniform sampling in all dimensions. Cf, Oversampling in vievving direction by a factor of 
t\\‘o. 
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