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Abstract

Data driven realtime face capture has gained considerable momentum in the last
few years thanks to deep neural networks that leverage specialized datasets to
speedup the acquisition of face geometry and appearance. However generaliz-
ing such neural solutions to generic in-the-wild face capture continues to remain
a challenge due to the lack of, or a means to generate a high quality in-the-wild
face database with all forms of groundtruth (geometry, appearance, environment
maps, etc.). In this thesis we recognize this data bottleneck and propose a com-
prehensive framework for controllable, high quality, in-the-wild data generation
that can support present and future applications in face capture. We approach
this problem in four stages starting with the building of a high quality 3D face
database consisting of a few hundred subjects in a studio setting. This database
will serve as a strong prior for 3D face geometry and appearance for several meth-
ods discussed in this thesis. To build this 3D database and to automate the regis-
tration of scans to a template mesh, we propose the first deep facial landmark de-
tector capable of operating on 4K resolution imagery while also achieving state-of-
the-art performance on several in-the-wild benchmarks. Our second stage lever-
ages the proposed 3D face database to build powerful nonlinear 3D morphable
models for static geometry modelling and synthesis. We propose the first seman-
tic deep face model that combines the semantic interpretability of traditional 3D
morphable models with the nonlinear expressivity of neural networks. We later
extend this semantic deep face model with a novel transformer based architec-
ture and propose the Shape Transformer, for representing and manipulating face
shapes irrespective of their mesh connectivity. The third stage of our data gen-
eration pipeline involves extending the approaches for static geometry synthesis
to support facial deformations across time so as to synthesize dynamic perfor-
mances. To synthesize facial performances we propose two parallel approaches,
one involving performance retargeting and another based on a data driven 4D
(3D + time) morphable model. We propose a local anatomically constrained fa-
cial performance retargeting technique that uses only a handful of blendshapes
( 20 shapes) to achieve production quality results. This retargeting technique
can readily be used to create novel animations for any given actor via animation
transfer. Our second contribution for generating facial performances is through a
transformer based 4D autoencoder that encodes a sequence of expression blend
weights into a learned performance latent space. Novel performances can then be
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generated at inference time by sampling this learned latent space. The fourth and
final stage of our data generation pipeline involves the creation of photorealistic
imagery that can go along with the facial geometry and animations synthesized
thus far. We propose a hybrid rendering approach that leverages state-of-the-art
techniques for ray traced skin rendering and a pretrained 2D generative model
for photorealistic and consistent inpainting of the skin renders. Our hybrid ren-
dering technique allows for the creation of an infinite number of training samples
where the user has full control over the facial geometry, appearance, lighting and
viewpoint. The techniques presented in this thesis will serve as the foundation
for creating large scale photorealistic in-the-wild face datasets to support the next
generation of realtime face capture.
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Zusammenfassung

Die datengesteuerte Erfassung von Gesichtern in Echtzeit hat in den letzten
Jahren dank tiefer neuronaler Netze, die spezielle Datensätze nutzen, um die Er-
fassung der Gesichtsgeometrie und des Aussehens zu beschleunigen, erheblich
an Dynamik gewonnen. Die Verallgemeinerung solcher neuronaler Lösungen
auf die allgemeine Erfassung von Gesichtern in freier Wildbahn bleibt jedoch
eine Herausforderung, da es keine Möglichkeit gibt, eine qualitativ hochwer-
tige Gesichtsdatenbank in freier Wildbahn mit allen Formen der Grundwahrheit
(Geometrie, Aussehen, Umgebungskarten usw.) zu erstellen. In dieser Ar-
beit erkennen wir diesen Datenengpass und schlagen ein umfassendes Rahmen-
werk für die kontrollierbare, qualitativ hochwertige Generierung von In-the-
Wild-Daten vor, das gegenwärtige und zukünftige Anwendungen der Gesicht-
serfassung unterstützen kann. Wir nähern uns diesem Problem in vier Schrit-
ten, beginnend mit dem Aufbau einer hochwertigen 3D-Gesichtsdatenbank, die
aus einigen hundert Personen in einer Studioumgebung besteht. Diese Daten-
bank dient als solide Grundlage für die 3D-Gesichtsgeometrie und -erscheinung
für mehrere in dieser Arbeit behandelte Methoden. Zum Aufbau dieser 3D-
Datenbank und zur Automatisierung der Registrierung von Scans zu einem
Vorlagennetz schlagen wir den ersten Detektor für tiefe Gesichtsmerkmale vor,
der in der Lage ist, mit Bildern in 4K-Auflösung zu arbeiten und gleichzeitig
bei verschiedenen Benchmarks in freier Wildbahn die beste Leistung zu erzie-
len. In der zweiten Phase nutzen wir die vorgeschlagene 3D-Gesichtsdatenbank,
um leistungsstarke nichtlineare, morphbare 3D-Modelle für die Modellierung
und Synthese statischer Geometrien zu erstellen. Wir schlagen das erste se-
mantische Deep-Face-Modell vor, das die semantische Interpretierbarkeit tra-
ditioneller 3D-morphbarer Modelle mit der nichtlinearen Ausdruckskraft neu-
ronaler Netze kombiniert. Später erweitern wir dieses semantische Deep-Face-
Modell mit einer neuartigen, auf Transformern basierenden Architektur und
schlagen den Shape Transformer vor, um Gesichtsformen unabhängig von ihrer
Mesh-Konnektivität darzustellen und zu manipulieren. Die dritte Stufe unserer
Datengenerierungspipeline beinhaltet die Erweiterung der Ansätze für die statis-
che Geometriesynthese, um Gesichtsverformungen über die Zeit zu unterstützen
und so dynamische Leistungen zu synthetisieren. Für die Synthese von Gesichts-
darstellungen schlagen wir zwei parallele Ansätze vor, von denen einer das Retar-
geting von Darbietungen beinhaltet und der andere auf einem datengesteuerten

v



4D (3D + Zeit) morphbaren Modell basiert. Wir schlagen ein lokales, anatomisch
eingeschränktes Retargeting-Verfahren für Gesichtsdarstellungen vor, das nur
eine Handvoll Blendshapes ( 20 Formen) verwendet, um Ergebnisse in Produk-
tionsqualität zu erzielen. Dieses Retargeting-Verfahren kann leicht verwendet
werden, um neue Animationen für jeden beliebigen Schauspieler durch Anima-
tionstransfer zu erstellen. Unser zweiter Beitrag zur Generierung von Gesichts-
darstellungen erfolgt durch einen transformatorbasierten 4D-Auto-Encoder, der
eine Sequenz von Ausdrucksüberblendungsgewichten in einen erlernten latenten
Darstellungsraum kodiert. Neue Darbietungen können dann zum Zeitpunkt der
Inferenz durch Abtasten dieses erlernten latenten Raums generiert werden. Die
vierte und letzte Phase unserer Datengenerierungspipeline umfasst die Erstellung
fotorealistischer Bilder, die mit der bis dahin synthetisierten Gesichtsgeometrie
und den Animationen kombiniert werden können. Wir schlagen einen hybri-
den Rendering-Ansatz vor, der modernste Techniken für ray-traced skin render-
ing und ein vortrainiertes generatives 2D-Modell für fotorealistisches und konsis-
tentes Inpainting der Hautrenderings nutzt. Unsere hybride Rendering-Technik
ermöglicht die Erstellung einer unendlichen Anzahl von Trainingsmustern, bei
denen der Benutzer die volle Kontrolle über die Gesichtsgeometrie, das Ausse-
hen, die Beleuchtung und den Blickwinkel hat. Die in dieser Arbeit vorgestellten
Techniken dienen als Grundlage für die Erstellung großer fotorealistischer ”in-
the-wild”-Gesichtsdatensätze zur Unterstützung der nächsten Generation von
Echtzeit-Gesichtserfassung.
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3.3 a) Face synthesis results Here we show a set of identities synthe-
sized by sampling the identity latent code (top 2 rows, with com-
pleted 3D head geometry rendered with our synthesized albedo,
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3.6 Expression interpolation between two expressions comparing a lin-
ear blend (top row) with our nonlinear interpolation (second row).
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3.13 Our new style-modulated XCiT layer (top) allows the shape code
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3.24 High-quality, person-specific Shape Transformer trained on 24 fa-
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C H A P T E R 1
Introduction

Human beings have been creating replicas of themselves for story telling
since their earliest days of existence, with the oldest known portrait of a hu-
man face dating back to almost 25,000 BC 1. While paintings made inside
caves depicting huntings, and day to day activities date back even further
2, the exact purpose of these paintings is not entirely clear [SMERGC, 2022].
However what is very clear from these paintings is that even our early ances-
tors needed and devised means to re-create themselves for various artistic
reasons. As we collectively continued to evolve through the centuries, and
our means of expressing our creative intent became more and more sophis-
cated through cultural revolutions like the Renaissance, sculptures and por-
trait paintings depicting humans became increasingly more real.

Fast forward to another few hundred years, and today we live in an age of
digital story telling where we consume large amounts of content online in
the form of movies, and recurring shows that rely heavily on building pho-
toreal representations of humans. A very recent example of this is the fu-
turistic music concert ABBA Voyage 3, where a band reunited after 40 years,
and performed as their younger selves through photoreal avatars. Our col-
lective preference for stories involving larger than life depictions of human
characters is most striking when we observe that a vast majority of the top
50 highest grossing movies of all time 4 include a digital human in one form
or another. Even in our personal lives, we seem to increasingly express our-

1https://www.theguardian.com/artanddesign/2006/jun/06/art
2https://en.wikipedia.org/wiki/Cave_painting
3https://abbavoyage.com/
4https://en.wikipedia.org/wiki/List_of_highest-grossing_films
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Introduction

selves through digital filters, customizable 3D avatars in games, and person-
alized emojis.

With the rise of streaming platforms, and the widespread, affordable access
to Internet worldwide, there is a growing demand for large studios and in-
dividual content creators alike, to produce more content faster, without sac-
rificing quality. When we think of extrapolating this trend of digital human
creation into the future, entire virtual worlds 5 where real humans interact
with one another through virtual avatars seem to be becoming a real pos-
sibility with companies investing unprecendented amounts of money into
such efforts.

A very important part of the puzzle involving the quick creation of pho-
torealistic digital humans, and perhaps the most challenging one, is face
capture; the technology concerning itself with faithfully capturing and re-
producing a human’s face in a virtual environment. Given the increasing
demand for quick turnarounds in production, real time face capture; always
considered one of the holy grails of graphics, is now more imminent than
ever before. The academia and the industry has extensively looked into this
problem so far, leading to the development of breakthrough tools for face
capture 6 that can capture facial geometry and deformations in unprece-
dented quality. These tools cater to the high end, offline workflow where
the focus is on quality. At the same time, face capture technology has also
made its way into commodity smartphone hardware through the Iphone’s
ARkit, and Google’s media pipe [Lugaresi et al., 2019] that are directed to-
wards low cost, low fidelity, realtime workflows. However to keep up with
the rapidly increasing consumer demand, face capture technology will soon
have to cater to the challenging case of a high quality, real time workflow.

In a parallel development, the rise of GPUs and deep learning has resulted
in many applications becoming faster in recent years. Today, there are usu-
ally two phases in the development of a deep learning application that aims
to speed up a previously existing workflow: i) to first create an extensive
dataset of inputs and outputs through a costly, and time consuming process,
and ii) to train a deep neural network to transform the inputs directly to
the outputs, thereby bypassing the need for a costly computation. It is al-
most certain that high quality realtime face capture will be a problem that is
solved in a similar fashion.

The state of the art in data driven real time capture is that there are several
techniques [Laine et al., 2017][Lombardi et al., 2018a][Ma et al., 2021][Li et

5https://www.nvidia.com/en-us/omniverse
6https://studios.disneyresearch.com/medusa/
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al., 2021b][Cao et al., 2015] that can indeed operate in real time and produce
high quality results. However almost all of these methods operate under
certain restricting assumptions, the most common one being that they have
access to large amounts of training data for a given actor, on whom a deep
face capture system is specialized on.

When one brings up the question of how can such techniques be extended
to generic high fidelity real time face capture, the most common answer is
one that always involves the need for more training data. Generating vast
amounts of high quality in-the-wild training data suitable for face capture
continues to remain an open challenge partly because applications requir-
ing face capture span a broad spectrum of scenarios, each requiring training
data of a particular kind. Depending on the application scenario, one might
need face images, geometry, appearance, animation, scene parameters like
lighting, cameras etc and so on. An application might also want to specify
or control high level semantic attributes of the training data: for instance, a
system based on helmet mounted cameras (HMCs) [Serra et al., 2022] might
require images of faces with dots and corresponding geometry, a show pri-
marily concerning with singers perhaps needs more singing animations, or
a movie based in a desert might need faces under a particular kind of light-
ing and so on. Additionally in order to commercially make use of neural
networks trained on such data, corporations also need to address the issue
of copyrights and individual privacy. There is already increasing discussion
around large AI models [Rombach et al., 2021][Ramesh et al., 2022][Saharia
et al., 2022] trained on data obtained by foraging the internet and about the
ethics surrounding such models. Therefore a fundamental bottleneck for
training a neural solution to real time face capture is data and particularly
sourcing the right kind of data for a given face capture scenario.

Generating synthetic training data is a easy way to overcome some of these
issues. In fact recent work [Wood et al., 2021] has shown that with a di-
verse enough dataset of even non-photorealistic synthetic faces, neural net-
works can generalize to the real world with great success. However it is a
huge investment in cost and artist time to curate such a large scale synthetic
dataset. Therefore a more fruitful approach to take would be to design a syn-
thetic data generation pipeline where one retains full control over the entire
process of asset generation, while still offloading the ’generative’ aspects of
creating such assets to a neural network. While this is indeed a chicken and
egg problem; i.e.one needs data to first train these generative neural net-
works which will be used for synthetic data generation, there is a solution
to be found by looking at data generation at a finer resolution. While it can
be challenging to find one dataset with every ground truth desirable for face
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capture, there do exist several datasets containing diverse modalities of data
on which specialized networks can be trained.

In this thesis, we recognize this data problem and propose a comprehen-
sive framework of neural approaches that leverage datasets across multiple
modalities, and propose solutions for controllable high quality, data gener-
ation for any application in face capture. Our approach Fig. 1.1 is to break
down the problem into 4 primary stages.

Figure 1.1: An overview of the approach taken in this thesis for controllable data gener-
ation for real time face capture. In Chapter 2, we discuss the creation of a
high quality studio face database. Utilizing this database for the purpose of
geometry (Chapter 3), performance (Chapter 4) and appearance (Chapter 5)
synthesis are discussed in the following chapters. These techniques lay the
foundation for comprehensive data generation pipeline that is well suited for
training downstream applications in face capture.

Face Database The first stage, Chapter 2, involves the the creation of a new
state of the art high quality studio 3D dataset of human faces containing
multiview images, geometry, facial appearance and dynamic performances.
Although restricted to a studio setting, this dataset will serve as a high qual-
ity prior for the human face and will enable the training of several special-
ized networks in the later stages. The creation of such a dataset and how
we adddress some of the manual challenges involved in scan registration
through high resolution landmark detection are discussed in Section 2.3.
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Geometry Synthesis In Chapter 3, we focus on geometry syntheis, and
specifically the task of using deep neural networks to build a prior over static
facial geometry and appearance. The high level goal is build neural shape
priors capable of representing any facial geometry in high fidelity while of-
fering full control to a human user akin to traditional morphable models.
These neural priors will also allow for augmenting the face database (see
Chapter 2 by generating novel facial geometry and skin appearance in a
contraollable manner. We propose the first semantic deep face model (see
Section 3.2) that bridges the nonlinear expressivity of neural networks with
the semantic interpretability of traditional blendshape models . Then we
propose a topology independent generalization of such a deep face model
(see Section 3.3) using a novel transformer architecture that can represent
shapes in arbitrary topologies offering even more control to the user.

Performance Synthesis In Chapter 4, we extend the static facial geometry
modelling techniques from above with a notion of time, such that they are
able to model captured performances and generate novel animations. For
generating novel animations for a given actor in a controllable manner, we
take two different approaches. First we take the approach of retargeting
an existing animation onto the given actor (target) without modifying the
target’s identity. We propose a local, anatomically constrained facial per-
formance retargeting technique in Section 4.2. Our second approach is a
data driven temporal deep shape model (see Section 4.3) that learns a per-
formance latent space by leveraging the captured dynamic performances in
Chapter 2, by compressing a sequence of blendweights or animation controls
into a single performance code. Such a technique can be used for generating
novel animations via sampling, inpainting artist keyframes, denoising cap-
tured data, and can be used for many other applications in face capture as
we demonstrate later.

Appearance Synthesis The methods mentioned so far will enable us to
leverage the high quality geometry from the face database Chapter 2 to rep-
resent and/or modify a given face shape Chapter 3, with the goal of generat-
ing novel expressions and performances Chapter 4. However for a practical
data generation framework for face capture in in-the-wild scenarios, what is
missing is the corresponding photoreal face image that accompanies a given
geometry or animation. For several decades, researchers have been advanc-
ing techniques for creating and rendering 3D digital faces, where a lot of the
effort has gone into geometry and appearance capture, modeling and ren-
dering techniques. This body of research work has largely focused on facial
skin, with much less attention devoted to peripheral components like hair,
eyes and the interior of the mouth. As a result, even with the best technol-
ogy for facial capture and rendering, in most high-end productions a lot of
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artist time is still spent modeling the missing components and fine-tuning
the rendering parameters to combine everything into photo-real digital ren-
ders. In this work we propose to combine incomplete, high-quality render-
ings showing only facial skin with recent methods for neural rendering of
faces, in order to automatically and seamlessly create photo-realistic full-
head portrait renders from captured data without the need for artist inter-
vention. Our method begins with traditional face rendering, where the skin
is rendered with the desired appearance, expression, viewpoint, and illumi-
nation. These skin renders are then projected into the latent space of a pre-
trained neural network that can generate arbitrary photo-real face images
(StyleGAN2). The result is a sequence of realistic face images that match
the identity and appearance of the 3D character at the skin level, but is com-
pleted naturally with synthesized hair, eyes, inner mouth and surroundings.
Notably, we present the first method for multi-frame consistent projection
into this latent space, allowing photo-realistic rendering and preservation of
the identity of the digital human over an animated performance sequence,
which can depict different expressions, lighting conditions and viewpoints.
Our method can be used in new face rendering pipelines and, importantly,
in other deep learning applications that require large amounts of realistic
training data with ground-truth 3D geometry, appearance maps, lighting,
and viewpoint.

Finally in Chapter 6, we summarize the findings of this thesis, discuss limi-
tations and propose future directions of research.

The methods presented in this thesis are based on the following publica-
tions.

• Attention Driven Cropping for Very High Resolution Facial Land-
mark Detection. Prashanth Chandran, Derek Bradley, Markus Gross,
Thabo Beeler. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

• Semantic Deep Face Models. Prashanth Chandran, Derek Bradley,
Markus Gross, Thabo Beeler. 3D International Conference on 3D Vi-
sion (3DV), 2020.

• Adaptive Convolutions for Structure-Aware Style Transfer.
Prashanth Chandran, Gaspard Zoss, Paulo Gotardo, Markus Gross,
Derek Bradley. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

• Rendering with Style: Combining Traditional and Neural Ap-
proaches for High-Quality Face Rendering. Prashanth Chandran,
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Sebastian Winberg, Gaspard Zoss, Jeremy Riviere, Markus Gross,
Paulo Gotardo, Derek Bradley. ACM SIGGRAPH Asia, 2021.

• Shape Transformers: Topology-Independent 3D Shape Models Us-
ing Transformers. Prashanth Chandran, Gaspard Zoss, Markus
Gross, Paulo Gotardo, Derek Bradley. Eurographics, 2022.

• Local Anatomically-Constrained Facial Performance Retargeting.
Prashanth Chandran, Loiic Ciccone, Markus Gross, Derek Bradley.
ACM SIGGRAPH, 2022.

• Facial Animation with Disentangled Identity and Motion using
Transformers. Prashanth Chandran, Gaspard Zoss, Markus Gross,
Paulo Gotardo, Derek Bradley. ACM/Eurographics Symposium on
Computer Animation, 2022.
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C H A P T E R 2
Building a High Quality Face Database

In this chapter we discuss the construction of a state of the art high qual-
ity 3D face database which will serve as a prior for 3D face geometry and
appearance for several methods discussed later in this thesis.

The primary challenge in building such a database is that of bringing tens
of thousands of facial scans in correspondence with a template mesh. A
semi-automated pipeline for this is engineered using several state of the art
methods in face capture (see Section 2.2). To address the annotation bot-
tleneck encountered during the creation of this database, a novel landmark
detection algorithm is also proposed (see Section 2.3).

2.1 Existing Face Databases

Several databases of human faces exist in literature and in this section, we
go over some of the most relevant ones. Flickr Faces in High Quality or
FFHQ [Karras et al., 2019] is a popular high resolution dataset consisting
of in-the-wild face portraits and is widely used to train generative models.
However, this dataset consists of purely images and no corresponding 3D
geometry. In [Vlasic et al., 2005], a multi-linear face model was introduced
that consisted of 10 expressions and 15 identities, which was later extend
by Paysan et al. [IEE, 2009] to a larger 3D morphable model consisting of
200 identities. Cao et al. [Cao et al., 2014a] introduced a multi-linear model
similar to the one proposed by Vlasic et al. also containing a greater num-
ber of identities (150) and expressions (47). The Large Scale Facial Model
introduced in [Booth et al., 2016a] captured close to 12000 people to build
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a morphable model of human faces. In FLAME [Li et al., 2017a], the au-
thors proposed a low dimensional, yet more expressive alternative to [Cao
et al., 2014a] and [IEE, 2009] targeted towards low end consumer applica-
tions. However none of these 3D datasets contain correponding multiview
imagery, dynamic performances or apperance data. Furthermore the facial
geometry in these datasets if fairly low resolution consisting of only a few
thousand vertices atmost. Facescape [Yang et al., 2020] is a recently intro-
duced high quality 3D dataset consisting of 847 identities with correspond-
ing multiview imagery. However this dataset does not contain dynamic per-
formances and is limited in terms of ethnic diversity. The Multiface [Wuu et
al., 2022] dataset is the closest to our work containing multview data, tracked
facial geometry and dynamic performances. However the number of iden-
tities in this dataset is limited to 13 restricting it’s ability to capture a wide
variety of face shapes.

Limitations of Existing Face Databases Though facial databases have
increased in quantity and quality over time, most of them suffer from a
lack of geometric detail. Even a database of the highest geometric resolu-
tion [Yang et al., 2020][Cao et al., 2014a] are dwarfed by the resolution of the
meshes used in the industry that consist of hundreds of thousands of ver-
tices. In addition to the missing geometric detail, these datasets also do not
consider or model facial anatomy (jaw, skull etc.). Other facial attributes like
the eyes, teeth, etc are also ignored.

Another major issue with existing databases is their lack of diversity. In
order to fully capture the complexity of the human face, databases must
contain subjects sampled across age, gender, expressions, ethinicities, phys-
ical characteristics, etc. Though datasets like [Cao et al., 2014a] [Booth et
al., 2016a] [Yang et al., 2020] contain a large number of samples, their lack
of diversity makes them less suitable for applications that need to operate
in-the-wild and have to deal with any face shape.

In this chapter, we describe the construction of a new high quality 3D dataset
that will address some of the shortcomings of existing datasets. In Sec-
tion 2.2, we describe the processes and challenges involved in building such
a database, and describe the detailed process of bringing individual subject
scans in correspondence with a template mesh. An important bottleneck in
building such a dataset is the need for manual annotation of landmarks on
high quality imagery. To circumvent this bottleneck, we propose a new facial
landmark detector capable of operating on high quality imagery of upto 4K
resolution in Section 2.3. Our new 3D database of human faces will contain
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high quality multiview image data, tracked high quality geometry for both
static data and dynamic performances, and high quality appearance maps.

2.2 Building a State Of The Art 3D Face Database

In this chapter, the process of building our comprehensive database of hu-
man faces (which we refer to as FaceDB), from the stage of capture, to build-
ing a statistical model from the registered scans are discussed.

2.2.1 Data Acquisition

We use the system proposed by [Beeler et al., 2010] to capture subjects in a
studio setting. The static capture setup consists of 12 cameras (8 for geom-
etry, 4 for appearance). The 8 geometry cameras are organized as 4 stereo
pairs as shown in figure 2.1. The 4 appearance cameras (not shown in the
figure) are placed one each, in the middle of each stereo pair, to support
the method of [Riviere et al., 2020] for appearance acquisition. Subjects are
captured against a black background and asked to wear headbands during
the time of capture. We ensure there is sufficient diversity in our captured
subjects by sampling them equally across gender, age and ethnicity. For ev-
ery subject, we capture 24 different expressions. 11 dynamic performances
consisting of dialogues, facial workouts, and various mouth annunciations
are captured as well in a secondary setup with 4 cameras [Wu et al., 2016b].
For the rest of this chapter, we primarily concern ourselves with describing
the registration algorithm for the 24 static expressions. A subject specific
anatomical local face model [Wu et al., 2016b] will later be built from these
registered shapes, which will be used to track the captured dynamic perfor-
mances [Wu et al., 2016b].

The 12 cameras are calibrated geometrically using standard multiview algo-
rithms [Hartley and Zisserman, 2003] and color calibrated with a standard
XRite color chart. We use the method of [Beeler et al., 2010] to reconstruct ge-
ometry of subjects in high detail from the images captured by the 8 geometry
cameras.

2.2.2 Scan Registration

In this section, we describe the pipeline we use to geometrically register
the individual static reconstructions obtained from the method of Beeler et
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Figure 2.1: This figure shows the arrangement of 8 geometry cameras in our capture
system. The 4 appearance cameras (not shown in the figure) are placed one
each, in the middle of each stereo pair

al.[Beeler et al., 2010] to a common template mesh. A high level overview of
our approach is shown in figure Fig. 2.2.

Neutral Shape Registration

Out of the 24 different expressions captured for every subject, we first choose
one expression that we refer to as the neutral, which will first be registered to
the common template mesh. Our template mesh is an artist created triangu-
lar mesh consisting of approximately 95,000 vertices. The registered neutral
mesh of a subject will be used as an initialization to register the remaining
23 expressions of that subject. It is therefore important that the neutral is
aligned to the template mesh without any geometry artifacts. Therefore to
ensure the best quality, the neutral scan is registered manually by annotating
corresponding landmarks on both the scan and the template mesh, followed
laplacian constrained non-rigid mesh deformation [Sorkine, 2005]. Fig. 2.3
shows the landmarks and contours that are manually annotated to bring the
template in dense correspondence with the neutral reconstruction. In ad-
dition to the landmarks and contours that mark semantic correspondences
between the template and the target mesh, we also use a closed contour that
we refer to as the masking contour to mask out areas that were poorly recon-
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Figure 2.2: The different stages involved in building the database, starting from capture,
until obtaining the geometry in correspondence with the template are shown

structed on the target mesh. Typical regions that we mask out include the
hair, the inner mouth and the regions around the eyelids.

Since this first step involves manual annotation, the neutral shape must be a
shape that is easy to annotate. It is also important that the neutral shape is
one without high frequency details like wrinkles or folds on the skin. This
is because these high frequency details are salient features of a certain ex-
pression and when the template aligned neutral is used as a starting point
for registering the remaining expressions of the subject, we do not want the
high frequency details to also propagate onto the target expression. So a
straightforward choice for such a shape is the closed mouth expression with
no expression on the subject’s face. However when it comes to annotating
the reconstruction of such a neutral scan, the landmarks and contours on
the inner mouth are hard to locate or annotate. Sub-optimal annotations
for these landmarks may result in geometric artifacts like folds on the inner
mouth which could propagate to other expressions and undoing these arti-
facts can be hard. Therefore to mitigate this problem, we choose a partially
open mouth expression as the neutral shape (see Fig. 2.3).

Expression Registration

Once the neutral shape is manually aligned, we align the remaining 23 ex-
pressions to the template mesh automatically. Recollect that the only manual
step in the neutral registration was annotating the landmarks and contours
on the mesh. To automatically track the aligned neutral shape to the re-
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Figure 2.3: 3D Landmarks and contours that are manually annotated on the neutral
(partially open mouth shape) reconstruction are shown here. Landmarks
are shown in red, contours are shown in green and the masking contour is
marked by points shown in white.

maining expressions, we employ a 2D landmark detector on the multiview
expression images to bypass the manual annotation.

2D facial landmark detectors are typically trained on datasets like the ibug
database [Sagonas et al., 2016], [Sagonas et al., 2013] that have a different set
of 68 landmarks than those we used to for the neutral registration Fig. 2.3.
For expression registration, we therefore resort to use a different set of land-
marks containing a mixture of landmarks from both off the shelf landmark
detectors and some custom landmarks used in Fig. 2.3. From the ibug land-
mark set, we choose to drop the landmarks on the cheek because they are
not very salient and use the remainig 51 landmarks for registration. We use
a state of the art neural network model called the Face Alignment Network
(FAN) [Bulat and Tzimiropoulos, 2017] to detect landmarks on images. De-
tections from FAN on some of our capture subjects are shown in Fig. 2.4. As
can be seen from these images, the landmark predicted by FAN are mostly
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Figure 2.4: This figure shown the landmarks detected by FAN on a few subjects from our
face database.

correct, however they do require some correction especially around the eyes
and mouth.

To help with quickly fixing these incorrect predictions, we developed an an-
notation correction tool called Fixit. With Fixit, users can load landmark
predictions for a subject, browse through expressions and move around in-
correctly predicted landmarks by clicking on them. Fixit uses calibrated
cameras and the reconstructed geometry of an expression to help the user
simultaneously annotate multiple views of an expression. Fig. 2.5 shows the
user interface of Fixit. Correcting landmarks on images inside Fixit takes
close to a minute per expression and is usually much faster in practice than
it takes to annotate the 3D landmarks shown in Fig. 2.3.

Later in this chapter, we present ”Attention Driven Cropping for Very High
Resolution Facial Landmark Detection” (see Section 2.3), a novel landmark
detector which will remove the need for Fixit by predicting landmarks di-
rectly on high resolution images.

Fixit helps correct erroneous 2D landmark predictions from FAN. One final
prerequisite before we can start to deform the aligned neutral to match an ex-
pression reconstruction is the masking contour. Recollect that for the neutral
shape, we manually drew a masking contour on the scan (see Fig. 2.3). Since
drawing the masking contour for every expression can be time consuming,
we propose a simple technique to automatically transfer the masking con-
tour from the neutral shape to all other expression reconstructions.

A simple technique to transfer the masking contour from the neutral to a
target expression is to compute optical flow [Brox et al., 2004] between the
corresponding multiview images of the neutral and the target expression,
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Figure 2.5: This figure shows the user interface of Fixit application which was devel-
oped to correct landmark detections from FAN. User can simultaneously edit
landmarks in multiple views as the application uses multiview information
to re-project and move around landmarks across all camera views.

and to warp the masking contour based on the estimated optical flow. Un-
fortunately however for certain extreme expressions, the difference between
the neutral and the target expression is too large for optical flow to work
properly. In order to make flow computation easier, we could provide an
estimate of the resulting optical flow between the neutral and the target ex-
pression using the landmark correspondences. To create a dense flow es-
timate from the sparse landmarks, we fit a linear blendshape model to the
sparse expression landmarks. This linear blendshape model consists of the
subject’s registered neutral shape and a pre-computed expression basis. We
also additionally estimate a global rigid transformation to account for the
possible difference in pose between the blendshape model and the target
expression reconstruction.

Emodel =
N

∑
i=1

(pi
tgt − T(vtxi

neutral +
B

∑
j=1

wjbi
j))

2

(2.1)

In equation 2.1, N refers to the total number of landmark correspondences,
B refers to the size of the expression basis, bj refers to the jth basis shape, ptgt
and vtxneutral refer to the target and template geometry respectively. The un-
knowns in equation 2.1 are the weights wj for the basis meshes and the rigid

16



2.2 Building a State Of The Art 3D Face Database

Figure 2.6: The steps involved in propagating the manually annotated masking contour
from the neutral geometry to a different expression are visualized here.

transformation T. On solving for the weights wj and the rigid transforma-
tion T, we get an approximation for the target expression in 3D which is in
vertex correspondence with aligned neutral shape. We can now compute a
dense per-vertex displacement in 3D and render this onto the capture cam-
eras to get a flow estimate in 2D. This flow estimate is refined further using
the imagery to obtain the final flow. Figure 2.6 visualizes this algorithm to
warp the masking contour from the neutral to a target expression.

Constrained Mesh Deformation After correcting landmarks with Fixit
and warping the masking contour with flow, we have all the information
we need to iteratively deform the neutral shape to match an expression re-
construction. We first describe the various energies used in this mesh defor-
mation process.

Landmark Constraints These constraints enforce the vertices on the neutral
mesh to be at the position of the corresponding 3D landmark on the expres-
sion mesh.

Elandmark =
N

∑
i=1

(pi
tgt − vtxi

neutral)
2

(2.2)
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Figure 2.7: We show the masks used to identify valid regions for computing ICP con-
straints. Valid regions are painted white. An ICP constraint is considered
to be valid only if both the source and target points lie inside valid regions.

Closest Point Constraints Iterative closest points (ICP) is a standard algo-
rithm used to compute dense correspondences between meshes. In our reg-
istration pipeline, an ICP constraint is computed for every point on the tem-
plate mesh. These constraints are weighted by the euclidean distance be-
tween the template vertex and target point, and also by the difference of
their normals.

Since these constraints are computed automatically, it is important that
poorly reconstructed areas on the target reconstructions are not treated as
valid constraints. We identify such vertices on the reconstruction with a per-
vertex error map that denotes the confidence of reconstruction of individual
vertices. These ’bad’ vertices are masked out automatically by defining an
empirical thereshold. In addition to masking out regions based on recon-
struction errors, the inner eyes and inner mouth are also masked out auto-
matically using the facial landmarks. Fig. 2.7 visualizes these masks on the
neutral mesh and an expression reconstruction for one subject.

In addition to the criteria used to match points on the template and target
meshes, the cost of an ICP constraint can be evaluated in multiple ways too.

• Point to Point: This cost penalizes the euclidean distance between a
source vertex and the corresponding vertex on the target.

EPoint2Point = (pk
tgt − vtxi

neutral)
2

• Point to Plane: This cost penalizes the distance between a source
vertex and the plane to which the corresponding vertex on the target
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belongs, as measured by the normal on the target vertex. A point
to plane distance is our preferred metric for an ICP constraint. In
addition to being more robust to outliers, the point to plane metric
also provides convergence benefits.

EPoint2Plane = nk
tgt

T
(pk

tgt − vtxi
neutral)

Shape Preservation Constraints As the name suggests, shape preservation
constraints help preserve the shape of certain vertices on the template mesh.

EShape = (vtxorig − vtx f inal)
2 (2.3)

Multi-stage Mesh Deformation Based on the energies defined above, the
deformation of the neutral geometry takes place in multiple stages. This is
to accommodate the fact that dense constraints on the geometry like the ICP
constraint rely on the fact that template and target shapes are already quite
close to each other. Imperfectly latching onto bad ICP constraints during
mesh deformation can be very hard, if not impossible to undo later.

The first stage of the deformation is the same as what was explained in Sec-
tion 2.2.2. We fit a linear model of expressions based on sparse landmark
constraints to compute the gross deformation towards the target expression.

In the second step, we solve a linear system using only 3D landmarks con-
strained by a strong laplacian term [Sorkine, 2005]. After this second stage,
we include the ICP constraints and begin to iteratively deform the result of
the stage 2 over 20 deformation steps with point to point ICP constraints, fol-
lowed by a further 10 deformation steps with point to plane ICP constraints.
Every deformation step is a linear solve and is regularized with laplacian
and shape preservation constraints. The regularization terms are initially
high to prevent geometric artifacts and are gradually relaxed across itera-
tions. The stage wise results of deforming the base geometry in this manner
are shown in Fig. 2.8 for a few subjects from our database.

Texture Space Optimization For a given subject, every expression is regis-
tered independently. As a consequence, it is not guaranteed that a given
vertex corresponds to exactly the same semantic location on the face across
expressions. Though this could be the case already for the sparse landmark
vertices, there is no requirement on the rest of the vertices to be so. There-
fore, once all expressions of a subject have been tracked using the iterative
mesh deformation (Section 2.2.2), we optimize for vertex positions on the

19



Building a High Quality Face Database

Figure 2.8: The change in the shape of a subject’s neutral shape over multiple stages of
our deformation pipeline is shown here. Stage 0 is the manually registered
base geometry. Stage 1: result of the linear model fit, Stage 2: result of
the non-rigid landmark fit. Stage 3 and stage 4 correspond to the result of
iterative deformations with point to point and point to plane ICP constraints
respectively.

tangential space of the mesh similar to [Beeler et al., 2011]. This final op-
timization on the geometry, is driven by optical flow constraints in texture
space and is strongly regularized by laplacians. The result of this texture
space optimization are meshes that are in pore level correspondence across
expressions for a given subject. This notion of defining correspondences
across expressions of the same subject, could in theory also be extended to
defining correspondences across subjects. However, there is no clear defi-
nition what these correspondences actually are. Therefore, we leave this a
question to be answered by future research.
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Rigid Stabilization

When building a 3D face database it is important to ensure that the face
shapes can be analyzed in some canonical coordinate space so that they can
be used for practical applications like building a morphable model for in-
stance. As noted by Beeler and Bradley [Beeler and Bradley, 2014] it is impor-
tant to factor out the rigid motion of the head to better understand geometric
deformations resulting from expressions. Therefore after the registering the
shapes of captured subjects to a template shape, we align these shapes to a
common canonical space using the rigid stabilization algorithm [Beeler and
Bradley, 2014]. Anatomical constraints used during stabilization are com-
puted using the subject’s gender, age and BMI. Stabilization is performed
individually for each subject (see Fig. 2.9).

The rigid stabilization step completes the registration pipiline for the static
captures.

2.2.3 Appearance Reconstruction

Once the captured expressions are reconstructed and tracked in 3D, we use
the method of Rivere et al.[Riviere et al., 2020] to recover high resolution ap-
pearance maps including the albedo, specular reflectance and displacement
maps from the captured imagery.

2.2.4 Performance Reconstruction

In FaceDB, we also capture several dynamic performances for each subject
ranging from dialgoues to complex facial workouts. For a given subject,
the stabilized expression shapes are used to build an anatomical local face
model [Wu et al., 2016b] using which the dynamic performances are tracked
automatically as well.

2.2.5 Summary

We presented the need for a new state of the art 3D face database and dis-
cussed the steps involved in capturing, reconstructing and registering the
face scans to a common template mesh. This database will serve as the base
for many applications discussed in this thesis. We will next present a new
algorithm for high resolution facial landmark detection that leverages this
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Figure 2.9: This figure shows stabilized expressions of subjects from our database, along
with the fitted skull.
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database and will remove the need for manual landmark correction for fu-
ture subjects that will be added to FaceDB.

2.3 High Resolution Facial Landmark Detection

2.3.1 Introduction

Landmark detection is one of the classical machine learning tasks in com-
puter vision, nowadays almost entirely solved via deep neural networks.
While these network based detectors provide robust detections, their accu-
racy directly depends on the image resolution they operate on. While even
low-end cameras can capture high resolution imagery nowadays, concur-
rent GPUs are restricted to operate on low resolution imagery due to limited
memory. As a consequence, deep learning algorithms are forced to predict
landmarks on imagery that may be several orders of magnitude lower in res-
olution than what would be available, which naturally amplifies prediction
inaccuracies.

When observing how human annotators label images, one might realize that
they do so at multiple scales. In the context of facial landmarks, they typi-
cally annotate the coarse features, such as for example the jawline, at a low
resolution where they have the full context of the face but then zoom into
specific areas, such as an eye region, to annotate more accurately. Inspired
by this behaviour we propose an end-to-end attention-driven architecture
that allows to train deep networks on higher resolution images by automat-
ically defining and focusing on regions of interest instead of considering
the face holistically. These regions are identified on a low resolution im-
age proxy and extracted from the original high resolution image. They are
then scaled to an appropriate size for the network, which has the benefit
of aligning the regions to a canonical crop. The second stage then localizes
the landmarks in this frontalized zoom-in, which further reduces variabil-
ity and increases robustness and accuracy. We demonstrate how employing
this architecture allows to outperform existing state-of-the-art facial land-
mark detectors, since it can leverage higher resolution imagery. While the
architecture is demonstrated in the context of facial landmark detection and
employs a rather simplistic architecture for the actual landmark localization,
it applies also to other landmark prediction tasks and can integrate more so-
phisticated localization networks if they are trainable end-to-end.

Using our novel attention-driven architecture we manage to predict land-
marks at resolutions up to 4K on a single GPU, showing significant improve-
ments in prediction accuracy over existing methods which are forced to op-
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erate on downsampled imagery. We further demonstrate that the proposed
concept applies to a variety of recent network architectures, improving per-
formance for all of them.

Despite the fact that our approach targets high resolution imagery, when ap-
plied to traditional lower resolution facial images in-the-wild our method
also outperform current state-of-the-art architectures in most cases. There-
fore, our proposed method is a general-purpose facial landmark detector
with high quality across image scales from low resolution to 4K.

2.3.2 Related Work

Before the advent of deep learning, several methods based on cascaded re-
gression [Cao et al., 2014c][Xiong and De la Torre, 2013][Tzimiropoulos,
2015][Kazemi and Sullivan, 2014] were proposed to solve the problem of
facial landmark detection. Such methods start with an initial guess of land-
marks and refine them using a cascade of machine learning models. In re-
cent years however, deep learning methods have significantly advanced the
state of the art in facial landmark detection. For a concise summary, we
differentiate and describe the contribution of these methods based on their
architecture and their approach to the problem.

In terms of network architecture, existing work can be broadly classified
into three categories viz. i) networks that contain a combination of con-
volutional and fully connected or ‘dense’ layers ii) fully convolutional net-
works, and iii) recurrent networks. The former consist of architectures that
take an image as input and learn convolutional filters that extract low level
and semantic features, which are then flattened and passed onto one or
more full connected layers [Zhou et al., 2013][Deng et al., 2017][Kowalski
et al., 2017][Zhu et al., 2015b][Jourabloo and Liu, 2016][Bhagavatula et al.,
2017][Jourabloo et al., 2017][Liu et al., 2017][Zhang et al., 2014][Zhang et al.,
2016a] [Xu and Kakadiaris, 2017][Ranjan et al., 2016][Sun et al., 2013][Dong
and Wu, 2015][Lv et al., 2017][Feng et al., 2017][Zhang et al., 2016b][Zhu et
al., 2015a][Miao et al., 2018]. On the other hand, fully convolutional architec-
tures [Tompson et al., 2014][Liang et al., 2015][Newell et al., 2016][Bulat and
Tzimiropoulos, 2017][Yang et al., 2017][Yu et al., 2016][Wei et al., 2016][Si-
monyan and Zisserman, 2014][Tai et al., 2018][Dong et al., 2018a][Zhu et
al., 2019][Sun et al., 2019][Dong and Yang, 2019] predict the positions of fa-
cial landmarks as heatmaps that encode the probability of a landmark being
present at a particular pixel. These architectures have a few advantages,
namely (i) translation invariance, (ii) images of different sizes can be used at
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training and test times, (iii) they provide a guarantee that the predicted land-
marks always lie within the domain of the image, and (iv) the representation
of landmarks as a heatmap makes the prediction of such networks human
interpretable. The final category is recurrent network approaches [Trigeor-
gis et al., 2016][Liu et al., 2018], which are designed to operate on a temporal
sequence of images by adding recurrent layers.

Based on their approach towards solving facial landmark detection, the
above-mentioned methods can also be classified broadly into i) model based
fitting methods, ii) multi-task learning, and iii) cascaded or regional models.
Model based methods [Zhu et al., 2015b][Jourabloo and Liu, 2016][Bhaga-
vatula et al., 2017][Jourabloo et al., 2017][Liu et al., 2017] assume an under-
lying low resolution 3D face model that is parametrically fit to facial images
using learned features. Multi-task methods [Zhang et al., 2014][Zhang et al.,
2016a][Xu and Kakadiaris, 2017][Ranjan et al., 2016][Zhang et al., 2016b] fol-
low the principle of ‘auxiliary learning’ to jointly infer multiple attributes of
the given facial image, such as the person’s age, gender etc, in addition to fa-
cial landmarks. Such methods have shown the benefits of having a common
feature space from which several specialized networks predict various facial
attributes. Region based methods [Sun et al., 2013][Dong and Wu, 2015][Lv
et al., 2017][Zhu et al., 2015a] consist of a series of architectures that inde-
pendently analyze different regions of the face.

Existing facial landmark detectors work well on low resolution imagery.
However, when a high resolution image is available at test time, existing al-
gorithms cannot make use of the extra detail present due to several reasons.
First, architectures with fully connected layers (including all of the existing
region based approaches [Sun et al., 2013][Dong and Wu, 2015][Lv et al.,
2017]) can be used only with images of the same size with which they have
been trained. This would require the high resolution image to be downsam-
pled to a size compatible with the architecture. Additionally, during their
forward pass, networks build large intermediate feature representations be-
fore predicting the output, which can prove extremely challenging for train-
ing at high resolution. In practice, even resolutions of 512 x 512 have proven
difficult to fit on a single GPU. Typically, the input is downsampled spatially
by a factor of 4 or 8 and is grown in depth to contain 256 or 512 channels.
Considering an input image of size 3 x 1024 x 1024, downsampled by a factor
of 8, we end up with a feature representation that is n f x 128 x 128 or higher
only for the last convolutional layer, where n f is the number of features in
the final convolutional layer. When we consider the network as a whole, this
makes training with resolutions even as high 512 x 512 challenging.
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Contributions

In this work, building on top of recent advances in deep learning [He et
al., 2017][Bulat and Tzimiropoulos, 2017][Iqbal et al., 2018], we propose an
organic evolution to region-based facial landmark detectors and propose an
end-to-end differentiable, fully convolutional, region based facial landmark
detector.

• We combine attention driven cropping, introduced by [He et al.,
2017] with a differentiable soft-argmax [Iqbal et al., 2018] operation
to enable the first fully convolutional region based facial landmark
detector.

• To the best of our knowledge, our method is the first to demonstrate
the ability to both train with and infer facial landmarks on images
of resolution up to 4096 x 4096 on a single Nvidia 1080Ti GPU. We
show the superiority of our method across multiple resolutions rang-
ing from 256x256, up to 4096x4096 over the naı̈ve upsampling of low
resolution landmarks detected with previous state of the art meth-
ods.

• Although specifically designed for high resolution imagery, our
method generalizes extremely well to unconstrained, in-the-wild set-
tings and often outperforms low resolution state-of-the-art methods
(Section 2.3.4).

Available Datasets

300-W [Shen et al., 2015a], 300-VW[Shen et al., 2015b], 300-W-LP [Zhu et al.,
2015b] are popular datasets for training facial landmark detectors. Similar,
but more recent, and larger datasets include [Zafeiriou et al., 2017][Zhang
and B. Fisher, 2019][Bulat and Tzimiropoulos, 2017]. These datasets con-
tain annotations for 68 facial landmarks. While [Shen et al., 2015a][Zafeiriou
et al., 2017] are datasets with only 2D annotations, [Zhu et al., 2015b][Shen
et al., 2015b][Bulat and Tzimiropoulos, 2017] contain both 2D and 3D an-
notations. All methods described in Section 2.3.2 use one or more of these
datasets to train and fine tune their models. Existing datasets consist of low
resolution imagery captured in an unconstrained setting as they were in-
tended to be used for “in-the-wild” applications. In contrast, our objective is
to train a landmark detector that can make use of the detail present in high
resolution facial imagery to precisely localize landmarks. Consequently, we
cannot use any of the existing datasets for training. We create a new high
quality facial landmark dataset for training and testing our high resolution
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Figure 2.10: Schematic overview of our attention-driven architecture for facial landmark
detection. High resolution input images are downsampled to a low reso-
lution proxy on which a global hourglass network detects low resolution
landmarks. Crop regions are automatically determined and the RoIs are re-
scaled to the original resolution, where regional hourglass networks detect
high resolution landmarks.

performance (described in Section 2.3.3). However, to show the additional
benefits of our approach to in-the-wild imagery, we also show experiments
on the 300-W [Shen et al., 2015a] and 300-VW [Shen et al., 2015b] datasets.

2.3.3 Methodology

In this section, we present our new architecture for high resolution facial
landmark detection, which is depicted in Fig. 2.10. Inspired by how humans
manually annotate landmarks on high resolution images, our model ana-
lyzes different regions of the face in isolation, through an attention-driven
cropping mechanism. Given an initial high resolution image as the input,
a global hourglass network [Newell et al., 2016] analyzes a correspond-
ing low-resolution proxy of the input image and produces coarse heatmaps
of facial landmarks. On these heatmaps, we perform a differentiable soft-
argmax operation to extract initial estimates of landmark coordinates. These
low resolution landmark coordinates are used to identify regions of interest
(ROIs) that correspond to distinct anatomical regions of the face. For each
region, a high resolution crop is extracted from the original high resolution
input image, and is further analyzed by a region specific hourglass network
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that predicts landmarks on the crop. The landmarks predicted on the re-
gional crops are restored back to the original image using the ROI informa-
tion from the global hourglass. Landmarks predicted by both the global and
the multiple regional models are supervised with low and high resolution
ground truth data, respectively. The proposed architecture is fully differen-
tiable and fully convolutional and can therefore be trained end to end.

Network Architecture

The input high resolution image is initially downsampled by average pool-
ing to a fixed resolution of 256x256 pixels. The downsampled image is
passed through an hourglass network [Newell et al., 2016] - an architectural
choice that is analyzed in Section 2.3.5 - that outputs heatmaps of the land-
mark locations at the same scale as the low resolution image. Since the first
hourglass predicts landmarks for all regions of the face, we refer to it as
the global hourglass. The global hourglass outputs one heatmap for each
landmark. Work such as [Wei et al., 2016][Newell et al., 2016][Cao et al.,
2016][Bulat and Tzimiropoulos, 2017], and many others, generate ground
truth heatmaps from the training data, from which landmarks are extracted
at test time using an argmax operation. Ground truth heatmaps for such
methods are generated by applying a spatial gaussian filter on the posi-
tion of the landmarks. The standard deviation of this gaussian filter σ is
manually specified and all landmarks of the face are blurred using the same
σ. However, certain landmarks in the training set are localized with higher
anisotropic uncertainty due to the underlying feature. In the case of facial
landmarks, for example, landmarks like the corners of the eyes and lips are
easier to unambiguously identify and therefore to annotate than say the eye-
lid, where landmarks will have better localization across the edge and higher
uncertainty along the edge. Training networks with heatmaps created from
isotropic Gaussian kernels is enforcing the assumption that localization of
all landmarks is equally (un)certain. Unlike previous methods in facial land-
mark detection, we choose to represent the output of our convolutional net-
works as latent heatmaps without ground truth supervision. This provides
the hourglass network with the flexibility to be more confident about cer-
tain landmarks than others and to represent them using anisotropic non-
gaussian distributions. Furthermore, we also observe similar improvements
in accuracy as reported by Iqbal et.al [Iqbal et al., 2018] when using the soft-
argmax over naive heatmap regression. The latent heatmap output by the
global hourglass is passed through a channel-wise spatial softmax to ensure
that each channel is a probability distribution over the landmark’s position
in the image. Then, we perform a soft-argmax [Iqbal et al., 2018] operation
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on the landmark heatmaps to extract landmark positions as a batch size x
number of landmarks x 2 vector. Since the soft-argmax operation boils down
to a weighted average, it is fully differentiable unlike the argmax. Extracting
landmark positions this way enables us to train the global hourglass using
only the ground truth landmark positions without having to create ground
truth heatmaps, while at the same time ensuring that the landmark positions
are represented inside the network as a heatmap, and therefore keeping the
network fully convolutional.

Attention-Driven Cropping

In the second stage of our architecture, we use the landmark estimates from
the global hourglass to extract regions of interest (RoI) from the original high
resolution image. These regions of interest are then individually processed
in parallel by a set of region specific hourglass models to refine the position
of these landmarks. We refer to these hourglass models that operate on a
pre-defined region of the face as regional hourglasses. In this work we train
four regional hourglass models, which predict landmarks for the left eye,
the right eye, the nose and the mouth regions (please refer to Fig. 2.11). This
approach can be extended to as many ROIs as one would like, but we restrict
ourselves to these four regions for the following reason. Outside of these re-
gions, the landmarks that we are interested in belong to the chin, the cheek
and the forehead. These regions are typically devoid of salient features, and
analyzing these regions locally can in fact be counter-productive due to am-
biguities. Such regions are thus better left analyzed globally, at a higher scale
by the global hourglass.

For each region of the face, exactly one bounding box is computed using the
result of the softargmax. Unlike methods like [Girshick et al., 2014][Girshick,
2015] [He et al., 2017], that generate multiple bounding boxes candidates for
each RoI proposal in an ’in the wild’ setting, under the assumption that an
input image contains only one face, generating a single bounding box per
region is reasonable. Each bounding box is represented by 4 co-ordinates
corresponding to its top-left and bottom-right corners. Since these bounding
box co-ordinates are extracted from the latent heatmap, they are guaranteed
to lie within the domain of the downsampled image. Noise from a normal
distribution is added to the width and height of the each bounding box in-
dependently to make the regional models robust enough to the location of
the region inside the bounding box. The noisy bounding boxes are then up-
scaled to map them to domain of the original high resolution image. Using
the RoIAlign operation introduced by [He et al., 2017], we extract crops from
the high resolution image in a differentiable manner. The high resolution
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Resolution (pixels) Crop Size (pixels) Batch Size
256 x 256 128 x 128 8
512 x 512 128 x 128 8
1024 x 1024 256 x 256 4
2048 x 2048 192 x 192 ∗ 4
4096 x 4096 256 x 256 ∗∗ 4

Table 2.1: Crop sizes used for different image resolutions. ∗ Until a resolution of 2K,
we can continue to use the basic hourglass building block. This means that
the resolution of the crop increases up to 256 for a 1K input, however this no
longer fits onto the GPU when we reach inputs of 2K. Therefore, the size of
the crop reduces to 192x192. ∗∗ For resolutions of 4K, we used the ‘light’
hourglass variant (Section 2.3.3), re-enabling crops of higher sizes and as a
result, we could use 256x256 crops at 4K.

crops are resized to a fixed size depending on the original resolution of the
image. The sizes that we used for the regional crops for different resolutions
are shown in table Table 2.1. The crop sizes were determined based on the
original resolution of the image and to maintain a healthy batch size dur-
ing training. Other crop sizes could also be readily used. The relative scale
factors between the noisy high resolution bounding boxes and the resized
crop are computed and stored for later restoring the predicted landmarks
back to their original resolution. The resized crops are then passed on to
the corresponding regional hourglass. Each regional hourglass predicts a
latent heatmap of landmark positions similar to the global hourglass. Land-
marks defined in the domain of the resized crops are extracted from these
regional heatmaps using the softargmax operation as before. These regional
landmarks are restored back to the original resolution of the image using the
corresponding scale factors computed from before. The rescaled landmarks
are then un-cropped using the noisy bounding box co-ordinates to obtain
landmarks defined on the high resolution image.

Our entire architecture is shown in Fig. 2.10. Since all operations defined
in our architecture are differentiable, the global hourglass and the multiple
regional hourglasses can be trained together in an end to end fashion. The
final output of our network is a complete set of facial landmark locations for
a high resolution image, for which a subset of landmarks (eyes, nose, and
mouth) contain high precision locations thanks to our regional refinement
modules.
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Figure 2.11: (Left) Our high resolution training data consists of 89 manually-annotated
facial landmarks, of which 78 fall within the four attention regions we de-
fined. (Right) 4 attention regions defined on the 300-W dataset correspond-
ing to the two eyes, the nose and the mouth.

Training Data

One of the main contributions of our method is that it enables the training
of networks with high resolution imagery and sidestep GPU memory bot-
tlenecks via attention-driven cropping. To verify the benefits of our architec-
ture, we require a high resolution dataset of faces with ground truth land-
marks. Existing datasets (described in Section 2.3.2) contain a large number
of images in a ’in the wild’ setting with 2D annotations but are not of suffi-
cient resolution. To our knowledge, there does not exist an openly available
dataset of high resolution facial imagery and landmarks. Therefore we re-
sorted to capturing subjects in a controlled studio setting using the method
of [Beeler et al., 2010]. We captured 47 subjects in 4K resolution from 8
cameras performing 24 different facial expressions, and manually annotated
89 facial landmarks on these images. The full set of these 89 landmarks is
shown in Fig. 2.11. Out of the 47 subjects, we randomly sample 24 subjects
for training and used the remaining 23 subjects for evaluation. In summary,
our training set consisted of a total of 4608 images and our test set consisted
of 4416 images. To perform experiments at resolutions of 256 x 256, 512 x
512, 1024 x 1024, 2048 x 2048, and 4096 x 4096, both the training and test sets
were appropriately scaled. As seen in Fig. 2.11, crops are considered only for
the regions of the eyes, nose, and the mouth. In our high resolution dataset,
out of the 89 annotated landmarks, only 78 fall inside the regional crops.
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As a result, the global hourglass predicts all 89 landmarks and the regional
hourglasses predict a total of 78 landmarks. For 300W, and 300VW, 51 of
the 68 landmarks fall under our attention regions. Therefore, while training
with 300W and 300VW, our global hourglass would predict 68 landmarks,
and the regional hourglasses would predict a total of 51 landmarks.

Implementation Details

We train the network shown in Fig. 2.10 by supervising both low and high
resolution landmark predictions. The network is trained to minimize the
sum of the L2 losses at both resolutions. This additive loss is shown in Eq. 2.4
where pg

n and pr
n correspond to the nth landmark predicted by the global and

regional models respectively. gtlr
n and gthr

n correspond to the nth low and
high resolution ground truth respectively. Ntotal and Natt correspond to the
total, and attention refined landmarks.

loss =
1

Ntotal

Ntotal

∑
n=1
‖pg

n − gtlr
n ‖2 +

1
Natt

Natt

∑
n=1
‖pr

n − gthr
n ‖2. (2.4)

Though our network is fully convolutional, our use of the soft-argmax en-
ables training with more hand tuned losses like the wingloss [Feng et al.,
2017]. However, since we are interested in analyzing improvement that is
obtained by the use of our architecture as opposed to the improvement ob-
tained by using a different loss function, we resorted to using the simple L2
loss in Eq. 2.4.

We begin by training our architecture at a resolution of 256 x 256. The
weights of both the global and regional hourglasses are initialized follow-
ing [Glorot and Bengio, 2010]. Once training at a resolution of 256 x 256
converges, we begin to train at the next higher resolution of 512 x 512 us-
ing the weights from 256 x 256 as an initialization. This initialization is en-
abled thanks to the fully convolutional nature of our architecture. Likewise,
weights are progressively initialized all the way until 4096 x 4096 similar in
principle to [Karras et al., 2017b].

An important implementation detail to note is that even with regional mod-
els operating on cropped portions of the high resolution images, we did not
manage to fit a 4K image into a single GPU during training. Therefore, fol-
lowing recent work on depthwise separable convolutions [Howard et al.,
2017a][Chollet, 2016], we replaced all convolutions in a conventional hour-
glass network [Newell et al., 2016] with depthwise separable convolutions.
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2.3 High Resolution Facial Landmark Detection

This resulted in lowering the number of weights in the network by a fac-
tor of 2 and enabled training with 4K images. We refer to the version of
the architecture present in Fig. 2.10 with depthwise separable convolutions
as the light variant of our network. For resolutions of up to 2048 x 2048,
this change wasn’t necessary. The effect of introducing depthwise separable
convolutions as opposed to standard convolutions into our architecture is
analyzed in detail in Section 2.3.4.

For all experiments reported in this paper, we use a learning rate of 1e−4,
and lowered it to 1e−5 after 30 epochs. Models were trained with batch sizes
mentioned in Table 2.1. All models were trained until convergence using the
ADAM optimizer [Kingma and Ba, 2014] on a single NVIDIA 1080Ti GPU.
We used pytorch [Paszke et al., 2017] to implement our architecture.

2.3.4 Results and Discussion

Learning Latent Heatmaps

One of the ways in which our approach differs from existing methods in
facial landmark detection is the representation of landmarks with learned
latent heatmaps. In Fig. 2.12, we show the differences in the heatmaps
produced by the global and different regional models. For the purpose of
visualization, the heatmaps predicted by the global model were upscaled
using nearest neighbour interpolation and shown alongside the heatmaps
predicted by the regional networks. As expected, the global heatmaps are
of lower quality but capture the overall structure of the person’s face, and
therefore result in expected crops. The final column of Fig. 2.12 shows the
precise high resolution heatmaps produced by the regional models. Posi-
tions with strong activations in both the global and regional heatmaps indi-
cate the more salient landmarks on the face.

Benefits of Attention-Driven Cropping

Training regional networks on local crops provides several advantages. The
first is that it encourages each regional network to concentrate only on a spe-
cific region of the face and therefore learn region-specific features that help
in predicting landmarks with higher accuracy. Fig. 2.12 also shows how the
coarse global heatmaps of each region are refined by the regional networks.
As one would intuitively expect, facial features that are harder to distin-
guish at lower resolutions start to separate out in the regional heatmaps,
resulting in precise localization (Fig. 2.13). This is especially visible in case
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Figure 2.12: Manually cropped global heatmaps, corresponding attention-driven crops,
and regional high quality heatmaps. Note the precision of the high qual-
ity heatmaps, e.g. one can easily distinguish between outer and inner lip
landmarks.

of the mouth where the outer and inner lips are clearly separated in the high
resolution regional heatmap.

The second advantage is that since each regional model is looking only at
specific part of a face, the quality of regional landmarks is independent of
the appearance of other regions. We expect that this property of our archi-
tecture makes the quality of overall landmark prediction much more robust
to global changes in appearance.

Thirdly, our global-local architecture is designed to process only meaningful
regions of a high resolution input image. Purposefully discarding irrele-
vant portions of a high resolution image avoids the need for networks to
be extremely deep or build huge feature representations that don’t fit inside
current GPUs. Concentrating only on RoIs enables the regional hourglasses
to leverage the high frequency detail present in the captured imagery by
only predicting landmarks within a meaningful ROI. Our approach allows
us to perform deep landmark detection on high resolution images, without
sacrificing batch size, while at the same time avoiding unnecessary compu-
tations.
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2.3 High Resolution Facial Landmark Detection

Global Model Prediction Regional Model Refinements

Figure 2.13: Effect of regional refinement: Local corrections (green) made by regional
models to landmarks predicted by the global model (gray) are shown. When
provided with sufficient context, regional models can produce both small
and large corrections.

Evaluations on 300W and 300VW

Though our method was primarily designed for high resolution images, we
evaluate our attention driven cropping on the low resolution 300W and
300-VW datasets. For 300W, we split the Helen, LFPW, AFW, and Ibug
datasets into training and test sets identical to previous methods [Dong et
al., 2018a][Miao et al., 2018][Tai et al., 2018]. We train our model at a resolu-
tion of 256x256 pixels and crop sizes of 128x128 pixels, and define 4 regions
of interest (Fig. 2.11) from which a total of 51 high resolution landmarks are
detected and the remaining 17 landmarks on the jawline are predicted by
the global hourglass. We report the normalized mean error (NME) [Bulat
and Tzimiropoulos, 2017] metric on the 300-W test sets in Table 2.2. Even
at 256x256 pixels, our method establishes a new baseline on the common
subset and remains competitive to state-of-the-art on the challenging subset.
Qualitative landmark predictions on the 300W test set are shown in Fig. 2.14
Additionally, as we will see from the experiments in Section 2.3.5, the bene-
fits of our attention driven cropping method become significantly larger as
we move to higher resolutions.

To validate our method on the 300-VW dataset, we re-train another network
identical to the one used for the 300W, using 50 training videos from 300-
VW. Table 2.3 compares our method to existing state-of-the-art using the
NME metric on three different test categories. Our method again produces
the best results on 2 out of 3 of the categories.
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Method Common Challenging Full Set
MDM [Trigeorgis et al., 2016] 4.83 10.14 5.88
Two-StageGT [Lv et al., 2017] 4.36 7.42 4.96
RDR [Xiao et al., 2017] 5.03 8.95 5.80
FHR [Tai et al., 2018] N/A N/A 3.8
SAN [Dong et al., 2018a] 3.34 6.6 3.98
DSRN [Miao et al., 2018] 4.12 9.68 5.21
TS [Dong and Yang, 2019] 2.91 5.91 3.49
ODN [Zhu et al., 2019] 3.56 6.67 4.17
Ours 2.83 7.04 4.23
Ours (51 Hi-res landmarks only) 2.41 5.68 3.50

Table 2.2: Performance on the 300W dataset. Despite being designed for high resolution
imagery, our method performs very well also on low resolution in-the-wild
images.

Method Category 1 Category 2 Category 3
SDM [Xiong and De la Torre, 2013] 7.41 6.18 13.04
TSCN [Simonyan and Zisserman, 2014] 12.54 7.25 1.13
CFSS [Zhu et al., 2015a] 7.68 6.42 13.67
TCDCN [Zhang et al., 2016b] 7.66 6.77 14.98
TSTN [Liu et al., 2018] 5.36 4.51 12.84
DSRN [Miao et al., 2018] 5.33 4.92 8.85
FHR+STA [Tai et al., 2018] 4.40 4.16 5.96
Ours 4.17 3.89 7.28
Ours (51 high res landmarks only) 3.66 3.35 6.65

Table 2.3: Performance on the 300-VW dataset. Similar to Table 2.2, our method also
performs very well on the videos of 300-VW.

2.3.5 Evaluations at Higher Resolutions

We compare our attention-driven cropping architecture with a random for-
est algorithm [Kazemi and Sullivan, 2014], a two stage hourglass network
[Newell et al., 2016] and a 4 stage hourglass network namely the 2D land-
mark detector referred to as FAN [Bulat and Tzimiropoulos, 2017]. We used
our low resolution 256 dataset described in Section 2.3.3 to train the random
forest, the 2 and the 4 stage hourglass networks.

Since our architecture enables training with resolutions of up to 4096, we
trained it with data of appropriate resolution. We use the high quality test
set described in Section 2.3.3 consisting of 4416 images for evaluation. For
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Prediction Ground Truth

Figure 2.14: Qualitative results showing attention refined regional landmarks on a few
samples from the 300-W test set.

the sake of comparison, the predictions made by the random forest, the 2 and
the 4 stage hourglasses were up-scaled manually from 256 to the evaluation
resolution.

To quantitatively compare landmark predictions, we use the Percentage Cor-
rect Keypoints (PCK) metric used by [Girshick et al., 2014] and the Normal-
ized Mean Error (NME) as before. Fig. 2.15 and Table 2.4 show quantitative
comparisons of our algorithm against different methods at resolutions rang-
ing from 256 to 4096. At a resolution of 4096, we report the PCK and NME
metric only for the light variant of our architecture for reasons explained in
Section 2.3.3. The resolution of 1024 is considered separately in our ablation
study in Section 2.3.5.

Our approach, including the light variant, outperforms other methods across
all resolutions, indicating that attention-driven cropping is not only a way
for training with higher resolution imagery, but is an effective method for fa-
cial landmark detection in principle. The benefits of our approach increase
as the resolution of the input increases. This can be inferred from the differ-
ences in the area under curve metric between our method and the 4 stage
hourglass as the resolution increases.
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Figure 2.15: Percentage Correct Keypoints as function of the error in pixels for our
method compared to DLIB, a stacked hourglass network, and the Face
Alignment Network for different resolutions from 256 to 4K. We show that
both our regular and light variants outperform previous methods. At 4K,
only the light version is possible due to memory bottlenecks but still pro-
vides significant improvement over state of the art.

Method 256 512 2048 4096
DLIB [Kazemi and Sullivan, 2014] 3.72 3.43 3.32 3.35
Hourglass (2 Stages) [Newell et al., 2016] 2.34 2.34 2.34 2.38
Hourglass (4 Stages) [Bulat and Tzimiropoulos, 2017] 2.39 2.39 2.39 2.44
Ours (light) 2.34 2.08 1.97 1.95
Ours 2.26 1.95 1.94 -

Table 2.4: Normalized Mean Errors for our method compared to DLIB, a stacked hour-
glass network and the Face Alignment Network for different resolutions from
256 to 4K.
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Figure 2.16: Ablation study at 1K. Left: stacking an additional regional hourglass im-
proves the AUC. Right: swapping the hourglass with a Convolutional Pose
Machine or CNN 6/7 architecture shows that our attention-driven crop-
ping scheme can improve other architectures too, but the hourglass still
obtains the best results.

Ablation Studies

We evaluate some of our architectural choices at a resolution of 1024. These
results are presented in Fig. 2.16.

Effect of Additional Stages Stacking models on top of one another is a
common approach in landmark localization [Newell et al., 2016][Bulat and
Tzimiropoulos, 2017][Wei et al., 2016]. Such stacking could also be incorpo-
rated into our architecture by stacking multiple regional refinement modules
on top of one another. When we stack an additional regional hourglass to
our base architecture shown in Fig. 2.10, we see an improvement in the AUC
(see Fig. 2.16, left).

Choice of Architecture The modular nature of our architecture makes it
possible to swap the hourglass with different fully convolutional architec-
tures. To validate the robustness of the proposed concept to different ar-
chitectural choices, we consider two recently proposed fully convolutional
architectures i) a 6 stage Convolutional Pose Machine (CPM) [Wei et al.,
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Figure 2.17: Comparing results of testing at 4K but training at different resolutions
confirms there is indeed a benefit by moving to higher resolution training
when possible.

2016][Cao et al., 2016] and ii) the CNN 6/7 architecture from [Feng et al.,
2017]. When using CNN 6/7, we discard the last fully connected layer
to keep the network fully convolutional and append additional CNN 6/7
stages where each stage receives both the image and the heatmap of the pre-
vious stage as input. We retrain both the 6 stage CPM and the 6 stage CNN
6/7 architecture and compare them with our attention-driven cropping con-
cept where every hourglass module is replaced by a single stage CPM or
CNN 6/7 respectively. In the right half of Fig. 2.16, we see the results of this
experiment. Though our attention-driven CPM and attention-driven CNN
6/7 consist of lesser parameters than the 6 stage CPM and 6 stage CNN 6/7
architectures respectively, we see a large improvement in switching to land-
mark detection with our attention-driven cropping concept as opposed to
holistic multi-stage methods. This superior performance is a testament to
the robustness of the proposed method and its applicability to more general
problems in localization.

Necessity of High Resolution Detection

The 4K images we captured (Section 2.3.3) were annotated by a human ex-
pert. Considering the limited precision with which humans annotate land-
marks [Dong et al., 2018b], there is a question over the necessity of training a
model with extremely high resolution imagery. In Fig. 2.17, we compare the
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Figure 2.18: Qualitatively, our method produces the most accurate landmarks on a test
image set. Here we compare to DLIB and a 4-stage hourglass (FAN) on a
small set of the test data. Pixel errors are indicated by color.

results of our light variant with hourglass building blocks, trained at 4096 to
up-scaled predictions from other attention driven models trained at lower
resolution. The performance of the attention-driven cropping framework
increases as the resolution of the input data increases, ultimately making the
model directly trained at 4K resolution the best performing model. From
this, we see that there is indeed a benefit by moving to higher resolutions
whenever possible. In Fig. 2.18, we show qualitative results on a few differ-
ent test images.

2.3.6 Limitations

The proposed method is designed to improve landmark localization by
leveraging information present at higher resolutions. If no additional infor-
mation is present, or the additional information is deceiving as is the case for
partial occlusions (Fig. 2.19), the performance degrades. This is related to the
classical aperture problem, and future work could investigate approaches to
determine the best resolution to localize features in automatically.

41



Building a High Quality Face Database

Prediction

Ground Truth

Figure 2.19: Situations where our regional refinement could fail are shown here on the
300w dataset, where the crop results in meaningless images when parts of
the face are completely occluded. In such cases, a global approach would be
more preferable.

2.3.7 Summary

We present a novel, fully convolutional regional architecture designed to
predict landmarks on very high resolution images. Our proposal is an end-
to-end attention-driven architecture that allows to train deep networks on
higher resolution images by automatically defining and focusing on regions
of interest instead of considering the image holistically. We show that our
architecture achieves superior performance over holistic state of the art con-
volutional architectures across all resolutions from 256 to 4K. We believe our
method fills the need for algorithms that can leverage the rich information
available in high resolution imagery, which is becoming increasingly more
common.

2.4 Chapter Summary

In this chapter we discussed the steps involved in building a state of the
art 3D face database that will serve as the primary dataset for the various
applications in geometry (see Chapter 3), performance (see Chapter 4), and
appearance synthesis (see Chapter 5) discussed in this thesis. A primary bot-
tlneck in building such a database is the manual annotation of facial land-
marks necessary to bring thousands of facial scans in correspondence with
a template mesh. To address this problem, a novel high resolution facial
landmark detection algorithm that achieves state of the art results was also
proposed in Section 2.3.
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C H A P T E R 3
Facial Geometry Synthesis

In this chapter, our objective is to discuss algorithms for geometry synthesis
that can leverage the face database built in Chapter 2 to build a powerful
neural shape prior that can model and generate novel identities and expres-
sions in an intuitive manner.

This chapter is organized into two parts. First in Section 3.2, we present how
a neural shape model can be designed such that it bridges the gap between
the semantic control of linear models and the nonlinear modelling capability
of deep neural networks. We present an approach to disentangle facial iden-
tity and expression inside a neural network such that it can be used for any
application where a traditional 3DMM can be used. In the second half (see
Section 3.3), we extend such a semantically controllable deep shape model
to a topology independent representation using a novel transformer based
[Vaswani et al., 2017] architecture.

The related literature for both parts is consolidated and presented in section
Section 3.1.1.

3.1 Introduction

Parametric 3D shape models are ubiquitous in computer graphics and com-
puter vision since they provide a prior on the space of observable geometric
variation and deformation. They can aid in several important challenges like
model-based 3D face tracking [Cao et al., 2013], facial performance retarget-
ing [Ribera et al., 2017], video based reenactment [Thies et al., 2016], and im-
age editing [Blanz et al., 2004]. These models are built from large databases

43



Facial Geometry Synthesis

of facial scans. Most commonly, linear face models are built, where the ap-
proximated face is expressed as a linear combination of the dataset shapes
[Blanz and Vetter, 1999].

Extensions to multi-linear models [Cao et al., 2014a][Vlasic et al., 2005] also
exist, which generate a tensor of different semantic dimensions (e.g. iden-
tity and expression). This ability to have semantic separation of attributes
has several benefits, including for example constrained face fitting (e.g. fit-
ting to an identity while constraining to the neutral expression, or fitting
to an expression once the identity is known), performance animation (e.g.
modifying only the expression space of the model), performance transfer or
retargeting (modifying only the identity space of the model), etc. In general
a model that provides semantic separation lends itself better to artistic con-
trol. Over the past two decades, researchers have investigated face and body
models and improved upon 3DMMs in several ways, including the semantic
separation of identity versus expression/pose parameters, and the creation
of localized linear models in an attempt to decouple unwanted spatial corre-
lations at distant points across the 3D shape, to achieve better generalization.
Notably, localized models can be much more expressive than global ones,
and can be built from smaller datasets. But their expressive power comes at
the cost of decreased robustness; i.e. , it can be easier to generate implausible
shapes with local models than global ones.

The main problem with traditional models, however, is their linearity. The
human face is highly nonlinear in its deformation, and it is well known that
a simple blending of static expressions often results in unrealistic motion. In
severe cases, many combinations of the input expressions can lead to phys-
ically impossible face shapes (see Fig. 3.5). To summarize, linear models
constrain the space of shapes to a manifold which on the one hand usually
cannot represent all possible face shapes, and on the other hand can easily
represent many non-face shapes.

For this reason, the explosion of deep learning has already been leveraged
to build more powerful, nonlinear models. Initial deep-learning models of
3D geometry were particularly limited to fully-connected network architec-
tures [Abrevaya et al., 2019a] that have a much larger number of free pa-
rameters and, thus, require more training data. Fully-connected networks
represent global shape models, and are thus susceptible to the same lim-
itations of global 3DMMs in terms of generalization and modeling spuri-
ous global correlations across the shape. In contrast, convolutional neural
networks (CNNs), with fewer free parameters and more localized recep-
tive fields, have also been leveraged for building new models. The build-
ing blocks for these models were initially limited to familiar convolutions
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on the simple 2D image grid. More recently, new definitions of convolu-
tions on 3D point neighborhoods were proposed to allow the creation of ge-
ometric models in the form of CNNs that can operate on the surface of a 3D
mesh [Hanocka et al., 2019][Gong et al., 2019]. While mesh-convolutional
architectures yield compact 3D models that represent local surface defor-
mations, such convolutional models capture global correlations very poorly,
requiring careful hand-crafting of down/up-sampling operators on meshes.
As we shall see in more detail in Section 3.1.1, many of these recent deep
shape models [Ranjan et al., 2018a][Abrevaya et al., 2019b][Fernández Abre-
vaya et al., 2018][Jiang et al., 2019][Gecer et al., 2019][Li et al., 2020b] [Bai-
ley et al., 2020], have thus far sacrificed the human interpretable nature of
multi-linear models, as one typically loses semantics when moving to a la-
tent space learned by a deep network.

In this chapter, we propose two novel deep shape models that overcome
orthogonal limitations of state of the art shape models.

• In Section 3.2, we propose a Semantic Deep Shape Model, that bridges
the gap between the semantic interpretability of traditional linear
shape models and the non-linear expressivity of deep shape models.
Our solution provides and artist friendly point of entry in the deep
neural network in the form of blendweights, while remaining dis-
entangled in the network’s nonlinear latent space akin to traditional
multilinear models.

• In Section 3.3, we introduce the Shape Transformer, a transformer
based shape model, that lifts the fixed topology restriction of neural
shape models, retains all benefits of semantically controllable deep
face models, and opens up several applications in deep shape mod-
elling.

3.1.1 Related Work

Linear Shape Models

Facial blendshapes [Lewis et al., 2014] have been conventionally used as a
standard tool by artists to navigate the space of the geometry of human faces.
In addition to being human interpretable, blendshapes are extremely fast to
evaluate, and enable artists to interactively sculpt a desired face. The semi-
nal linear 3DMM was proposed by Blanz and Vetter [Blanz and Vetter, 1999]
by using principal component analysis (PCA) to describe the variation in
facial geometry and texture. Over the years, linear models were improved
by semantically separating the parameters that correspond to identity from
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those that encode expression, giving birth to so-called Multi-Linear Models
(MLMs) [Vlasic et al., 2005]. By organizing the shapes into a high dimen-
sional tensor and by using tensor decomposition (or higher order singular
value decomposition HoSVD) as a means of compressing a collection of fa-
cial identities in various expressions, this method decouples facial identity
and expression, while also achieving compression. However, in both mor-
phable models and multi-linear tensors, the orthogonality comes at the cost
of losing interpretability. In addition to linear global models, multi-scale ap-
proaches have been developed [Neumann et al., 2013] [Ferrari et al., 2015],
[Brunton et al., 2014], with a focus on capturing and reconstructing local
details and deformations. Wu et al. [Wu et al., 2016b] proposed an antomi-
cally constrained local model that took anatomical constraints such as statis-
tical skull-skin thicknesses into account while representing the face. Wang
et al.[Wang et al., 2020] showed the best of both worlds by developing a
global-local multilinear framework for facial modeling. Building on top of
the techniques mentioned above, several other statistical models of the hu-
man face have also been built [Cao et al., 2014a], [Li et al., 2017a], [Booth et
al., 2016b]. There is a multitude of applications that make use of such lin-
ear shape models. We refer to a comprehensive survey [Brunton et al., 2012]
[Egger et al., 2020] of methods used in the statistical modelling of human
faces, the challenges in building and applying themThe obvious drawbacks
of all linear face models are their lesser degree of compactness and inability
to model the continuous, nonlinear deformation of human faces. Some lin-
ear models also dictate the allowed extent of spatial correlations a priori, and
are created on fixed topologies. Linear models of shape deformation also in-
clude techniques like Linear Blend Skinning (LBS) [Kavan et al., 2008] which
is widely used tool in the industry for character animation. Kavan et al.[Ka-
van and Žára, 2005] also introduced a dual quaternion extension to LBS to
allow for nonlinear joint articulations. Such techniques were also utilized in
the building of full body morphable models like the popular SMPL model
[Loper et al., 2015a].

Deep Shape Models

Fixed Topology Networks To address the linearity issue, most recent
works compute deep 3D shape models in the form of neural networks. The
simplest class of such deep shape models operate on a fixed pre-defined
topology, by flattening the list of the vertices into a vector and feeding it
through the network, which includes a sequence of linear projections and
nonlinear activation layers. They have strong representative power due to a
large number of parameters, but they are also strongly susceptible to over-
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fitting and poor generalization. These are also global shape models and are
tied to a specific 3D mesh topology. Tan et al. [Tan et al., 2018] proposed the
use of a variational autoencoder (VAE) [Kingma and Welling, 2013] to effec-
tively compress and represent several categories of 3D shapes. They do so
by describing the deformation of meshes in a local co-ordinate frame [Lip-
man et al., 2005] and later reconstructing the positions of the mesh through
a separate linear solve. In the context of human faces, Ranjan et al. [Ran-
jan et al., 2018a] proposed the use of convolutional mesh autoencoders and
graph convolutions as a means of expanding the expressiveness of face mod-
els. While they were able to achieve better reconstruction than linear mod-
els, disentangling facial identity and expression was not one of their objec-
tives. Recent works [Jiang et al., 2019][Bagautdinov et al., 2018][Gecer et
al., 2019][Fernández Abrevaya et al., 2018] [Abrevaya et al., 2019b] [Li et al.,
2020b] have begun to explore the disentanglement of facial identity and ex-
pression inside a neural network. The state of the art performance of these
methods on standard datasets [Cao et al., 2014a][Li et al., 2017a] indicate
the benefit of learning disentangled representations with neural networks.
However, these methods learn to disentangle latent identity and expression
with sophisticated loss functions, while the disentanglement is factored by
design into our architecture and is therefore more explicit. Additionally
work such as [Jiang et al., 2019][Bagautdinov et al., 2018][Fernández Abre-
vaya et al., 2018] [Abrevaya et al., 2019b] do not jointly model facial ge-
ometry and appearance, while we do. While Li et al. [Li et al., 2020b] do
jointly model appearance, they decouple identity and expression in the net-
work’s latent space, whereas our joint decoder can model identity specific
expression deformations which [Li et al., 2020b] can not. Furthermore as we
describe in Section 3.2.1, the techniques presented in this thesis use dynamic
facial performances for training readily makes our method applicable to re-
target and reconstruct performance from videos. Another interesting contri-
bution in neural semantic face modelling is the work of Bailey et al. [Bailey
et al., 2020], where semantic control over expression is achieved through
rig parameters instead of blendweights. However, since their method is rig
specific, and doesn’t model appearance, it unfortunately cannot be used for
several of the applications demonstrated in this work.

Topology Aware Networks The feed-forward, fully-connected neural net-
work discussed above provide a simple architecture to train neural 3D face
models [Abrevaya et al., 2019a][Chandran et al., 2020], but however do not
leverage the underling topology of the mesh. Graph Convolution Networks
(GCNs) generalize the convolutional operator to work with arbitrary graphs
[Defferrard et al., 2016][Ranjan et al., 2018b][Hanocka et al., 2019][Bouritsas
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et al., 2019][Gong et al., 2019][Zhou et al., 2020b][Chen and Kim, 2021]. They
make use of the graph connectivity to define convolutions over the appro-
priate local neighborhood of an input vertex. Generally speaking, GCNs are
not tied to a specific topology as each iteration of training or evaluation can
take as input a variable set of vertices of the graph and the desired adja-
cency information for performing convolutions. While the localized nature
of graph convolutional networks make them efficient and small in size, they
introduce difficulties in modeling long-range relationships across vertices of
the graph. In the context of geometry processing, to overcome this prob-
lem of a limited receptive field, previous work has computed matrix oper-
ators for mesh down/up-sampling that respectively decrease and increase
the resolution of the topological graph of a mesh. These matrices are often
carefully pre-computed before training [Ranjan et al., 2018b][Bouritsas et al.,
2019][Gong et al., 2019][Zhou et al., 2020b] and are used to increase/decrease
the neighborhood over which a graph convolutional filter operates. We refer
to this specific form of graph convolution network as a mesh convolution.
Mesh-convolutional networks restrict the model to a single topology and
have no guarantee to remain optimal for deformed shapes with the same
topology (e.g., different facial expressions). To alleviate the latter issue, pre-
vious work has also attempted to learn these down/up sampling operations
[Chen and Kim, 2021] but the fixed topology issue remains.

There exists many variants of these graph convolutional operators in prac-
tice. Ranjan et al.[Ranjan et al., 2018b] used Chebyshev convolutions [Def-
ferrard et al., 2016] and pre-computed down/up-sampling matrices to train
a face model. Hanocka et al.[Hanocka et al., 2019] proposed MeshCNN, a
convolutional network that operates on edge features instead. Using the
known topology of a mesh, they start by defining edge properties (such as
orientation, length etc.) and use convolutions to learn higher dimensional
features over pairs of vertices. They also define new ways of down/up-
sampling edge features to process a given shape at multiple resolutions.
They show applications in learning to segment and sub-sample meshes us-
ing their network. Bouritsas et al.[Bouritsas et al., 2019] introduced Spiral-
Net as an alternative to standard GCNs that use the adjacency information
during convolution. They fix the topology over which the network oper-
ates and proposed pre-computing spirals of vertices of a fixed length and
passing them through an MLP to extract features. SpiralNet++ [Gong et al.,
2019] extended the speed and efficiency of SpiralNet by introducing dila-
tion, a means of increasing the receptive field of the MLP without affecting
the capacity of the network, and showed reduction in training times and im-
proved performance on reconstruction tasks. Zhou et al.[Zhou et al., 2020b]
also assume a fixed topology and learn a basis of convolutional filters that
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operate on a vertex neighbourhood. To increase representative power, their
model jointly learns a per-vertex weight map that informs the network of
which basis of filters the vertex would benefit from being convolved with
the most. They also introduce down/up-sampling techniques that offer the
user more control over the process.

Point Based and Implicit Shape Models With regard to networks that
operate on point clouds, PointNet [Qi et al., 2017a] and PointNet++ [Qi et al.,
2017b] stand out. These are permutation invariant networks that were pro-
posed to operate on arbitrary point clouds for applications in point cloud
segmentation, scene parsing and object classification. Transformer archi-
tectures [Vaswani et al., 2017]; originally proposed for language modelling,
were later naturally adopted for inference over temporal sequences and also
in vision tasks [Dosovitskiy et al., 2021]. Notably, recent research has in-
vestigated the use of transformers for 3D reconstruction from images. Lin
et al.[Lin et al., 2021a] use a vanilla transformer to reconstruct coarse posed
human bodies and coarse posed hands from images and a learnable MLP
to upsample the meshes to full resolution. In a follow up work [Lin et al.,
2021b], the authors coupled their previous vanilla transformer with graph-
convolutional layers and showed better accuracy for the body and hand re-
construction tasks.

Another type of topology-agnostic shape models are built using neural,
continuous implicit representations, where an MLP operates on individual
3D points as input [Park et al., 2019a][Yenamandra et al., 2021] [Chen and
Zhang, 2019][Deng et al., 2020][Gropp et al., 2020]. These models represent
the 3D shape as a level-0 isosurface that must be searched within the repre-
sented volume using a root finding algorithm.

3.2 Semantic Deep Face Models

In this work, we aim to combine the benefits of multi-linear and neural face
models by proposing a new architecture for semantic deep face models. Our
goal is to retain the same semantic separation of identity and expression
as with multi-linear models, but with deep variational networks that allow
nonlinear expressiveness. To this end, we propose a network architecture
that takes the neutral 3D geometry of a subject, together with a target ex-
pression, and learns to deform the subject’s face into the desired expression.
This is done in a way that fully disentangles the latent space of facial identi-
ties from the latent space of expressions. As opposed to existing deep meth-

49



Facial Geometry Synthesis

a) Semantic expression synthesis b) Novel identity synthesis c) Subject & expression specific albedo d) 3D retargetting
source target

e) 2D landmark-based face tracking

Figure 3.1: We propose semantic deep face models—novel neural architectures for mod-
elling and synthesising 3D human faces with the ability to disentangle iden-
tity and expression akin to traditional multi-linear models. We demonstrate
several applications of our method including (a) semantic expression syn-
thesis, (b) novel identity synthesis (c) generation of expression specific high
resolution albedo maps, (d) 3D facial performance retargeting, and (e) 2D
landmark based face tracking.

ods [Abrevaya et al., 2019b][Fernández Abrevaya et al., 2018][Jiang et al.,
2019][Gecer et al., 2019], the disentanglement is explicitly factored into our
architecture and not learned. As a consequence, our method achieves perfect
disentanglement between facial identity and expression in its latent space,
while still encoding the correlation between identity and expression in shape
space, i.e. the shape change induced by an expression differs as a function of
the identity shape. Once trained (end to end), one can traverse the identity
latent space to synthesize new 3D faces, and traverse the expression latent
space to generate new 3D expressions, all with nonlinear behavior. Further-
more, since we condition the expression based on the popular representation
of linear blendshape weights, the resulting network allows for semantic ex-
ploration of the expression space, which is also lacking in existing methods.

As face models that generate geometry alone have limited applicability, we
further incorporate the appearance of the face into our architecture, in the
form of a diffuse albedo texture map. An initial per-vertex color prediction
that corresponds to the face geometry is transferred to the UV domain re-
sulting in an low resolution texture map. We employ an image to image
translation network [Wang et al., 2018] as a residual super-resolution net-
work to transform the initial low resolution albedo to a resolution of 1024 x
1024.

We demonstrate the value of our semantic deep face model with several
applications. The first is 3D face synthesis (see Section 3.2.3), where our
method can generate a novel human face (geometry and texture) and the
corresponding (nonlinear) expressions - a valuable tool for example in creat-
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ing 3D characters in virtual environments. We also show that nonlinear 3D
facial retargeting can be easily accomplished with our network, by swap-
ping the identity latent code while keeping the per-frame expression codes
fixed (see Section 3.2.3). Another application of our model is 3D face capture
and retargeting from video sequences, by regressing to our expression latent
space from 2D facial landmarks (see Section 3.2.3). Finally, in our supple-
mentary video we demonstrate how our method allows an artist to edit a
performance, e.g. add a smile/frown to certain key-frames of a captured fa-
cial performance. To summarize, we present a method for nonlinear 3D face
modeling including both geometry and appearance, which allows seman-
tic control by separating identity and expression in its latent space, while
keeping them coupled in the decoded geometry space.

3.2.1 Methodology

We now present our method, starting with an overview (Section 3.2.1), our
data acquisition and processing steps (Section 3.2.1), a description of the
main architecture for semantically generating face geometry and low reso-
lution appearance (Section 3.2.1), our appearance super-resolution approach
(Section 3.2.1), and details on training (Section 3.2.2).

Concept Overview

In this work, we assume that we are given access to a 3D face database con-
sisting of several subjects in a fixed set of expressions, where the meshes
are assumed to be in full vertex correspondence, similar to the datasets that
traditional face models are built from. Our method can optionally also take
appearance data in the form of per-vertex color information, corresponding
to each expression. In addition to the static expressions, access to registered
dynamic performances of subjects can also be used whenever available (al-
though dynamic data is not mandatory). We address how such a database
can be built in Section 3.2.1. We propose a novel neural approach to hu-
man face modelling consisting of a pair of two variational auto-encoders
(VAE), which use such a database to build a latent space where facial iden-
tity and expression are guaranteed to be disentangled by design, while at
the same time allowing a user to navigate this latent space with interpretable
blendweights corresponding to semantic expressions.

Given the neutral geometry and albedo of a subject, and a target
blendweight vector, our collection of networks learn to deform the subject’s
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Figure 3.2: Our network architecture for semantic deep faces. We disentangle identity
and expression through separate VAEs, which are trained end-to-end with a
joint decoder given a subject’s neutral and target expression with known tar-
get blendweights. The joint decoder outputs the deformed geometry and cor-
responding per-vertex albedo. The low resolution albedo, after being trans-
ferred to the UV domain, is passed through a super resolution network to
result in the final albedo. The synthesized geometry and albedo can be used
to render realistic digital human faces.

neutral into the desired captured expression, and also generate the corre-
sponding per-vertex albedo. In the process of doing so, an identity VAE
projects the subject’s face onto a latent space of facial identities while an
expression VAE projects the target blendweight vector into a latent expres-
sion space. By combining the information from the identity and expression
embeddings, a joint decoder learns the nonlinearity of facial deformation to
produce per-vertex displacements that deform the given neutral into the de-
sired expression, along with nonlinear albedo displacements that represent
a corresponding expression-specific albedo. Our VAE learns the high-level
correlation between the facial geometry and albedo. The per-vertex albedos
are sampled as texture images in the UV domain at relatively low resolution,
and are then upsampled with a variant of Pix2PixHD [Wang et al., 2018] in
order to generate a high-resolution detailed facial textures.

Data Acquisition and Processing

Before we describe our algorithm in detail, a fundamental requirement of
our method is a registered 3D face database of different subjects perform-
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ing a variety of facial expressions. Since most existing 3D databases of hu-
man faces [Li et al., 2017a][Cao et al., 2014a][Booth et al., 2016b] are limited
in their geometric resolution, and lack either variations in the identities of
subjects [Li et al., 2017a][Cao et al., 2014a] or do not contain sufficient exam-
ples of the same subject performing different expressions, we capture and
build our own 3D facial database. In a passively lit, multi-camera setup, we
capture 224 subjects of different ethnicities, genders, age groups, and BMI.
Subjects were carefully chosen such that each of the sampled distributions
are as uniformly represented as practically possible. Each of the 224 subjects
was captured performing a pre-defined set of 24 facial expressions, includ-
ing the neutral expression. In addition to capturing the static expressions
of 224 subjects, we also captured a dynamic speech sequence and a facial
workout sequence for a subset of 17 subjects. The captured images of sub-
jects in various expressions were reconstructed using the method of Beeler
et. al [Beeler et al., 2010]. A template mesh consisting of 49,000 vertices was
semi-automatically registered to the reconstructions of each subject individ-
ually, and a 1024x1024 albedo texture map was generated by dividing out
the diffuse shading given a measured light probe. As a result of this, we end
up with a total of 5,376 meshes and textures (224 subjects x 24 expressions)
that are in full correspondence with one another. We further stabilize the
expression to remove any rigid head motion [Beeler and Bradley, 2014] and
align all of them to the same canonical space. For training the albedo model,
we sample the per-vertex albedo color and store the RGB information with
each vertex, forming a 6-dimensional vector (XYZRGB). For the subjects for
whom dynamic performances were captured, we start from their registered
static meshes and build a subject specific anatomical local face model [Wu et
al., 2016b]. This subject specific model is then used to track the dynamic per-
formance of the subject. For the 17 subjects we recorded, we reconstructed
and tracked a total of 7,300 frames. Next, we associate blendweight vec-
tors to each registered mesh. For the static shapes, since each mesh cor-
responds to a unique, pre-defined expression, the blendweight vectors are
one-hot encoded vectors corresponding to the captured expression. This re-
sults in the assignment of a 24 dimensional blendweight vector b ∈ R24 to
each shape. However, the assignment of blendweight vectors for a dynamic
shape is not straightforward as the subject may have performed an expres-
sion that could only be explained by a combination of the individual shapes.
Therefore, we fit a weighted combination of the 24 registered shapes of the
subject in a least squares sense to the tracked performance. This gives us
optimal blendweights for each frame in the performance. As we will show
later (Fig. 3.5 (c)), the linear blendshape fit is only a crude approximation of
the real shape. We therefore discard the linear shape estimate (keeping only
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the optimized blend weights) and use the captured shape as ground truth to
train our decoder. This way, we can leverage both static and dynamic data
for training. A conceptual overview of our architecture is shown in Fig. 3.2.

A Variational Multi-Nonlinear Face Model

From the database described in Section 3.2.1, we compute the mean of all
subjects in the neutral expression and call this shape the reference mesh R.
We then subtract R from the original shapes, providing us with per-vertex
displacements for each identity in the neutral expression. We identically
pre-process the per-vertex albedo by subtracting the mean from each of the
training samples. We will describe the model now in the context of one sub-
ject, where subscripts id and exp represent the identity and expression com-
ponents of the subject, respectively, and superscripts N and T correspond
specifically to neutral and target expression shapes.

The mean-subtracted neutral displacements dN
id are fed as the input to an

identity VAE. We use displacements rather than other representations like
the linear rotation invariant (LRI) coordinates [Lipman et al., 2005] as used
by Tan et. al [Tan et al., 2018] since our input shapes are carefully rigidly
stabilized. Our identity encoder Eid is a fully connected network consisting
of residual blocks that compress the input displacements into a mean µid and
standard deviation σid.

µid, σid ← Eid(dN
id). (3.1)

At training time, the predicted mean and standard deviation vectors are
used to sample from a normal distribution using the re-parametrization
method of Kingma et. al. [Kingma and Welling, 2013] to produce a nid-
dimensional identity code zid.

zid ∼ N (µid, σid). (3.2)

The output of each fully connected layer except the ones predicting the mean
and the standard deviation are activated with a leaky ReLU function. The
identity encoder only ever sees the displacements of different subjects in the
neutral expression, crucial for the decoder to explicitly decouple identity
and expression.

In parallel, a second expression VAE, Eexp, takes a blendweight vector bT

corresponding to target expression T as its input and compresses or ex-
pands it into a variational latent space zexp of nexp dimensions. Similar to
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the identity encoder, the expression VAE is also a fully connected network
with residual blocks and leaky ReLU activations. The expression VAE also
outputs a mean and standard deviation vector that are fused into the expres-
sion code zexp.

µexp, σexp ← Eexp(bT) (3.3)

zexp ∼ N (µexp, σexp). (3.4)

Our choice to use blendweights to condition the decoder is motivated by two
reasons. The first is that blendweights provide a semantic point of entry into
the network and can therefore be manipulated at test time by an artist. Sec-
ond, one of our objectives is to force the network to disentangle the notion
of facial identity and expression. Blendweights are a meaningful representa-
tion to learn this disentanglement as they contain no notion of identity and
are purely descriptive of expression. The identity and expression codes are
concatenated into a vector of dimension nid + nexp and fed to a decoder D
that learns to correlate the identity and expression spaces and eventually re-
constructs the given identity in the desired expression with corresponding
per-vertex albedo estimate. The decoder is a fully connected network that
outputs vertex displacements dT with respect to the reference mesh R, and
albedo displacements tT as

[dT, tT]← D(zid, zexp). (3.5)

Disentanglement by Design The joint decoder takes the two variational
codes produced independently by the two VAEs to reconstruct the input
subject in the desired expression. Since the two latent codes are fully disen-
tangled, the decoder must learn to correlate identity and expression codes
to reconstruct the training shapes. This combination of a disentangled latent
space and correlated geometry space enables to capture identity specific de-
formations (in both shape and albedo) for the same semantic expression, as
shown in Fig. 3.3.

We use four residual layers in both Eid and Eexp, where the dimensions of
the layers are fixed to nid and nexp, respectively. Following our experiments
outlined in Section 3.2.3, we set nid = 32 and nexp = 256 for all results. We
resorted to the use of a VAE as opposed to a generative model to avoid run-
ning into mode collapses and to compensate for the lack of extensive train-
ing data. Our disentanglement framework is otherwise generic and could
readily benefit from the use of graph convolutions [Ranjan et al., 2018a] and
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other neural concepts that focus on reconstruction accuracy. In other words,
the novelty of our method primarily stems from our ability to semantically
control a powerful nonlinear network while ensuring that it’s internal rep-
resentations fully disentangle facial identity and expression.

Appearance Super-Resolution

The predicted per-vertex albedo displacements tT are added to the mean
albedo and transferred to the UV domain. As seen in Fig. 3.2, the result-
ing texture map contains coarse information, such as the global structure of
the face (the position of the eyes, mouth etc.), expression dependent effects
(blood flow), as well as identity cues (ethnicity, gender etc.). What is miss-
ing are the fine details that contribute to the photo-realistic appearance of
the original high resolution albedo. Our goal is to regenerate these miss-
ing details conditioned by the low resolution albedo, upscaled to the target
resolution. We reformulate this super-resolution task as a residual image-to-
image translation problem [Isola et al., 2016], trained on the captured high
resolution albedo texture maps. The low resolution albedo is upscaled us-
ing bilinear interpolation to the target resolution (1024 x 1024). The upscaled
albedo AUp is then fed to a generator GRes [Wang et al., 2018] that outputs
a residual image ARes, which is combined with with AUp to produce the fi-
nal texture A

′
. The discriminators that provide adversarial supervision to

the generator are multiple Markovian patch-based discriminators Dp, each
of which operates at a different scale p of the input. We do not use any
normalization layers in both the generator and the discriminators.

3.2.2 Training

Geometry VAEs: The identity and expression VAEs, along with the joint
decoder, are trained end-to-end in a fully supervised manner using both
static and dynamic performances. We penalize the reconstructed geometry
with a L1 loss, and the identity and expression latent spaces are constrained
using the KL divergence. Training takes around 4 hours on single Nvidia
1080 Ti GPU. We initialize both encoders and the decoder following Glorot
et. al [Glorot and Bengio, 2010], and use the ADAM optimizer [Kingma and
Ba, 2014] with a learning rate of 5e-4.

Albedo Super-Resolution: The residual generator GRes is trained akin to
the generator in [Wang et al., 2018], using both ground truth and adversarial
supervision. For ground truth supervision with the captured high resolution
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albedo AGT, we use an L1 loss (L1) and the VGG-19 [Simonyan and Zisser-
man, 2015a] perceptual loss LVGG. We train each discriminator Dp using the
WGAN-GP loss as proposed by Gulrajani et. al [Gulrajani et al., 2017]. We
use a learning rate of 1e-4 and optimize the generator and discriminators
using the ADAM optimizer [Kingma and Ba, 2014]. We refer to our supple-
mentary material for additional details on the network architecture and loss
formulations.

3.2.3 Results and Discussion

Our goal is to produce a semantically controllable, nonlinear, parametric face
model. In this section we inspect the disentangled latent spaces for identity
and expression, and show how the nonlinear representation is more power-
ful than traditional (multi-)linear models, while providing the same seman-
tic control.

Quantitative Evaluation on Facewarehouse

The Facewarehouse dataset [Cao et al., 2014a] contains meshes of 150 iden-
tities in 47 different expressions, where each mesh contains 11,518 vertices.
Since the meshes in Facewarehouse do not have an associated texture map,
we train only the geometry decoder (Fig. 4.20) for this experiment. Similar
to Jiang et. al [Jiang et al., 2019], we train our model on an augmented set
of the first 140 identities and their expressions, and test on the 10 remaining
identities.

The table in Fig. 3.4 (left) compares our reconstruction accuracy on the Face-
warehouse dataset to existing state of the art in 3D face modelling. To enable
a fair comparison to existing work, we also fix the total dimensionality of
our latent spaces to 75 dimensions like other works. See the supplementary
material for qualitative results on the Facewarehouse dataset.

Disentangled Latent Spaces

Our disentangled representation allows for smooth control over both iden-
tity and expression independently.
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a) Synthesis b) Identity Interpolation

c) Expression Interpolation

Figure 3.3: a) Face synthesis results Here we show a set of identities synthesized by
sampling the identity latent code (top 2 rows, with completed 3D head ge-
ometry rendered with our synthesized albedo, as well as a subset of expres-
sions for three different identities produced by sampling the expression latent
space (bottom rows). b) Identity interpolation between two subjects in la-
tent identity spaces of different dimensions (top row 4D, bottom row 128D).
The lower dimensional space passes through other identities as we interpo-
late (notice the mole on the chin of the center subject which is not present in
either the start or end identity). c) Expression interpolation Top: Here
we see the change in geometry as we interpolate between two expressions
for a synthesized subject while keeping the identity code fixed. Bottom: We
see the corresponding albedo as generated by our networks. Notice how our
method can capture expression specific changes in facial appearance; espe-
cially around the nose for this example.

Identity Latent Space

Varying the identity code while keeping the expression code fixed will pro-
duce different identities with the same expression. Fig. 3.3 (a) (top 2 rows)
shows the result of random samples drawn from the identity latent space,
also rendered with the resulting upsampled albedo. The choice of a varia-
tional autoencoder to represent the identity space allows to smoothly morph
between different subjects by (linearly) interpolating their identity codes. As
Fig. 3.3 (b) shows, the degree of nonlinearity reflected in the output shapes
varies as a function of the dimensionality of the latent space, where a lower
dimensionality will force higher nonlinearity. Notice how interpolating be-
tween two identities appears to pass through other identities for lower di-
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a) Facewarehouse  evaluations b) Comparisons with PCA on novel identities

Figure 3.4: Left: In this table, we present quantitative comparisons of our method
against state of the art on the facewarehouse dataset. Right: Reconstruc-
tion error on 9 validation shapes from our in house dataset which are not
part of the model. The nonlinear model has lower error than the linear one
for low dimensional latent spaces. At 64 dimensions the two models are com-
parable, and at 128 dimensions the linear model is actually superior, as there
are insufficient samples to train such a high-dimensional space.

mensional identity spaces. While a lower dimensional latent space reduces
the reconstruction accuracy (see Fig. 3.4) due to the higher compression,
our representational power is still significantly higher than a linear model
(PCA). Increasing dimensions diminishes this advantage due to the rela-
tively low number of training samples.

Expression Latent Space

While it would be an option to directly sample the expression latent space
analogous to the identity latent space, this would not allow for semanti-
cally meaningful control. For human animators it is critical to provide an
intuitive control structure to animate the face, referred to as rig. The most
well-known rigging concept for facial animation are blendshapes, which are
extremely intuitive as they allow the animator to dial in a certain amount
of a given expression. These can then be superimposed to provide the final
shape. In our system, the exposed expression controls are provided in ex-
actly the same way, via a vector of blendweights that encode the intensity
of the individual shapes to be dialed in. Due to the disentangled nature of
identity and expression spaces, it is possible to synthesize any desired ex-
pression as shown in the bottom part of Fig. 3.3 (a) for a given identity. Here
we provide one-hot blendweight vectors to the network and generate the
complete set of blendshapes. As such, the proposed model can be readily
adopted by animators. Corresponding high resolution albedo textures for
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Figure 3.5: (a) Expression extrapolation Our nonlinear model (bottom row) allows
to semantically control the intensity of an expression akin to a linear blend-
shape model (top row). However, the nonlinear model extrapolates better,
producing plausible shapes within [-1,1] and degrading gracefully beyond,
unlike the linear model. Furthermore, the expression changes on a nonlinear
trajectory, e.g. causing the smile to start as a closed smile (up to 0.6) and
then open up in a natural way compared to the steady increase in the linear
model. (b) Superimposing expressions The linear model can superimpose
only non-conflicting expressions, such as mouth-left and kiss (top), but gen-
erates poor results for many shape combinations, such as mouth-left with
mouth-right (bottom). Our nonlinear model produces more plausible shapes
in such cases. (c) Fitting to dynamic performances Comparing the recon-
struction residual of the linear blendshape fit with that of our model shows
that our model has higher representational power. Heatmap encodes errors
from 0 mm (blue) to 15 mm (red).
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the synthesized expressions are also produced by our method, as illustrated
in the expression interpolation example in Fig. 3.3 (c).

In addition to providing an interface akin to blendshapes, our method has
quite some advantages over a linear blendshape basis. Fig. 3.5 (a) shows that
our model is much more robust when extrapolating along an expression di-
mension beyond [0,1], unlike the linear model, which leads to exaggerated
and unusable shapes, especially towards the negative direction. Further-
more, linearly varying the weight within [0,1] provides a nonlinear effect on
the generated shape, as demonstrated on the smile expression, where the
generated smile starts off as a closed mouth smile up until ∼0.6, and then
opens up, which feels more natural than the monotonous interpolation of the
linear model. This nonlinearity is especially important when superimposing
expressions (Fig. 3.5 (b)). For a linear model, the latter only makes sense for a
few combinations of expressions, and hence blendshape editing often yields
undesired shapes quickly, especially for novice users, whereas the proposed
method is more robust in such cases. As expected, our nonlinear model has
higher expressive power than its linear counterpart (Fig. 3.5 (c)) when fit-
ting to a ground-truth reconstructed performance, the linear model incurs a
larger reconstruction error for the same blend vector dimensionality. Using
the fitted linear blendweights as input to our network, our method achieves
much lower errors, close to the optimal expression the model can produce,
found in this case by optimizing in the expression latent space. Even when
interpolating between shapes, our method achieves smooth nonlinear re-
sults as shown in Fig. 3.6.

Facial Performance Retargeting

Our method also lends itself to facial performance transfer using
blendweights or 2D landmarks.

Blendweight Retargeting

Retargeting performances by transferring the semantic blendweights from
one character to another is a common approach in facial animation. The
same paradigm can be used with our nonlinear face model, by first deter-
mining the identity code of the target actor using the identity VAE (given the
target neutral expression), and then injecting the per-frame blendweights to
the expression VAE. Fig. 3.7 illustrates this procedure, transferring the ex-
pression weights obtained from a performance onto a novel identity.
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Figure 3.6: Expression interpolation between two expressions comparing a linear blend
(top row) with our nonlinear interpolation (second row). Tracing the posi-
tion of a point on the lower lip (green sphere) shows the nonlinear motion
our method produces (bottom row).
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Figure 3.7: Retargeting a facial performance from one actor to another by fixing the
blendweights and changing the identity code results in a natural-looking
transfer.

2D Landmark-Based Capture and Retargetting

Another interesting scenario is facial performance capture and retargeting
based on 2D facial landmarks in videos. Here we show an extension of
our architecture that allows an interface to the latent expression code via
2D landmarks. Given a subset of our facial database where frontal face im-
agery is available, we detect a typical landmark set [Bulat and Tzimiropou-
los, 2017] and perform a normalization procedure to factor out image trans-
lation and scale (based on the inter-ocular distance). The normalized land-
marks are then stacked into a vector, and fed to a network that aims to map
the landmarks to the corresponding expression code zexp. We illustrate this
landmark architecture in Fig. 3.8. The network is trained with ground truth
blendweights which allows supervision on the expression code, given the
pre-trained expression VAE, and we include the resulting geometry in the
loss function using the pre-trained decoder. The result is a means to gen-
erate expressions based on 2D landmarks, which allows further applica-
tions of our deep face model including landmark-based performance cap-
ture (Fig. 3.9 right - center row) and retargeting to a new identity (bottom
row).

3.2.4 Summary

While the proposed expression encoding is more robust to random
blendweight combinations than linear models, it is however not guaran-
teed to produce meaningful shapes for any given blendweight vector. It
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Figure 3.8: Our landmark architecture allows to train a mapping from normalized 2D
face landmarks to the expression latent space, opening applications in land-
mark based performance capture and retargeting as shown in Fig. 3.9.

would be very valuable to have a representation that maps the unit hyper-
cube to the physically meaningful expression manifold in order to allow
random sampling that provides valid shapes spanning the complete expres-
sion space. Even though we incorporate dynamic performances, we do not
encode the temporal information, which would allow to synthesize tempo-
ral behaviour, such as nonlinear transitioning between expressions. Lastly,
we feel the proposed approach is not limited to faces but could provide
value in other fields, for example general character rigging.

We propose semantic deep face models—novel neural architectures for 3D
faces that separate facial identity and expression akin to traditional multi-
linear models, but with added nonlinear expressiveness, and the ability to
model identity specific deformations. We believe that our method for disen-
tangling identity from expression provides a valuable, semantically control-
lable, nonlinear, parametric face model that can be used in several applica-
tions in computer vision and computer graphics.
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Figure 3.9: Landmarks offer alternative control interface allowing to generate the 3D
facial performance (center row) from a 2D video of the person (top row) and
retarget it to any other identity (bottom row).

3.3 Topology Independent Shape Models using Transformers

Parametric 3D shape models are heavily utilized in computer graphics and
vision applications to provide priors on the observed variability of an ob-
ject’s geometry (ex: for faces). Original models were linear and operated on
the entire shape at once. They were later enhanced to provide localized con-
trol on different shape parts separately. In deep shape models, nonlinearity
was introduced via a sequence of fully-connected layers and activation func-
tions, and locality was introduced in recent models that use mesh convolu-
tion networks. As common limitations, these models often dictate, in one
way or another, the allowed extent of spatial correlations and also require
that a fixed mesh topology be specified ahead of time. To overcome these
limitations, we present Shape Transformers, a new nonlinear parametric 3D
shape model based on transformer architectures. A key benefit of this new
model comes from using the transformer’s self-attention mechanism to au-
tomatically learn nonlinear spatial correlations for a class of 3D shapes. This
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Figure 3.10: Our transformer-based 3D shape autoencoder leverages the transformer’s
self-attention mechanism to effectively capture nonlinear spatial correlation
of arbitrary extent, without the need to dictate the size of the receptive field
a priori. It can be trained on a mixture of 3D datasets of different topologies
and spatial resolutions. At test time, the same model can be evaluated to
output different topologies and arbitrary spatial resolutions for different
application scenarios. Here we show the output of one model evaluated
with 4 different topologies, highlighting differences in the same region for
each variation.

is in contrast to global models that correlate everything and local models
that dictate the correlation extent. Our transformer 3D shape autoencoder
is a better alternative to mesh convolution models, which require specially-
crafted convolution, and down/up-sampling operators that can be difficult
to design. Our model is also topologically independent: it can be trained
once and then evaluated on any mesh topology, unlike most previous meth-
ods. We demonstrate the application of our model to different datasets, in-
cluding 3D faces, 3D hand shapes and full human bodies. Our experiments
demonstrate the strong potential of our Shape Transformer model in several
applications in computer graphics and vision. Whether linear or nonlinear,
the choice between a fully global versus a strictly local model is quite limit-
ing. In both cases, the extent of spatial correlations between different points
on the shape is dictated a priori. In the case of global models, all points on
the surface are naı̈vely correlated with each other. Although correlations are
ultimately learned from data, the limited sampling of the true underlying
shape distribution inevitably leads to learning spurious global correlations
(ex, a model that only sees both eyes blinking together during training can-
not express a face with a single eye closed). Local models alleviate this prob-
lem to some extent by introducing explicit independence assumptions that
remove distant correlations, but the specific local region structure is dictated
ahead of time, instead of being learned from data. For the complex geomet-
ric domain of human faces and bodies, it can be very difficult (or impossible)
to manually specify which 3D points should be correlated with each other
in the creation of realistic 3D shapes.
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When building shape models, in addition to the choices between linear ver-
sus nonlinear and global versus local models, another important aspect is
the mesh topology used to create the model. Notably, previous paramet-
ric shape models are designed for fixed mesh topologies. In other words,
the topology used to create the model must be the topology used to eval-
uate the model. This issue is often overlooked, but in fact introduces an
important limitation when attempting to use the same pre-trained model in
different application scenarios (ex, high-quality animation, video games, or
other visualization in realtime). Often the parametric model does not adapt
naturally to the application and constraints at hand, without having to be
re-trained at different resolutions.

This paper directly addresses these main issues concerning parametric 3D
shape models, namely: (i) can the nonlinear model automatically learn the
important spatial correlations without being dictated a priori; and (ii) can the
model be topology independent, allowing pre-trained models to be applied
at different resolutions depending on the use case. To address these issues,
we present a new parametric 3D shape autoencoder based on transformer
architectures, which we call Shape Transformers. A transformer [Vaswani et
al., 2017] is a neural network designed to carry out inference over sequences
of input tokens (data) of arbitrary length, as well as translation into an-
other type of token sequence. Transformers have been used very success-
fully in natural language processing and are increasingly being utilized in
many computer vision applications. Our new shape model is a neural net-
work that exploits the transformer’s self-attention mechanism to automati-
cally and dynamically capture spatial correlations across the entire shape. In
contrast to other models, our transformer autoencoder is both a global and a
local neural shape model and can represent geometric shape detail at an ar-
bitrary spatial resolution, without being tied to a specific mesh topology. As
a result, our method does not require careful, hand-crafted pre-computation
of down/up-sampling operators like mesh-convolutional models, and can
be both trained and applied with meshes of multiple topologies and res-
olutions. In addition to these new benefits, our transformer autoencoder
provides all the usual advantages of recent shape models, including nonlin-
ear deformation characteristics, and the ability to disentangle semantic at-
tributes like identity and expression, to sample from the model parameters
to generate new shapes, and to optimize over the set of parameters to gen-
erate specific shapes in reconstruction scenarios. We demonstrate our new
shape model on various datasets including 3D human faces, hands and full
bodies. We also show the strong potential for our transformer-based shape
models in different applications in computer graphics and vision.
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3.3.1 Modeling 3D Shapes Using Transformers

This section introduces our novel, topology-independent 3D shape model,
which we call a Shape Transformer. Our model leverages a transformer’s
self-attention mechanism to more effectively capture nonlinear spatial cor-
relation of arbitrary extent, while overcoming some of the limitations of re-
cent neural architectures used in shape modeling, such as GCNs. Instead of
carefully hand-crafting the network’s receptive field, as in a GCN, our key
idea is to exploit self-attention to automatically learn, in a data-driven man-
ner, the actual extent of the receptive field at each point in a 3D shape. As a
result, our model is able to capture both short- and long-distance spatial cor-
relation on the target 3D geometry, without explicit definitions of neighbor-
hood, connectivity, or convolution. To avoid GPU memory bottlenecks, our
model computes a smaller cross-covariance self-attention matrix, following
El-Nouby et al.[El-Nouby et al., 2021] (see Section 3.3.1). While we use faces
as example when introducing our model, the proposed architecture gener-
alizes to other shapes including human hands and full bodies, as shown in
Section 3.3.2.

Overview

A schematic of Shape Transformer, our transformer-based 3D shape autoen-
coder architecture is shown in Fig. 3.11. We begin with an overview of the
decoder, Fig. 3.11 (right), to illustrate how the model generates the output 3D
shape. At the center of our architecture lies a canonical 3D shape (e.g., a tem-
plate body or face with standard identity, in a reference pose or expression)
whose surface provides the continuous domain of canonical 3D locations
used to sample the model. These 3D locations are also associated with a la-
tent shape code: a parameter vector that represents a particular geometric
deformation that is applied to the canonical 3D geometry to yield the out-
put 3D shape (e.g., a face with a different identity and expression). Together,
the shape code and queried 3D locations form the input to our transformer-
based decoder, while the output comprises 3D offset vectors that correspond
to each queried 3D location. The generated offsets are added to the canon-
ical shape to produce the output 3D shape, Fig. 3.11 (right). Similarly, the
inputs to the shape encoder, Fig. 3.11 (left), are also represented as 3D offsets
from the corresponding canonical points. In contrast to these offsets, points
on the canonical shape itself are always queried (sampled) as absolute 3D
coordinates in world space. Our transformer-based 3D shape autoencoder
can be trained end-to-end, in a fully supervised way using datasets of reg-
istered 3D shapes. Note a first interesting result of our transformer-based
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Figure 3.11: Overview of our transformer-based autoencoder for topology-independent,
nonlinear 3D shape modeling. At the center of the model lies a canonical 3D
shape that is deformed based on a shape code associated with the target 3D
shape. Shape codes can be generated randomly, interpolated, or computed
from an input 3D shape via the encoder. This autoencoder is trained end-
to-end, in a fully-supervised fashion using datasets of registered 3D shapes,
possibly varying in topology and spatial resolution.

architecture: both at training and test times, the input to the encoder and
decoder can comprise an arbitrary number of queried 3D locations that are
near and/or far away from each other, and in arbitrary ordering. Each of
these input 3D locations is processed separately, to a large extent, but is also
embedded (transformed) with information coming from the other inputs,
as captured by the transformer’s dynamic self-attention mechanism. This
property enables our shape model to be trained on a mixture of 3D datasets
of different topologies and spatial resolutions (e.g., high-quality dense 3D
scans, marker-based motion capture data). At test time, the same model can
be evaluated on other topologies with arbitrarily-varying spatial resolutions,
depending on the user’s need and application.

The goal of the decoder, during training, is thus to learn to estimate non-
linear spatial correlations across the arbitrary sets of canonical 3D locations
and use this contextual information to predict the corresponding 3D offsets
that will form the output shape, as guided by the input shape code. In con-
trast, the encoder is given an arbitrarily-sized sequence of input 3D point
offsets (relative to the canonical shape), from which the goal is to estimate
an associated shape code. The corresponding 3D points on the canonical
shape are also provided as input to the encoder. The architectures of both
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Figure 3.12: The detailed architecture of the proposed transformer-based 3D shape au-
toencoder: (left) transformer-based 3D shape encoder, including a special,
fixed input token for shape queries that is trained with the network; and
(right) transformer-based 3D shape decoder.

the encoder and decoder comprise a sequence of 4 transformer blocks, as
detailed in Section 3.3.1 and Section 3.3.1. While our network could oper-
ate without the encoder, by following the traditional alternative approach
of computing the latent (shape) codes via iterative optimization, having an
encoder is often beneficial: it provides faster estimation of shape codes at
test time, while also learning a better structure for the latent space of shape
codes during training. Additionally, there are also particular advantages
from having a transformer-based encoder: (i) the encoder naturally operates
on arbitrarily-sized subsets of input 3D points (and offsets), thus facilitat-
ing the handling of cases of missing data as when encoding shapes that are
partially occluded; and (ii) the transformer can also be applied to separately
encode smaller regions of the input 3D shape, yielding distinct per-region
codes that can be mixed and used together to extrapolate novel, unseen 3D
shapes, thus increasing the expressiveness of the model. These advantages,
along with other applications of our method are demonstrated in our exper-
imental results in Section 3.3.2.

Transformer-based 3D Shape Encoder

A typical transformer operates on a sequence of input tokens, transforming
them into a desired output sequence by modeling token-to-token interaction
via self-attention [Vaswani et al., 2017], while also individually modifying the
tokens with residual MLPs. In our transformer-based encoder, the input to-
kens are given as (i) an arbitrary set of 3D locations on the canonical shape,
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and (ii) a set of corresponding 3D offsets that lead to a target shape. As de-
scribed next, the canonical points are used to position-encode the target off-
sets, hence the need for them to be in correspondence. However, the number
of sampled points and the sampling strategy remain arbitrary.

As shown in Fig. 3.12, each canonical 3D point is first individually fed
through a 4-layer Position MLP that maps the point onto a high-dimensional
latent position. In parallel, each target 3D offset is also fed through a similar
Input Offset MLP that maps the offset onto another high-dimensional latent
code. Applying these two initial MLPs before passing the tokens over to
the transformer, allows the model to represent the 3D shape more generi-
cally, without being limited to the spatial distribution in the 3D world space.
This operation enables the network to stretch and squeeze the distribution
of input tokens such that they are optimally distributed for the task at hand.
The input to the transformer encoder is then obtained by concatenating the
corresponding canonical and offset tokens into a single sequence of tokens.
Position encoding via this concatenation step effectively tags each offset to-
ken with features related to a specific position in the canonical shape, thus
helping the transformer in learning spatial correlations. This type of position
encoding has been found to be beneficial in previous work [Lin et al., 2021a]
compared to regular sinusoidal position encoding. Our choice of position
encoding method is continuous and naturally allows for arbitrary resolution
in the input space. An ablation study showing its effectiveness is presented
in the supplemental material.

Our transformer encoder is then designed as a sequence of four standard
XCiT blocks [El-Nouby et al., 2021]. The goal for this transformer is to pro-
duce a single shape code from the collection of input tokens. This is how-
ever in contrast with a key property of transformers, which are sequence-to-
sequence architectures that provide as many outputs as the number of input
tokens. To address this issue, an elegant solution to implementing our goal
using a transformer is to introduce an extra input token, similar to the [CLS]

token in BERT [Devlin et al., 2019], that is learned (optimized for) with the
network parameters during training. This single, new input shape query to-
ken is itself a part of the encoder that is used to encode all input shapes and
remains constant after training. Unlike the other tokens, this special token is
not position encoded. It is processed by the transformer encoder and is em-
bedded with information from the other input tokens, leading to the desired
output shape code. The other tokens output by the encoder are not used
(grayed out tokens in Fig. 3.12). Thus, this mechanism allows us to retrieve
a shape code from the encoder irrespective of the number of input tokens.
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Transformer-based 3D Shape Decoder

For our transformer-based decoder, the input tokens are given as (i) an ar-
bitrary set of 3D locations on the canonical shape (as for the encoder), and
(ii) a shape code vector. Note that the queried canonical points do not have
to match those seen by the encoder. As when encoding, the sampled canon-
ical 3D points are separately fed through a Position MLP to provide high-
dimensional tokens for the decoder. The decoder also consists of a sequence
of 4 transformer blocks with standard residual MLPs, but with modulated
input tokens: instead of concatenating each token with the shape code, the
shape code is used to modulate the intermediate activations that serve as
input to each decoder block. This novel style-modulated transformer block is
described in detail in Section 3.3.1. The decoder outputs a different sequence
of tokens (as in a standard trasformer), one for each queried canonical point.
Finally, each of these output token is independently processed by the Output
Offset MLP to produce final 3D offsets that are added to the canonical points,
resulting in the decoded 3D points of the ouput shape.

Style-Modulated Transformer Block in Shape Decoder

The basic idea motivating the design of our new style-modulated trans-
former block is to inject information derived from the shape code directly
into each one of the transformer blocks. As a result, the network does not
have to waste capacity in memorizing this information while carrying it
forward to subsequent blocks. The architecture of our transformer block
is illustrated in Fig. 3.13. We build on top of the recently proposed XCiT
block [El-Nouby et al., 2021] due to its memory efficiency when operating
on very long sequences of tokens (see discussion in Section 3.3.1). In each
transformer block, a 5-layer Style MLP maps the input shape code into a
style code of the same size as each input token (these per-block MLPs have
ReLU activations and shared weights for the first four layers). Each input is
then individually modulated by the style token via multiplication of corre-
sponding feature positions. The intended effect is to emphasize or suppress
a subset of features of the input token, as guided by the style code at the
particular layer of the transformer block. As shown in Fig. 3.13, the set of
modulated tokens is then fed through a standard XCiT transformer block.
This block is then responsible for processing each token and exchanging in-
formation across all tokens via self-attention. As modulation happens just
before (outside) each transformer block, it is also possible to use different
shape codes to modulate different input tokens, as a way of introducing
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localized shape deformation. This more advanced feature of our model is
demonstrated empirically in Section 3.3.2 and in our supplemental material.

Side-Stepping GPU Memory Bottlenecks

A transformer dynamically builds one or more attention matrices that cap-
ture correlations and propagate information across a potentially very large
number of input tokens. Each attention matrix is a dense matrix whose num-
ber of entries depend on the squared length of the input/output sequence.
In our model, the number of elements in the attention matrix is the squared
number of simultaneously queried canonical 3D points. For high-quality 3D
shapes such as the ones used to train our network, the total number of ob-
served 3D points can range from a few thousands to hundreds of thousands.
Building the standard self-attention matrix for sequences of such length is
most often infeasible due to GPU memory constraints. To circumvent this
well-known problem with transformers, we rely on the recently proposed
XCiT cross-covariance attention [El-Nouby et al., 2021] as a more compact re-
placement for the standard self-attention. Since our goals are different than
that in El-Nouby et al.[El-Nouby et al., 2021], we replace their 3× 3 (LPI)
convolutional layer with a 1 × 1 convolution and keep our model invari-
ant to permutation on the input tokens. In addition, our continuous shape
model naturally makes it possible to apply different strategies for sampling
separate subsets of 3D points, sequentially, in order to progressively eval-
uate complete and dense 3D shapes with a virtually unlimited number of
points.

Training. We train our model using a dataset of registered 3D shapes, with
known spatial correspondence (but not necessarily of the same topology),
from which the canonical shape is defined as the mean shape or any particu-
lar, most representative shape (e.g., the most dense 3D shape, when training
using different topologies). We first compute 3D offsets between points in all
training shapes, relative to those in the canonical shape. Then, the weights
of our 3D shape autoencoder and the query shape code shown in Fig. 3.12
are jointly optimized during training in a normal supervised fashion; the
objective is to minimize the L2-loss between the ground-truth per-point 3D
offsets, which are provided as inputs to the encoder, and the corresponding
3D offsets that are output by the decoder (Fig. 3.11). Once trained, our model
allows for a variety of topology-independent applications in 3D shape mod-
eling, reconstruction, and shape deformation, as shown in the following.
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Figure 3.13: Our new style-modulated XCiT layer (top) allows the shape code to sup-
press or emphasize different features of the per-point tokens at different lay-
ers of our transformer-based decoder. In our identity-expression disentan-
gled version (bottom), we explicitly split the Identity Code from the expres-
sion: the blendweights first go through an Expression MLP and its output
is concatenated with the Identity Code before it follows a path similar to the
Shape Code, modulating the XCiT Layer.
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3.3.2 Results

We now demonstrate how our topology-independent transformer shape
model performs on datasets with different classes of 3D shapes, including
faces, hands, and full human bodies (Section 3.3.2), while also analyzing and
evaluating our design choices. We begin by showcasing the representative
power of our model, specifically in the scenarios of reconstructing and inter-
polating 3D shapes (Section 3.3.2). We then highlight one of the main bene-
fits of our approach, which is the topology independence of the underlying
shape model (Section 3.3.2), and illustrate several new applications enabled
by this property including shape completion (Section 3.3.2), accurate shape
fitting and generalization (Section 3.3.2), and the creation of high-quality
faces (Section 3.3.2). In Section 3.3.2, we present several experiments that
demonstrate how the model reacts to scenarios never seen during training.
We additionally present an extension of the original architecture that allows
for disentangling facial identity and expression (Section 3.3.2), for better ap-
plication in parametric face modeling. Kindly refer to our supplementary
material for additional experiments.

Datasets

Our 3D shape autoencoder is generic and can be trained on a wide variety
of 3D shapes. In this section, we briefly introduce the datasets we use to
validate our approach. For 3D faces, we consider the datasets of COMA
[Ranjan et al., 2018b] and Semantic Deep Face Models (SDFM) [Chandran et
al., 2020]. Besides faces, we show application on the MANO hand dataset
[Romero et al., 2017], and the DFAUST body dataset [Bogo et al., 2017]. The
characteristics of these datasets and specific information on how we trained
our model are detailed next.

COMA: Introduced by Ranjan et al.[Ranjan et al., 2018b], this dataset com-
prises registered 3D human faces consisting of 20,465 meshes spanning 12
extreme facial expressions. Each mesh contains 5,023 vertices. COMA has
been successfully use in previous work [Bouritsas et al., 2019][Gong et al.,
2019] for building parametric face models. For a fair comparison of the rep-
resentative power of our model in the reconstruction task, we partition the
dataset into training and testing subsets following an identical 9:1 ratio as in
these previous works.
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SDFM: This is another dataset with human faces, originally used by Chan-
dran et al. [Chandran et al., 2020] to build their semantic deep face model.
This dataset currently includes 9,000 meshes of 375 distinct identities in 24
facial expressions. Each mesh includes 5,257 vertices on the front of the face
and neck. The SDFM dataset allows us to demonstrate the application of our
shape model in the task of disentangling facial identity and expression (see
Section 3.3.2).

MANO: Introduced by Romero et al. [Romero et al., 2017], this dataset com-
prises in total 1514 unique, registered 3D meshes of human hands, with a
pair of left and right hands for 777 subjects. There are also mirrored counter-
parts for the left hand meshes leading to a final count of 2,291 meshes. The
hands in this dataset span a considerable range of 3D shapes and consist of
complex pose and shape deformations. Each mesh is database consists of
778 vertices. For our experiments, we considered only the 777 right hand
meshes from this dataset and randomly left out 70 shapes for validation.

DFAUST: This human body dataset was proposed by Bogo et al.[Bogo et
al., 2017] and contains 140 sequences of registered human body meshes. The
dataset includes 10 subjects performing various movements and even in-
cludes dynamics. Each mesh in this dataset consists of 6,890 vertices. As
in Zhou et al. [Zhou et al., 2020b], we used 103 sequences for training, 13
sequences for validation, and the remaining 13 sequences for testing.

Architectural Details and Hyper-Parameters.
On COMA, SDFM, and MANO, our model as set up as follows:
Canonical shape: average of all shapes in the training dataset
Sampling strategy: all 3D vertices on both encoder and decoder
Code/token sizes: 64 dimensions in shape code, style code, and in all per-point
input tokens.

On DFAUST, the model setup was:
Canonical shape: average of rest shapes in the training dataset
Sampling strategy: all 3D vertices on both encoder and decoder
Code/token sizes: 128 dimensions in shape code, style code, and in all per-
point input tokens.

Shape Reconstruction and Interpolation

A basic task of any data-driven deformable model is shape reconstruc-
tion and its ability interpolate smoothly between shapes. Fig. 3.14 demon-
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Figure 3.14: Modeling errors of our transformer-based autoencoder on test samples of
COMA, MANO, and DFAUST datasets.

strates the reconstruction accuracy for three different instances of our model,
trained on COMA, MANO and DFAUST. In all three cases, our transformer-
based autoencoder was able to accurately model the different classes of 3D
shapes with very small errors of only a few millimeters. A quantitative eval-
uation of our Shape Transformer’s performance on COMA, in comparison to
other models in the related work, is shown in Table 3.1. As the table shows,
our model provides the lowest average modeling error (and standard de-
viation) on this face dataset. The performance of our method on DFAUST
is summarized in Table 3.2. Shape Transformer produces competitive re-
sults on the DFAUST benchmark while only being trained for 170 epochs as
compared to the 300 epochs training for the other methods.On MANO, our
Shape Transformer achieves a reconstruction error of 1.628 mm and 2.657
mm on the training and validation sets, respectively.

The ability of our nonlinear model to interpolate between two different 3D
shapes (i.e., two shape codes) is illustrated in Fig. 3.15. Please refer to the
supplemental video for more examples, and to visualize the smooth transi-
tion during interpolation. As the interpolation weight changes, the resulting
shape progressively changes identity, pose, and expression as the shape code
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Table 3.1: Quantitative comparison of face reconstruction (modeling) performance ver-
sus related work on the COMA dataset.

Method mean median time per
error (mm) error (mm) epoch (s)

FeaStNet 0.523± 0.643 0.297 133.183
MoNet 0.526± 0.605 0.353 97.009

COMA [Ranjan et al., 2018b] 0.470± 0.598 0.263 77.943
ChebyConv (K=9) 0.436± 0.562 0.242 86.627

Neural3DMM [Bouritsas et al., 2019] 0.443± 0.560 0.245 107.137
SpiralNet++ [Gong et al., 2019] 0.426± 0.538 0.238 30.417

DilatedSpiralNet++ [Gong et al., 2019] 0.423± 0.534 0.236 29.181
Ours 0.413± 0.313 0.323 400

Table 3.2: Quantitative comparison on DFAUST
Method Training error (mm) Validation error (mm) Model size
Neural3DMM [Bouritsas et al., 2019] 6.42 7.39 2.0m
MeshCNN* [Hanocka et al., 2019] 83.3 101.7 2.2m
Zhou et al.[Zhou et al., 2020b] 3.73 5.01 1.9m
Ours 4.58 5.31 2.1m

moves within the model’s latent space. Note how the interpolations effec-
tively capture nonlinear deformations and always correspond to plausible
shapes, what would be difficult to obtain with a linear model.

Comparison to Implicit Models. Here we compare our Shape Trans-
former’s performance against two implicit models. The first is that of
DeepSDF [Park et al., 2019a] on the SDFM dataset. For this experiment,
we exported each SDFM shape as a signed distance field, following Park et
al.[Park et al., 2019a] by sampling 250K points in the normalized bounding
volume of the dataset. DeepSDF uses a latent shape code of 512 dimensions
and an 8-layer MLP with skip connections. Since DeepSDF is trained in an
auto-decoder fashion (without an encoder), validation shapes must be fit
(reconstructed) via an iterative optimization step. As a second comparison
baseline, we take the implicit MLP architecture used by DeepSDF and train it
to output per-point offsets from our canonical shape (i.e., no signed distance
field, no self-attention). We trained these two baselines and a facial Shape
Transformer for 200 epochs each. As shown in Table 3.3, our transformer-
based model outperforms the two baselines, which showed similarly infe-
rior generalization. Fig. 3.16 compares the generalization errors on a vali-
dation example and also shows the faster convergence of our Shape Trans-
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Figure 3.15: We can interpolate between shape codes to create realistic in-between
shapes. Here, the shapes at 0% and 100% are training data samples, the
others are new interpolated shapes.

former compared to a simple MLP that predicts per-point offsets from our
canonical shape.

Decoding Context. As the attention mechanism in the Shape Transformer
naturally depends on the set of vertices sampled for decoding, we provide
an evaluation of the reconstruction performance of the COMA Shape Trans-
former while varying the number of simultaneously sampled locations on
the canonical face surface. The result of this evaluation, in Fig. 3.18, shows
that the attention produces reasonable deformations for different decoding
densities, but that accuracy is best at higher resolutions. In a related ex-
periment, we kept the number of sampled points constant but varied their
spatial extent, to measure the effect of local and global correlations while de-
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Table 3.3: Comparison vs implicit shape models on SDFM data.
Method Validation error (mm)
Implicit MLP 1.76
DeepSDF [Park et al., 2019a] 1.35
Ours 0.768

Ground Truth DeepSDF Implicit MLP Shape Transformer 
(Ours)

Lo
ss

Figure 3.16: Shape Transformer outperforms implicit shape models in face reconstruc-
tion (left), while also converging faster to a better solution when compared
to per-point MLPs without self-attention.

coding vertex sets. Intuitively, we reconstruct a vertex while forcing the at-
tention weight to be zero for all vertices further away than a given distance.
We repeat this experiment for 100 vertices on the face and for 8 different
distance thresholds (from 10mm to 200mm), allowing the model to capture
increasing global context. Fig. 3.19 plots the average reconstruction error as
a function of the neighbourhood distance. Again, leveraging global context
via self-attention gives the best results, showing that Shape Transformers can
effectively balance both local and global spatial correlations. This helps our
model outperform mesh convolutional (local) models (Table 3.1, Table 3.2)
and also other implicit, single-point models based on MLPs without self-
attention (Table 3.3).

Topology Independence

One of the key benefits of the Shape Transformer model is its topology inde-
pendence, where the model can be trained on one or many different topolo-
gies, and then evaluated on any new topologies without re-training. We
illustrate the topological independence for the SDFM Shape Transformer
in Fig. 3.10, and the MANO Shape Transformer in Fig. 3.17. Note that the
model produces accurate overall geometry for all topologies, and also learns
to increase the surface details when the mesh topology permits (e.g., the
Catmull-Clark subdivision result in Fig. 3.17 has long thin triangles in the
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Figure 3.17: Here we show the MANO Shape Transformer evaluated on several different
topologies, even though the model was trained only once on the original
topology.

middle of the palm, and the Shape Transformer is able to create more de-
tailed wrinkles). Shape Transformer could thus perform as a valuable tool
for mesh super-resolution/upsampling. Note that in order to support a new
topology at test time, we require a one-time mapping of the new topology
to the canonical manifold (e.g., by registering a single new mesh onto the
canonical shape). This is easily achieved using traditional mesh deforma-
tion tools that are readily available in 3D modeling packages [Community,
2018] and in literature [Wilson et al., 2011][Sorkine et al., 2004].

Shape Completion

Face models occasionally have to deal with incomplete data, for example
in image-based reconstruction tasks when parts of the face are occluded. It
is often the task of the face model to complete missing regions in a plau-
sible way. Here we show that Shape Transformers are very well suited to
this task. Recall that the shape code in the Shape Transformer is obtained
from an encoder which is also implemented as a transformer, and thus is
also topology independent. This means that it is sufficient to supply only
partial shapes to the encoder, in order to obtain the shape code for decod-
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Figure 3.18: We show reconstruction errors while varying the number of queried ver-
tices in the decoder of the COMA Shape Transformer. Even with very few
vertices, the sampled offsets remain accurate, demonstrating the robustness
of self-attention in our decoder.
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Figure 3.19: We show the effect of local and global correlations by decoding a vertex with
increasing neighborhood sizes (green). Higher accuracy is achieved when
leveraging more global context.
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Figure 3.20: Shape Transformers can be used for shape completion when large regions
of the target are missing, e.g., the cheek, chin, upper lip, and nose shown
above on the SDFM Shape Transformer.

ing. We illustrate this case of missing data on the SDFM Shape Transformer
in Fig. 3.20 by manually cropping away large regions of vertices from shapes
before encoding them, and evaluating the reconstruction errors. The Shape
Transformer naturally handles the missing region and reconstructs plausi-
ble deformations even when only trained with complete information during
training. An extreme case of missing input data is to sample only a subset
of the vertices of the target mesh. Our shape encoder is able to still obtain
plausible shape codes under such extreme cases, which we show by slowly
reducing the number of encoded vertices in our COMA Shape Transformer
in Fig. 3.21. This experiment is valuable as it supports a real-world scenario
of sparse facial tracking, e.g., from detected landmarks or motion-capture
dots. We demonstrate this use case in Fig. 3.22, where we show reconstruc-
tion errors for two different frames of a captured performance, evaluating
two different marker layouts — 64 landmarks corresponding to a landmark
detector, and 160 evenly placed markers corresponding to a motion-capture
layout. Note that in this experiment we demonstrate an actor-specific use
case, and thus we train a special actor-specific Shape Transformer such that
the encoded shape codes represent expressions only. Please refer to the sup-
plemental video for several complete sparse performance reconstructions.
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Figure 3.21: Slowly decreasing the number of encoded vertices for the COMA Shape
Transformer degrades the reconstruction naturally. Left: reconstructions
for 6 different encodings from 4000 to 100 vertices. Right: avg. recon-
struction errors for 5 different training samples increase as the number of
encoded vertices decreases.
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Figure 3.22: We illustrate actor-specific Shape Transformer reconstruction from sparse
points on 2 frames of a performance, e.g., from 64 landmarks or 160 hand-
placed motion-capture markers.
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Projecting New Shapes by Optimizing Shape Codes

As mentioned in Section 3.3.1, we have two options to compute a shape code
for our Shape Transformers. One option, which have explored so far, relies
on shape codes output by our transformer-based encoder. The second op-
tion is to fit the pre-trained Shape Transformer to a particular new 3D shape
by iteratively optimizing for a new shape code that minimizes an L2-loss
between the decoded 3D points and the 3D points on the new target shape.
This second option can be beneficial for particular shapes that differ from
those in the training data and for which the shape code output by the en-
coder is suboptimal. Thus, it can serve to initialize a subsequent optimiza-
tion step. Furthermore, this optimization is now free to compute different
shape codes for different regions of the face, further improving quality of
fit and expressibility of the model. We note that such a projection into the
Shape Transformer’s latent space assumes that correspondences are known
between the target and canonical shapes. Fig. 3.23 shows an experiment
on which we fit the Shape Transformer to two unseen subjects, with one
local shape code per vertex. This projection takes 15 seconds per shape
and is guided by gradient descent. Naturally, this corresponds to an over-
parameterization of the model, leading to perfect fits with zero error. The
purpose of this experiment however is to demonstrate how the Shape Trans-
former allows for the number of local shapes to be arbitrarily adjusted to
match the desired accuracy at inference time. Interesting avenues for future
work include extracting optimal patch layouts from the Shape Transformer
such that a target face can be represented with as few codes as possible.

High-Quality Face Modeling

We now demonstrate the application of building a high-quality, identity-
specific Shape Transformer from 24 facial scans of a single person. Each
scan has over 500,000 vertices capturing fine detail down to the skin pores
and fine wrinkles. This high-quality dataset was captured with a multi-
view stereo setup in controlled studio-like conditions [Beeler et al., 2011].
This highly detailed dataset comprises about 36 million coordinates in total,
while our trained Shape Transformer learns to represent it with about 1 mil-
lion weights. We used all 24 shapes to train this Shape Transformer, with the
goal of generating a high-quality model that can be interpolated or driven
by data in order to generate high-quality facial animation. As the shapes in
this case are of extremely high resolution, they cannot be queried all at once
like in our previous experiments due to GPU memory limitations. Thus,
we opt for a simple training strategy where the encoder always encodes a
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Ground Truth Ground Truth Optimized Shape Optimized ShapeError Error

0 mm 5 mm

Figure 3.23: We illustrate the arbitrary representative power of the Shape Transformer
with an over-parameterized projection resulting in the perfect reconstruc-
tion of the ground truth shape.

fixed set of 20,000 canonical positions on the target scan. These points are
sampled once using dart throwing such that they cover the entire face. On
the decoder side, we randomly sample 20,000 points at each iteration and
reconstruct the corresponding target offsets. This strategy allows us to con-
sistently learn a single shape code per training sample on the encoder side
while still allowing us to supervise the decoder with rich ground truth. At
inference time, we also split the queried points into equally sized chunks
that fit in memory and query them in sequence. The reconstruction accuracy
for a few 3D shapes in the training data is shown in Fig. 3.24(a). Both the fig-
ure insets and the very small modeling errors (mostly below 0.25 mm) show
that the model is able to effectively capture the fine geometric detail in the
training shapes. Fig. 3.24(b) shows the novel, high-quality 3D shapes gen-
erated by the Shape Transformer as we interpolate between two of the orig-
inal shapes. Besides generating dense, realistic geometry, this same Shape
Transformer can be sampled at different topologies and spatial resolution,
for different application scenarios (Fig. 4.19).

Model Analysis

Canonical Shape Changes. Since the Shape Transformer makes use of a
canonical shape to sample queries during training and inference, a natural
question to ask is about its reaction to off-surface queries? To understand
this behavior, we modified the canonical shape after the Shape Transformer
was trained and visualized the change in reconstructing a particular shape.
Fig. 3.25 shows the effect of varying the canonical shape in 3 different ways:
scale, non-rigid deformations and pose. The results seem to indicate the our
model is more or less invariant to the scale of the canonical shape, while
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Figure 3.24: High-quality, person-specific Shape Transformer trained on 24 facial scans
with fine geometry detail capturing skin pores and wrinkles: (a) modeling
error on 4 training shapes; (b) novel, high-quality shapes generated via
interpolation of two training shapes.

failing understandably for large changes in pose. Kindly refer to the supple-
mental video for more results of this experiment.

Style Mixing. One more application that is allowed by our style modulated
decoder is style mixing. By style mixing, we refer to the use of different
shape codes to modulate each layer of the decoder. We first obtain a set
of candidate shape codes to style mix by encoding a set of shapes through
our encoder. The different shape codes can then be mix and matched to
modulate the decoder at different layers. Mixing 2 different shapes in the
4 layer COMA and MANO Shape Transformer decoder is demonstrated in
Fig. 3.26.

Disentangling Identity and Expression

Previous face models showed several benefits of being able to disentangle
the deformation caused by identity changes from the deformation caused
by expression changes [Vlasic et al., 2005][Chandran et al., 2020]. Our new
model is also able to disentangle identity and expression, by splitting the
shape code into two separate parts. During training, we then constrain the
identity part to have the same code for all expressions of the same subject.
In addition, the two parts in the code allows us to modulate the two seman-
tic aspects separately, opening up several applications as illustrated in the
following.

Identity Synthesis. In Fig. 3.27, each row shows many different sampled
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Figure 3.25: Here we show the effect of modifying the canonical shape at inference after
our transformer was trained. We show the effects that scale, non-rigid
deformations and pose have on the trained model. These results indicate
that the model is more or less robust to changes in scale and small non-
rigid deformations. Changes in pose seem to affect the predicted offsets to a
greater extent.
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Figure 3.26: Here we show the effect of modulating the different layers of our decoder
with different shape codes. Though during training, we always train with a
single shape code applied at all layers, our model is able to produce smoothly
deforming shapes when mixing styles at different layers at inference time.
The effect of such style mixing is displayed on two datasets consisting of
hands and faces.
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Figure 3.27: Our Shape Transformer with separate shape codes for identity and expres-
sion allows for semantically sampling novel identities, while retaining the
ability to control their expression.

identities obtained by change the part of the shape code corresponding to
identity, while leaving the expression code fixed. Along each column, the
identity is fixed but the expression code changes.

Identity/Expression Interpolation. A disentangled Shape Transformer al-
lows to interpolate only the identity or expression part of the shape code,
as illustrated on SDFM data in Fig. 3.28 (left). Furthermore, the interpo-
lation can be applied only locally (e.g., to only half of the face as shown
in Fig. 3.28 (right)) by using a different shape code with a subset of the
queried 3D points given to the transformer. Note that different identities
and expressions were used for the two different experiments (global versus
local interpolation).

Blendshape-Based Performance Retargeting. A Shape Transformer with
disentangled identity and expressions codes naturally facilitates application
in the retargetting of facial performances. Fig. 3.29 shows the modeled se-
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Figure 3.28: A disentangled COMA Shape Transformer allows to interpolate only the
identity (top row) or the expression (bottom row) while keeping the other
part of the shape code fixed. This interpolation can happen by changing the
shape code globally for the entire face (left) or even locally for a part of the
face (right). Note that the left and right experiments are performed with
different identities and expressions.

quence of facial expressions captured for the source actor, which are then
retargetted to two other actors by transferring only the expression codes.

3.3.3 Summary

Parametric shape models are among the most common tools used in com-
puter graphics applications. These data-driven priors are usually built from
a corpus of 3D scans, and are often used to represent 3D faces, hands and
bodies (among other items). A number of different parametric models ex-
ist, ranging from linear to nonlinear and local to global, but they all share the
common limitation that they usually dictate the extent of spatial correlations
that occur during deformation. Furthermore, they are all designed to work
on a fixed topology. In this work we present Shape Transformers, a new non-
linear parametric 3D shape model based on transformer architectures, which
uses the transformer’s “self-attention” mechanism to automatically learn
nonlinear spatial correlations. Additionally, our model is topologically in-
dependent: it can be trained once and then evaluated on any mesh topology.
We demonstrate how our new model can be applied on various datasets, in-
cluding 3D faces, hands and full bodies, and illustrate several applications
like reconstruction, shape completion, performance capture and retargeting.
We believe our transformer-based 3D shape model shows strong potential
in computer graphics and vision applications.
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Figure 3.29: A Shape Transformer with disentangled identity/expression codes natu-
rally supports retargetting of facial expressions from a captured perfor-
mance across different identities.

3.4 Chapter Summary

In this chapter we presented techniques for semantic neural shape modelling
for facial geometry modelling and synthesis. First we introduced the Seman-
tic Deep Face Model (see Section 3.2), a novel, semantically interepretable
shape model that combines the benefits of both traditional morphable mod-
els and powerful deep shape models. To overcome the topology dependence
of the semantic deep face model, we later introduced the Shape Transformer
in Section 3.3 which leverages a transformer’s self attention mechanism to
learn a powerful, mesh connectivity agnostic shape model with applications
in shape modelling, inpainting, and much more.
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C H A P T E R 4
Facial Performance Synthesis

In the previous chapter, we looked at two approaches for semantic deep
modeling of human faces. While such approaches are indeed sufficient to
analyze static facial geometry and appearance, they have no notion of time
or the ability to reason about a sequence of face shapes as occurring during a
facial performance or in a hand crafted animation. In this chapter we discuss
performance synthesis, the ability to extend the static geometry models from
Chapter 3, with a notion of time, with the larger goal of using such models
to generate a sequence of facial shapes or a full performance.

4.1 Introduction

As discussed in Chapter 1, static geometry modelling and synthesis is only a
part of the problem when concerning ourselves with high quality data gen-
eration. In this chapter, we will look at two different aspects of synthesizing
performances.

Performance synthesis via retargeting where we our goal is create new per-
formances of a given character (or the target character) by retargeting by ex-
isting performances of source characters, and to transfer these performances
in a manner that preserves the facial identity of the target character. In this
approach, we assume that we have access to a corpus of captured facial per-
formances in 3D (Chapter 2.2) or hand crafted animation sequences as cre-
ated by an artist.

Performance Synthesis via Deep Temporal Shape Modelling The second
approach is to extend previous methods of deep data-driven static geometry
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modelling Chapter 3 by incorporating temporal knowledge into these mod-
els through the use of advanced architectures like Transformers [Vaswani et
al., 2017] which are designed for sequence to sequence applications.

We now introduce these approaches in greater detail and highlight our spe-
cific contributions in the following sections.

4.1.1 Performance Synthesis via Retargeting

Generating realistic facial animation for CG characters and digital doubles
is one of the hardest tasks in animation. A typical production workflow in-
volves capturing the performance of a real actor using mo-cap technology,
and transferring the captured motion to the target digital character. This
process, known as retargeting, has been used for over a decade, and typi-
cally relies on either large blendshape rigs that are expensive to create, or
direct deformation transfer algorithms that operate on individual geometric
elements and are prone to artifacts. We present a new method for high-
fidelity offline facial performance retargeting that is neither expensive nor
artifact-prone. Our two step method first transfers local expression details
to the target, and is followed by a global face surface prediction that uses
anatomical constraints in order to stay in the feasible shape space of the tar-
get character. Our method also offers artists with familiar blendshape con-
trols to perform fine adjustments to the retargeted animation. As such, our
method is ideally suited for the complex task of human-to-human 3D facial
performance retargeting, where the quality bar is extremely high in order
to avoid the uncanny valley, while also being applicable for more common
human-to-creature settings. We demonstrate the superior performance of
our method over traditional deformation transfer algorithms, while achiev-
ing a quality comparable to current blendshape-based techniques used in
production while requiring significantly fewer input shapes at setup time.
A detailed user study corroborates the realistic and artifact free animations
generated by our method in comparison to existing techniques.

4.1.2 Performance Synthesis via Deep Temporal Shape Modelling

We propose a 3D+time framework for modeling dynamic sequences of 3D
facial shapes, representing realistic non-rigid motion during a performance.
Our work extends neural 3D morphable models by learning a motion man-
ifold using a transformer architecture. More specifically, we derive a novel
transformer-based autoencoder that can model and synthesize 3D geome-
try sequences of arbitrary length. This transformer naturally determines
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Figure 4.1: We present a local, anatomically-constrained method for facial performance
retargeting that is ideally suited for the complex problem of human-to-
human facial animation transfer. Here we show one frame of retargeting
the source character (left) to five different target characters (right). While
the method targets human performances, it naturally also extends to fantasy
characters (far right).

frame-to-frame correlations required to represent the motion manifold, via
the internal self-attention mechanism. Furthermore, our method disentan-
gles the constant facial identity from the time-varying facial expressions in
a performance, using two separate codes to represent neutral identity and
the performance itself within separate latent subspaces. Thus, the model
represents identity-agnostic performances that can be paired with an arbi-
trary new identity code and fed through our new identity-modulated per-
formance decoder; the result is a sequence of 3D meshes for the performance
with the desired identity and temporal length. We demonstrate how our dis-
entangled motion model has natural applications in performance synthesis,
performance retargeting, key-frame interpolation and completion of missing
data, performance denoising and retiming, and other potential applications
that include full 3D body modeling.

Our proposed methods for performance synthesis via retargeting and via
deep temporal shape modelling are discussed in detail in Section 4.2 and
Section 4.3 respectively. As related literature for facial retargeting and data-
driven animation modelling is diverse, they are presented separately in Sec-
tion 4.2.2 and Section 4.3.2 to faciliate an easier understanding of the state of
the art.
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4.2 Local Anatomically Constrained Facial Performance
Retargeting

4.2.1 Introduction

Character facial animation is a key aspect of many computer graphics appli-
cations. Creating realistic 3D facial animation is a difficult task, as even the
slightest inaccuracies can make the result look uncanny. One practical way
to obtain realism is to capture the performance of a real actor using motion-
capture technology, and then transfer the resulting digital performance to
a target 3D character. Such an approach is commonly referred to as perfor-
mance retargeting, and is the primary method of generating facial animation
for high-end visual effects in film and entertainment. While the motion cap-
ture side of the problem has seen tremendous technical advances over the
past two decades, the retargeting side has advanced at a much slower pace.
In practice, there are two methods commonly used in studio productions
(and both are nearly two decades old). The first is based on blendshape
animation [Lewis et al., 2014], where corresponding blendshape rigs are cre-
ated for the source and target characters and retargeting becomes the simple
task of copying the blendweights from the source performance to the target
rig. This method requires very many facial shapes in the rigs, which must
be in parity, incurring a large up-front cost. The benefit, however, is that
the source and target characters can be arbitrarily dissimilar (e.g. retarget-
ing a young female face to an elderly man with wrinkles). The alternative
method is to use deformation transfer [Sumner and Popović, 2004], which
requires only 1 (usually neutral expression) shape of the target character, and
attempts to retarget triangle deformations from the source performance di-
rectly. While incurring a much smaller setup time, this method can be prone
to geometric artifacts and is generally more applicable when the source and
target are very similar, as surface details (e.g. wrinkles) from the source
character would be copied to the target.

More recent 3D facial retargeting methods do exist, but are nearly all de-
signed for retargeting human performances to cartoon or fantasy characters.
A growing problem in the visual effects industry is the creation of photore-
alistic digital humans, where the precision and realism of facial animation
is of highest importance. Here, if the actor corresponding to the digital hu-
man is available to perform, the solution lies primarily in the motion-capture
domain. However, oftentimes the target human character is not physically
available to perform, for example if they have passed away, or if the target
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character is a younger or older version of the actor 1. In such scenarios, cre-
ating a realistic facial animation requires retargeting, capturing an actor and
transferring the performance onto the target digital character (even if it is a
re-aged version of themselves). Here, the quality bar is much higher than
for retargeting to cartoon characters. We present a high-quality facial per-
formance retargeting solution that is ideally suited for this realistic human-
to-human retargeting scenario, while also demonstrating results for more
traditional human-to-creature retargeting.

Our method considers the problem locally, by first retargeting small patches
of the face surface individually. This offers a high degree of flexibility, allow-
ing us to operate with only a small number of input shapes for establishing
correspondence (i.e. complete facial rigs are unnecessary). In a second step,
to retain global consistency, we fit a subject-specific anatomical face model,
originally designed for monocular face tracking [Wu et al., 2016b], by ex-
tending it to support performance retargeting.

Our method retains the benefits of both of the common approaches for fa-
cial retargeting (blendshapes and deformation transfer), without exhibiting
either of their drawbacks. For example, with our approach the source and
target characters can be arbitrarily dissimilar and our method will not di-
rectly copy fine expression details from one to the other. Furthermore, we
can accomplish this with only a fraction of the number of input shapes that
a typical blendshape retargeting approach would require (for example, ap-
prox. 20 versus hundreds of shapes). Our method also exhibits fewer geo-
metric artifacts than deformation transfer, which we will demonstrate in our
results. Finally, our approach allows easy artistic direction over the retar-
geted solution by providing a simple mechanism to favor or punish certain
shape deformations in different regions of the face, or locally exaggerate the
retargeting strength, all while staying in a plausible manifold of the target
3D character.

To summarize, our work presents a new practical, robust and flexible
method for realistic facial performance retargeting, suitable for today’s high
demand for realistic digital characters.

4.2.2 Related Work

We now review related work in the various areas of performance retargeting.

1e.g, The Irishman (2019) - www.fxguide.com/fxfeatured/de-aging-the-irishman/
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General Motion Retargeting

In areas other than the human face, previous works in performance retarget-
ing has focused on skeleton animation [Aberman et al., 2020], full 3D bodies
for computer graphics [Baran et al., 2009][Borno et al., 2018] and robotics
applications [Morishima et al., 2016][Penco et al., 2018], and hand animation
for robotics [Antotsiou et al., 2018][Orbik et al., 2021] and sign language [Ge
et al., 2005]. Rigged human body models such as the widely used SMPL
model [Loper et al., 2015b] and its recent variants [Osman et al., 2020][San-
testeban et al., 2020] can be trivially re-purposed for retargeting. Since the
face is typically parameterized differently than other parts of the body, such
methods do not readily apply to facial animation.

Video Face Retargeting

There exists a large body of work on 2D video-based facial re-enactment
or face swapping [Ren et al., 2021][Wang et al., 2021][Perov et al.,
2021][Naruniec et al., 2020 07][Chen et al., 2020b][Zhang et al., 2020][Chen
et al., 2020b] [Nirkin et al., 2019][Kim et al., 2019][Thies et al., 2016][Garrido
et al., 2014]. Colloquially referred to as DeepFakes, these techniques have
progressed to a point where given a performance, a desired actor’s face
can be photo-realistically retargeted as a video. In contrast, our method is
concerned with 3D geometric retargeting rather than 2D video face swap-
ping. Although certain techniques do use 3D facial geometry within their
pipeline [Thies et al., 2016][Wang et al., 2021][Hong et al., 2021], this 3D
information tends to be of low resolution as it primarily only serves as prior
for the video generation. While these 2D retargeting techniques are indeed
impressive, they lack some key benefits of a 3D approach, such as offering
artists more control. For a detailed analysis of recent literature in the field of
2D face swapping, we refer to this survey by Mirsky and Lee [Mirsky and
Lee, 2020].

Real-time Puppeteering

Real-time puppeteering is a special case of retargeting, where the goal is to
drive a virtual character’s face in real time, where the focus is primarily on
speed rather than on the quality of retargeting. Prior to the advent of deep
learning, techniques for capturing and animating a digital character’s face in
real time included Adaptive PCA [Li et al., 2013], wherein the basis vectors
of a PCA model were adapted by progressively observing captured frames
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of an actor. A monocular system for real time face capture was proposed
by Cao et al.[Cao et al., 2014b] which used morphable model regressors to
drive a digital character. Real time techniques that are primarily focused
towards non-human character animations have also been proposed [Weise
et al., 2011][Bouaziz et al., 2013]. These methods rely on a morphable model
and are therefore only capable of producing approximate/coarse shapes. As
such, these techniques are clearly not suitable for use in high end visual
effects production.

With the advent of Telepresence, there has also been a focus on reproduc-
ing photo realistic digital doubles [Seymour et al., 2017] in real time. Some
recent techniques in this space can indeed reproduce high fidelity avatars
[Chen et al., 2021][Ma et al., 2021][Lombardi et al., 2018b], however most of
these techniques require large amounts of actor specific training data and
generalize poorly to multiple actors and test conditions. In contrast, we fo-
cus on high quality offline 3D retargeting shapes, without requiring large
amounts of training data.

Data driven 3D Retargeting

Neural face models are becoming increasingly popular owing to their per-
formance and ability to model nonlinear skin deformations. Naturally, some
of these models have been used for the purpose of 3D retargeting as well.
Chandran et al.[Chandran et al., 2020] proposed the use of disentangled
variational auto encoder (VAE) which can isolate facial identity and expres-
sion fully in its latent space, thereby allowing for the swapping of expression
codes across identities in the latent space to achieve 3D human-to-human
retargeting. Zhang et al.[Zhang et al., 2022] recently proposed a framework
where human and character specific VAEs share a common latent space; al-
lowing a human face to drive the desired character’s face. The use of neural
architectures allows for other forms of retargeting; for instance driving a 3D
face from an audio input [Karras et al., 2017a]. Neural networks that predict
the parameters of a rig or a blendshape model have also been developed for
retargeting [Chaudhuri et al., 2019][Aneja et al., 2018][Costigan et al., 2014].
Another stream of recent research in 3D retargeting treats the problem simi-
lar to 2D face swapping: by performing the retarget first in 2D image space
and then regressing rig/model parameters from the retargeted image [Kim
et al., 2021][Moser et al., 2021]. The primary drawback of data driven tech-
niques in 3D retargeting is their large requirements of training data and that
they only satisfy the stringent quality requirements of production in a single
to few character setting. The second drawback is that even if they do gener-
alize across characters, SOTA techniques [Moser et al., 2021][Kim et al., 2021]
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resort to predicting linear morphable model parameters, resulting in a lack
of realism in the retargeted result. Finally, they also offer limited room for
artistic intervention.

Offline Performance Retargeting

Most closely related to our work are methods in offline performance retar-
geting. Blendshape rigs [Lewis et al., 2014] are an industry wide standard
for facial animation. By adjusting the coefficients or blendshape weights of
the rig, an artist can intuitively produce a desired expression in a character.
In the context of performance retargeting, the coefficients of a source rig are
estimated and transferred to the target rig. One such pipeline for estimat-
ing blendshape coefficients from a video and applying them to the target is
described in [Chuang and Bregler, 2002]. Although blendshape rigs are intu-
itive and fast, production rigs with hundreds of shapes are time-consuming
to create. Hence researchers have also explored techniques to create charac-
ter rigs starting from a small subset of shapes [Li et al., 2010], and to max-
imize rig expressiveness using as few shapes as possible [Carrigan et al.,
2020]. Despite their popularity, blendshape rigs have limited expressivity
due to their linear nature. To produce subtle nonlinear face deformations,
artists are often forced to sculpt hundreds of shapes and keyframe animate
their coefficients, making facial animation a massive time-sink in production
[Seol et al., 2011]. To address some short comings of such rigs, researchers
have proposed several incremental improvements. These include rig aug-
mentation [Kim et al., 2011], coefficient remapping [Song et al., 2011], rigs
with skinned bones and corrective shapes [Li et al., 2017b], and range of mo-
tion calibration between the source and target rigs [Ribera et al., 2017]. To
reduce the time taken by artists in keyframing, Seol et al.[Seol et al., 2011]
propose optimizations to a typical workflow to increase artist satisfaction.

Another popular technique for 3D retargeting is deformation Transfer [Sum-
ner and Popović, 2004]. Given a source shape in a rest and deformed pose,
deformation transfer computes the relative local deformations of triangles
in the source and transfers them to a target shape in the rest pose. While ex-
tremely efficient, and capable of producing plausible retargets, deformation
transfer suffers from the drawback of transferring the smallest wrinkles from
the source to the target, resulting in the transfer of high frequency details
that may not match the target character. Furthermore, naı̈ve deformation
transfer is often artifact prone, leading to self intersections in the geometry
and requires additional regularization [Saito, 2013]. A simple work-around
to alleviate some of the geometric artifacts of deformation transfer while re-
taining similar properties is simply to perform a per-vertex delta transfer,
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where the 3D displacements from deformed to rest pose of the source mesh
are blindly copied to the target rest mesh, creating the effect of retargeting.
While simplistic in theory, this approach has also been used in practice, but
also suffers from the drawback of transferring high frequency details from
source to target.

Expression cloning [Noh and Neumann, 2001] is another technique involv-
ing the transfer of expressions using known correspondences of a sparse
set of points between the source and the target. Such techniques have been
extended to automatically compute mappings between the source and the
target [Dutreve et al., 2008][Bouaziz and Pauly, 2014] and to consider addi-
tional constraints such as contours [Bhat et al., 2013]. Space time expression
cloning [Seol et al., 2012] approaches retargeting by assuming that the source
and target trajectories must be similar and formulates retargeting by inter-
preting facial movement as the derivative of position and by constraining
the derivative with poisson boundary conditions. Decomposing a facial ex-
pression into large and fine scale deformations and transfer them in a single
optimization was proposed by Xu et al. [Xu et al., 2014]. A notion of locality
in face retargeting was introduced by Liu et al. [Liu et al., 2011] where the
face is automatically segmented into multiple regions and has been used to
retarget performances from mo-cap markers.

In summary, while the problem of facial performance retargeting has been
studied for over a decade, current methods are either not suited for high
quality human-to-human retargeting for visual effects, or those that are
suited, such as blendshape animation and deformation/delta transfer have
several drawbacks. We present the first method that does not have a large
setup burden and is not prone to geometric artifacts, producing high-fidelity
facial performance retargeting suitable for production. We will provide de-
tailed comparisons of our method to the common approaches of blendshape
retargeting, deformation transfer and delta transfer, highlighting the supe-
rior performance of our approach.

4.2.3 Local Anatomical Retargeting

We now describe our method for local anatomical facial retargeting. Given
a single frame from the source character performance, our goal is to transfer
the expression of the source character faithfully to the target character, while
preserving the identity and nuances of the target character. We approach
this retargeting problem in steps. In the first step, we tackle the retargeting
task locally by breaking down a source face into a number of patches and es-
timating their deformations. These per-patch deformations are transferred
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Figure 4.2: Our method approximates a given source shape (a), with a collection of patch
blendweights (b). These optimized patch blendweights are then transfered to
the target model to perform an initial patch-wise retarget of the source shape
(c). The result is further processed by an anatomical model to produce the
final retargeted shape in high-fidelity (d).

over to the target character (Section 4.2.3) to yield an initial approximation
of the retargeted shape. Then, since such a local transfer of deformations can
yield inaccurate global face shapes, we perform a second step wherein we
fit a character specific anatomical face model to the initial retargeted result,
yielding a high fidelity target character shape (Section 4.2.3). The steps of
our method are illustrated in Fig. 4.2. As our method is directly aimed for a
workflow in film production, it also offers artists with several semantically
meaningful knobs that they can use to achieve the final look for the retar-
geted character. Our method operates on a frame-level, and can be trivially
parallelized over the whole sequence and is naturally suited for both single
shot expression transfer and performance retargeting. Before we explain the
details, we first describe a one-time model setup procedure that is needed to
build the local and anatomical face models for the two steps of our method
(Section 4.2.3).

Model Setup

In order to retarget performances from a source character to a target charac-
ter, we require a small number of N 3D facial shapes for each character in
semantic correspondence, similar to blendshape-based retargeting methods.
In contrast to such methods, we require many fewer shapes (eg. all results
in this paper are generated with N = 20 or fewer input shapes per charac-
ter) to produce a high fidelity result. These face shapes can be sculpted by
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artists or scanned using multiview capture setups [Beeler et al., 2011][Fyffe
et al., 2015]. Alternatively these shapes can also be created efficiently using
automated techniques for rig creation [Li et al., 2010][Carrigan et al., 2020].
Let S be the set of source shapes, and T be the set of target shapes, such
that Si portrays the same expression as Ti. Without loss of generality, let
S0 and T0 be the neutral expressions. The sets S and T should be defined
as triangle meshes at the origin of a common canonical coordinate frame.
Fig. 4.3 illustrates a subset of the input shapes used in this paper, however
other shape combinations would also be possible (see Section 4.2.4). In prac-
tice, good example shapes to use include extreme expressions like stretching
the face wide open, compressing it tightly, smile, puffing air into the cheeks,
mouth funneler (e.g. making a shhh sound), kiss, eyebrows up and down,
and asymmetrical mouth and jaw movements both left and right.

Figure 4.3: The local patch layout we use (left), and a subset of the input shapes (right)
required for an exemplar source (top) and target (bottom) character.

Patch Blendshape Models. As our method operates at a local level, we
divide S and T into a number of small spatial patches with overlapping
boundaries. An example patch layout is shown in Fig. 4.3 (left), showing
the patches without overlapping boundaries for better visualization. The
exact size and distribution of the patches does not greatly affect the retarget-
ing results, and we refer to Section 4.2.4 for an evaluation of different patch
layouts and varying amounts of overlap. Note that the source and target
meshes do not need to share the same topology, however we require a con-
sistent mapping between the patches of the source and target models. This is
easily achieved if the meshes do all share the same topology, or a UV layout.
In other scenarios, this mapping can also be manually specified by an artist.
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Formally, let P be the set of all patches and p ∈ P represent an individual
patch. All patches are modeled analogously in our work and we drop the
index of a patch in our equations for brevity. Then pS is the set of all local
shapes in S for patch p. Given this parameterization, one can define a local
patch blendshape model for the shape of the patch XSp as

XSp = pS0 +
N−1

∑
i=1

αp,i(pSi − pS0), (4.1)

where αp ∈ RN−1 are patch specific coefficients used to linearly blend the
patch blendshapes (defined as shape displacements between patch pSi and
the neutral patch pS0 ). In essence, a patch blendshape model is analogous
to a global blendshape rig, except that each patch has it own set of blend-
ing coefficients, thereby leading to a model with greater expressiveness and
more degrees of freedom. As the source and target shapes are in semantic
correspondence and share the same patch layout, we can similarly define

XTp = pT0 +
N−1

∑
i=1

αp,i(pTi − pT0), (4.2)

for the target shapes. The patch blendshape models will be used in the first
step of retargeting, described in Section 4.2.3.

Anatomical Local Face Model. In order to obtain high fidelity shapes for
the target character face, we extend the Anatomical Local Model (ALM) pro-
posed by Wu et al. [Wu et al., 2016b], which was designed for monocular face
capture. A brief overview of the model is given below, however we refer to
the original work for a more detailed description of the construction of the
ALM model. In Section 4.2.3, we describe our novel use of the model for
facial retargeting.

An anatomical local model is a character specific model that is built using a
set of shapes of a given character. In contrast to blendshape rigs, the ALM
model is a local model and is capable of modeling both skin deformations
and the interaction of the skin (sliding, folding etc) with the underlying bone
structure. Thus the ALM model benefits from locally deforming skin patches
while preserving global consistency across these patches through anatomi-
cal constraints. Specifically, skin deformation is defined at a patch level, and
complete face shapes are parameterized by two main components. The first
is a set of patch deformation coefficients that define local patch stretching,
bending and general non-rigid deformation in-place (devoid of rigid mo-
tion). The second is a set of rigid transformations for each patch. Together,
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these parameters combine to represent character specific facial expressions.
Wu et al. [Wu et al., 2016b] propose a method to solve for these parameters to
match a data term (e.g. monocular video) while respecting character specific
anatomical constraints, that come in the form of skin thickness and sliding
constraints over the character’s rigid skull bone; the position of which is also
solved for at the same time. To describe the model formally, we will re-use
the same patch layout P as our patch blendshape models, although this is
not a requirement. Let Xp represent the shape of patch p as defined by the
ALM model as follows

Xp = Mp

(
Up +

K

∑
k=1

wp,kDp,k

)
, (4.3)

where Mp is the rigid motion of the patch, Up is the average patch shape over
all K input shapes, and Dp,k is the deformation subspace with corresponding
weights wp,k. In practice, we use the same N input shapes from the target
character patch blendshape models to create the target ALM model (thus
K = N), although this is not a requirement. An important distinction be-
tween the ALM model and the patch blendshape models is that the ALM
model removes rigid motion from the patch shapes, such that the Dp,k sub-
space models pure nonrigid deformation, while the rigid motion of the patch
is included in the patch blend shape model. The reason for this difference
will be made apparent in Section 4.2.3. As mentioned, the ALM model also
consists of an anatomical subspace which is used to constrain the parame-
ters of Eq. 4.3. These anatomical constraints relate a skin vertex ν to a point
on the underlying bone bν, with a skin thickness constraint dν, along normal
direction nν. More formally, these constraints are defined as follows

b̃ν = b0
ν +

K

∑
k=1

wp,k(bk
ν − b0

ν), (4.4)

ñν
∼= n0

ν +
K

∑
k=1

wp,k(nk
ν − n0

ν), (4.5)

dν = d0
ν +

K

∑
k=1

wp,k(dk
ν − d0

ν). (4.6)

In the equations above, indices p, k continue to refer to the patch and shape
indices respectively, and nν is the normal at vertex ν and each estimated
component (bone point b̃ν, normal ñν and skin thickness dν) are defined in
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corresponding subspaces to the patch deformation subspace (Eq. 4.3) such
that the subspace weights wp,k semantically correspond. As such, Eq. 4.4
defines a bone subspace, which supports the sliding of skin over the bone
when certain shape weights wp,k are activated. Similarly, Eq. 4.5 and Eq. 4.6
are skin normal and thickness subspaces, respectively. Solving for an ALM
face pose generally means to solve for Mp and the set of {wp,k} for each patch
p and then cleverly stitch the patches together. Again, please refer to Wu et
al. [Wu et al., 2016b] for more details. Note that in our work, the ALM model
is created only for the target character, as it will be used to anatomically con-
strain the retargeted performance (Section 4.2.3). We also only use anatom-
ical constraints derived from the skull bone, which can be automatically fit
to the target character using the method of Beeler and Bradley [Beeler and
Bradley, 2014] with minimal overhead. Again, please refer to Wu et al. [Wu
et al., 2016b] for more details.

Patch-wise Retargeting

We now describe how we use the patch blendshape models defined in Sec-
tion 4.2.3 to obtain an initial estimate of the retargeted performance from a
source to a target character. We assume we are given patch blendshape mod-
els corresponding to both characters, and that we will process the frames
of the source performance individually. Let us denote the current source
performance shape that is to be retargeted as XS′ . At a high level, we ap-
proach the problem by estimating the coefficients α of all the patches of the
source model (Eq. 4.1) that can accurately describe the local skin deforma-
tions required to match the shape XS′ . We then transfer these coefficients
to the target model (Eq. 4.2) to obtain an estimate of the retargeted expres-
sion. During this process, we will add several methods to artistically control
the result. The resulting per-patch deformations of the target model will be
passed on to the final step in Section 4.2.3.

To solve for the coefficients α that best fit the source patch blendshape model
to XS′ we employ a least squares optimization, defined by the following fit-
ting energy

EFit = ∑
p∈P

(XS′
p − RXSp ). (4.7)

Here, XSp is the source model defined in Eq. 4.1, and R is a global rigid trans-
formation for the entire model. We include this transformation to accommo-
date a practcal scenario where the shape XS′ may come from a facial perfor-
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mance capture system and may not lie at the canonical origin. While meth-
ods for removing rigid head motion from performances do exist [Beeler and
Bradley, 2014], these techniques are not perfect and there is often some resid-
ual rigid motion remaining, which we account for by optimizing R along
with the shape coefficients α.

Since blindly optimizing for patch coefficients αp is an under-constrained
problem, we further regularize the patch coefficients to remain close to zero
as

EReg = ∑
p∈P

N−1

∑
i=0

(αp,i)
2, (4.8)

and to stay consistent across adjacent patches with an overlap energy, de-
fined as

EO = ∑
p∈P

∑
q∈N (p)

N−1

∑
i=0

(αp,i − αq,i), (4.9)

where N (p) defines the patches neighboring p. The final energy for fitting
our patch blendshape model to a source shape XS′ is the weighted sum of
these energies,

EPBS = λFitEFit + λRegEReg + λOEO. (4.10)

The result of fitting the patch-wise blendshapes to a source performance
shape is illustrated in Fig. 4.2 (a) and (b). An important distinction of our
patch-wise retargeting model in comparison to the ALM model is the pres-
ence of rigid motion in our patch blendshapes. As an ALM model optimiza-
tion solves for both per-patch rigid transformations and deformation coeffi-
cients, a least squares solver prefers to explain as much of skin deformation
as possible using the rigid transform and only dials in the patch coefficients
when necessary. While this property may be beneficial in the context of face
tracking, it extends poorly to retargeting, as transferring rigid transforma-
tions of source patches to the target is undesirable due to differences in scale
and range of motions between the two characters. Therefore, by not separat-
ing the rigid motion from the blendshapes in the patch-wise retargeting step,
we expect the patch coefficients to explain all of the skin deformation, which
translates into better, more character-specific expression transfer during re-
targeting. In Section 4.2.4 we will show a visual comparison of transferring
ALM coefficients (rigid transform + patch coefficients) from the source to the
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target character vs. our local transfer, where our method clearly outperforms
the ALM transfer (refer to Fig. 4.16).

Artistic Control. In practice, we found that it is beneficial to allow some
level of artistic control over the patch fitting process. For example, even sim-
ply increasing or decreasing the “strength” of the retargeting can be power-
ful, which is easily accomplished by post-multiplying the resulting α coef-
ficients by a user-defined scalar value. Importantly, as our method is local,
we can support a spatially-varying strength control parameter, where the
retarget strength of each local patch can be individually specified (typically
accomplished through a texture map lookup). An additional way to add
user control is to allow artists to provide blendshape preferences, with a
per-shape preference weight γi, where 0 ≤ i ≤ N − 1 and 0 ≤ γi ≤ 1. By
default, γi = 1 for all i, but this preference parameter allows to penalize
the use of certain shapes by setting the corresponding γi to a value below 1,
or favor a shape by setting all other shape values to less than 1. Again, in
practice we can even allow spatially-varying shape preferences, different for
each patch p, and thus the preference weight is formally defined as γp,i. To
incorporate the shape preferences in our optimization, we modify the source
model from Eq. 4.1 to be

XSp = pS0 +
N−1

∑
i=1

αp,i · γp,i(pSi − pS0), (4.11)

effectively scaling the blendshapes by the user preference values. This has
the effect that when a user preference is less than 1, the corresponding blend-
shape is scaled closer to the neutral shape, and the system must use a higher
corresponding αp,i, contradicting Eq. 4.8, and so if possible a different combi-
nation of shapes to achieve the same goal will be chosen by the optimization
instead. In the end, we transfer the weighted shape coefficients αp,i · γp,i to
the target blendshape model to account for the scaling during optimization.

The result of the patch-wise retargeting is a set of deformed target patch
shapes XT′

p for all p, which approximate the desired target shape correspond-
ing to the source input shape (Fig. 4.2 (c)). For all experiments reported in
this paper, unless explicitly mentioned, we set λFit to 1, λO to 100 and λReg
to 35.

Anatomical Reconstruction

In the previous section we described the main retargeting procedure, which
transfers per-patch deformations from the source to the target character.
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Now, the goal is to convert the patch-wise retargets into a globally consistent
target face shape (Fig. 4.2 (d)). Even though we aim to obtain spatial consis-
tency in the per-patch deformations (via the overlap regularizer in Eq. 4.9),
there will inevitably be discontinuities at the patch boundaries. For this rea-
son, we employ the character specific ALM model of Wu et al. [Wu et al.,
2016b] described in Section 4.2.3 to provide the final target shape.

Following Wu et al. [Wu et al., 2016b], this is achieved by solving for the
model parameters Mp and {wp,k} in Eq. 4.3 in another optimization. Con-
trary to Wu et al. [Wu et al., 2016b], who formulate the optimization to match
a data term coming from monocular video, we instead formulate a new data
term from the patch-wise retargets, formulated in 3D space. Specifically, we
create an alternate data term as

ED = λD ∑
v∈V

∑
p∈P(v)

(Xp(v)− XT′
p (v)), (4.12)

where V is the set of all vertices in the target character mesh, P(v) denotes
all patches that contain vertex v, Xp(v) is the ALM model (Eq. 4.3) evalu-
ated at v, and XT′

p (v) are the retargeted patch shapes evaluated at v. Using
this new data term in the model fitting procedure of Wu et al. [Wu et al.,
2016b] (combined with their standard anatomical and overlap constraints),
we obtain the final retargeted shape, as illustrated in Fig. 4.2 (d). Note that
we do not solve for the skull position in the ALM model, but instead fix it in
space since we wish to perform the retargeting in a canonical space. While
estimating the parameters of the ALM model, we set λD to 10, the weight
for the anatomical constraint from Wu et al. [Wu et al., 2016b] λA1 to 10 and
their overlapping constraint weight λO to 0.85.

4.2.4 Results and Evaluation

We now present the results of our facial retargeting method and compare
it to alternatives. The dataset we use for evaluation consists of several per-
formance sequences of different actors captured using a production capture
system2 based on Wu et al. [Wu et al., 2016b], plus a single hand-crafted
fantasy creature.

2https://studios.disneyresearch.com/anyma/
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Qualitative Results

We start by showcasing several qualitative examples of our local, anatomi-
cally constrained retargeting technique in Fig. 4.1 and Fig. 4.4. Our method
is successfully able to retarget a wide variety of facial performances, ranging
from dialogues, emotions, and facial workouts from a variety of source char-
acters to a range of target characters. Each result captures the subtle facial
deformations of the source character, without altering the target’s identity.
As such, our method can be an invaluable tool for facial animation and re-
targeting in visual effects and high-end applications. We further highlight
the flexibility of our method by retargeting performances from human char-
acters to a target fantasy creature in Fig. 4.5, which is achieved with the same
algorithm and no additional parameter tuning. We kindly refer you to our
supplemental video for more results.

Comparisons with Existing Techniques

We now compare the performance of our approach with that of common
methods used in the industry today. Specifically, we will compare to
global blendshape-based retargeting [Lewis et al., 2014], deformation trans-
fer [Sumner and Popović, 2004] and simple delta transfer, as described in
Section 4.2.2. For the global blendshape model, we use the same 20 shapes
as our approach for a fair comparison (later we will also compare to a large
236-shape blendshape rig similar to what is used in production settings).

A qualitative comparison is provided in Fig. 4.7, where four different source
expressions are transferred to four different target characters, using each of
the methods. Both deformation transfer and delta transfer tend to generate
unrealistic shapes in the eyes and mouth regions, especially when the target
character is more dissimilar in shape from the source character. Both meth-
ods also incorrectly transfer the wrinkle details from the source character
to the target (e.g. the forehead in row 2). As well, sometimes deformation
transfer suffers from geometric artifacts (e.g. the eye region in rows 1 and 4).
The 20-shape global blendshape model does not have enough expressive-
ness to reach the necessary facial deformations, resulting in the loss of the
intended expression as seen by the closing eyes in row 1, and the changed
mouth expression in row 4. The supplemental video shows that the global
blendshape model also has problems with temporal stability. In contrast,
our method produces expressive, stable and artifact-free retargets.

We also provide a quantitative evaluation of the methods. This is achieved
by leaving out 4 of the 20 shapes and building retargeting models from the
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Figure 4.4: Several examples of high quality facial performance retargeting obtained by
our method. Each row corresponds to a unique source performance and each
column is a unique target character. Our method is consistently able to
output convincing performances with a high degree of realism while staying
faithful to the target character’s facial anatomy.
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Figure 4.5: We highlight the flexibility of our method by retargeting performances from
several human characters to a fantasy creature.

16 remaining shapes, and then evaluating the retargeted result on the 4 val-
idation shapes. Results are shown in Fig. 4.8. Starting with an open mouth
expression (rows 1 and 2), we retarget from two different source characters
to the same target character. In the ideal case, the resulting target shape
would be the same, independent of the source character. Notice the large dif-
ferences in the result for the deformation and delta transfer methods. Also,
evaluating the per-vertex error with respect to the held out ground truth
shape via the heat map shows that our method achieve the most accurate
results. Row 3 of Fig. 4.8 adds a second held-out expression, retargeted from
the same source character as row 2, and again our method produces the most
accurate result.

As a final comparison, we demonstrate that our method can achieve quality
on par with large-scale blendshape rigs often used in production, but with
far fewer input shapes. To this end, we employed a publicly-available model
containing 236 shapes3, which we mapped to our own characters for com-
parison. Fig. 4.6 shows retargeting results for two different source-target
pairs, on different expressions. Visually, the results using the larger blend-
shape rig are naturally more appealing than the 20-shape rig, and our re-
sults are comparable to the production rig results while using only 20 input
shapes.

User study

In order to further compare our approach with common methods used in
practice, we performed a user study to gain insight into the best retargeting

3www.eisko.com/louise/virtual-model
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Figure 4.6: Our results (using only 20 input shapes) are comparable to large-scale pro-
duction blendshape rigs containing hundreds of shapes. The 20-shape global
blendshape result is included for comparison.

method and the approach that generates the most realistic facial animation
overall. The study consisted of several examples of 3D human source char-
acters being retargeted to 3D human target characters. We simultaneously
showed participants the results of our method, 20-shape global blendshape
retargeting, deformation transfer and delta transfer. As we will illustrate in
this section, our proposed technique clearly outperforms the others both in
terms of retargeting accuracy and animation realism.

We performed the study on both static expression retargets as well as dy-
namic retargeted performances. The static expressions allowed users to take
their time and analyze nuances in the resulting shapes, while the perfor-
mance animations provided a more holistic view of the retargeting quality.
10 different source/target retargeting examples were shown for each of the
individual expressions and performance animations, spanning 5 different
source characters and 6 additional target characters (source characters were

113



Facial Performance Synthesis

Figure 4.7: We present qualitative comparisons of the proposed method against com-
monly used facial retargeting techniques in production. The source subject
is shown in the first column and the retargeted expression for a unique tar-
get character is shown in each row. Our method clearly produces the most
expressive, yet artifact free retargeting in all cases. Kindly refer to our sup-
plemental video for additional comparisons.
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Figure 4.8: Quantitative Comparison of the proposed method against common ap-
proaches, achieved by leaving a subset of shapes out of the models for val-
idation. Rows 1 and 2 show one of the held-out expressions retargeted from
two different source characters to the same target character. Row 3 adds a
new held-out expression from the same source character as row 2.

never used as target characters and vice-versa). The performances ranged
from dialog speech to fast facial expression transitions.

An example frame from the user study is shown in Fig. 4.9. For the static
expressions, the users were asked: Which of the Target expressions (A,B,C, or
D in blue) is the best retargeting of the Source expression (in blue) to the Target
identity? Please refer to example expressions of the Target in gray, to help under-
stand their identity. To help the users understand the identity and expres-
sions of the target character, six ground truth expressions were shown at the
bottom of the screen (in gray). The order of the four results was random-
ized for each example. The dynamic performances were presented in the
same manner, and the users were asked two questions, Which of the Target
performances (A,B,C, or D in blue) is the best retargeting of the Source perfor-
mance (in blue) to the Target identity? Please refer to example expressions of the
Target in gray, to help understand their identity, and as well: Which Target per-
formance looks overall the most realistic? Participants were allowed to choose
more than one answer if they could not decide. 45 participants from various
backgrounds took part in the survey (45% were not familiar with computer
graphics, 44% were experienced in graphics but not in retargeting methods,
and 11% were familiar with retargeting). The results of the user study are il-
lustrated in Fig. 4.10 and Table 4.1. Fig. 4.10 tallies the total number of votes
for each method over all 10 static examples and all 10 animations, separated

115



Facial Performance Synthesis

Figure 4.9: Example frame from the user study, showing the source expression and re-
sulting target expressions from the different methods (top in blue) as well as
example real target expressions for guidance (bottom in gray).

Table 4.1: Number of retargeting examples where the method was chosen as top perform-
ing (out of 10). Note that ties are counted twice.

Method Expressions Animations Animations
(best retarget) (best retarget) (most real)

Global Blendshapes 1 0 0
Deformation Transfer 1 1 1
Delta Transfer 1 1 2
Ours 7 9 8

by question. As can be clearly seen, our method (blue) was the most popu-
lar choice for all categories. Table 4.1 additionally shows the sum over the
set of retargeting examples where each method was the chosen winner, per
question. Again, the proposed technique was clearly a favorite, indepen-
dent of the source/target character pair, independent of static expressions
versus dynamic performances, and across all questions. Interestingly, the
users were able to identify that global blendshape retargeting (with so few
shapes) is unsuitable for high quality animations, as this method was least
preferred. Deformation transfer and delta transfer showed a similar perfor-
mance, likely owing to their similar algorithmic nature.
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Figure 4.10: We performed a user study to compare our method (blue) with global blend-
shape retargeting (red), deformation transfer (yellow) and delta transfer
(green), on both individual expression transfers (left) and animated perfor-
mance retargets (right) of multiple source and target pairs.

Ablation Studies and Evaluations

We now show the effects when varying certain parameters of our method,
starting with its dependence on the patch layout. Fig. 4.11 shows the ef-
fects of varying both the number and the layout of the patches. For this
experiment, we held out a subset of validation shapes from both the source
and target models, and compared the reconstruction accuracy for one of the
held-out shapes under different configurations. As indicated by the error
maps, accuracy decreases when there are too few patches (last two layouts),
but for a sufficient density of patches the exact layout has little effect (first
two layouts). All our results are created with the first layout.

A second parameter that is user-controllable is the amount of overlap be-
tween patches, defined by the number of closed vertex rings in the mesh
connectivity. Fig. 4.12 illustrates the effect of different overlap values during
retargeting. The quality of the patch retargeting step is severely degraded
with too little overlap, while too much overlap it results in over-smoothed
shapes. In all our results, we use 6 overlap rings. Furthermore, the weight
for the overlap consistency term λO in Eq. 4.10 also has an effect on the re-
sults, as we illustrate in Fig. 4.13. The first row shows the patch fit results to
a source shape with corresponding error maps for λO values of 0, 25, 100 and
500. Rows two and three illustrate retargeting results to two different char-
acters using local blendshape transfer only (without the anatomical recon-
struction step). When the overlap weight is very small, individual patches
fit the source shape better (lower errors) but the patches are extremely dis-

117



Facial Performance Synthesis

Figure 4.11: Here we compare different number and layout of local patches for our
method on a left out shape. As indicated by the error maps, accuracy suf-
fers when there are too few patches (last two layouts), but for a sufficient
density of patches the exact layout has little effect (first two layouts).

connected. When the overlap weight is very high, the local patches align
almost perfectly, but at the cost of losing expression fidelity to the source
shape. A good tradeoff is found around λO = 100; the value we use for all
of our results.

Our local model for retargeting is naturally more expressive than a global
blendshape rig, given the same number of input shapes. In Fig. 4.14, we
show the accuracy of reconstructing a source shape using a global blend-
shape model in comparison to our local model while varying the number
of shapes in the models. The ground truth that is being evaluated was left
out of both models. As can be seen in the heatmaps and in the accompany-
ing plot, our method with only as few as 7 shapes still significantly outper-
forms a traditional blendshape rig with as many as 19 shapes. Continuing
the evaluation of input shape cardinality, Fig. 4.15 illustrates how our retar-
geting pipeline degrades with fewer and fewer input shapes in the patch
models. As shown, reducing from 20 to 15 shapes introduces only a small
error, which becomes increasingly larger with fewer shapes. For this experi-
ment, we progressively removed shapes so as to keep the most overall facial
deformation within the given shape budget.

We also evaluate our decision to embed the rigid motion of the patches into
the blendshapes, in contrast to separating the rigid and non-rigid compo-
nents as Wu et al. [Wu et al., 2016b]. As described in Section 4.2.3, separat-
ing the rigid motion is undesirable due to differences in scale and range of
motions between characters. Fig. 4.16 illustrates this issue on a retargeted
character obtained in two different ways, one where the rigid motion is sep-
arated from the blendshapes and ours, which leads to fewer artifacts.
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Figure 4.12: The amount of overlap between the local patches (in vertex rings) affects
the quality of the retarget. Too little overlap results in larger discontinuities
between patches, and too much overlap results in oversmooth retargets. We
use 6 overlap rings.

Run time analysis

Our two step retargeting technique takes 1 min per frame in total on a stan-
dard desktop CPU with an Intel(R) Core(TM) i7-7700K processor and 32GB
of RAM. This run time was measured while using 20 blendshapes, and 400
patches, with each shape having 95,000 vertices. A bulk of this time (almost
90%) is spent in optimizing the ALM model [Wu et al., 2016b] for anatomical
reconstruction, where modern GPU solvers [Fratarcangeli et al., 2020] could
offer substantial speed ups. Our method is trivially parallelizable across
frames and works seamlessly on performance data without temporal regu-
larization. All results in our paper were produced using a CPU based non-
linear least squares solver [Agarwal et al., 2010].

Artistic Manipulation

In addition to providing high fidelty results, our method allows a certain
amount of artistic control. We first demonstrate the user-definable retarget-
ing strength map, which is a spatially-varying scalar value that increases or
decreases the expressiveness of the retarget. Fig. 4.17 illustrates using this
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Figure 4.13: The patch overlap weight λO affects the quality of the retarget. Too small
and the patches are very disconnected. Too large and the desired source
expression is compromised. We use λO = 100.

Figure 4.14: We show the effect of varying the number of input shapes with our approach
vs. a standard global blendshape rig on a source shape reconstruction task.
Our model achieves a lower reconstruction error with only 7 shapes than
what global blendshapes achieves with 19 shapes.
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Figure 4.15: We show a retargeting result using models with varying input shapes,
starting from our usual 20 shapes down to 15, 10 and 5 (top row). The
error as compared to the 20-shape result (bottom row) indicates that the
quality of the retarget degrades naturally with fewer input shapes.

strength map in extreme situations, like retargeting to only parts of the face
as well as exaggerating the result with a strength of 1.5.

Additionally, although our model makes use of only a handful of shapes for
retargeting, it can certainly leverage additional blendshapes when being in-
corporated into an existing workflow. When extra corresponding shapes
between the source and target characters are available (we refer to these
as calibration shapes), instead of naively including them into the model,
which might further underconstrain the retarget and increase solve times,
we propose a simple calibration step that optimizes for a spatially varying
weight map (akin to the retargeting strength map defined above), given a
source and target model. For each source calibration shape, when we fit
the source model to obtain a collection of patch coefficients α which when
transfered over to the target model, should ideally produce the correspond-
ing target calibration shape. Based on this insight, we optimize for a per-
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Figure 4.16: Separating the rigid motion from the local blendshapes leads to artifacts
during retargeting (center), compared to our approach of embedding the
rigid motion into the patch blendshapes (right).

patch retargeting strength scalar that re-weights the patch coefficients in a
spatially varying manner, such that the difference between the transferred
target shape and the true target calibration shape is minimized. Once such
a map is optimized for, it essentially remaps the patch coefficients during
subsequent retargeting, to respect the target manifold better. In Fig. 4.18,
we show the spatially varying retarget strength map resulting from such a
calibration, between a source character (left) and two target characters (right
half, first and second row). The spatially varying weight map is applied be-
fore subsequent retargeting analogous to the weightmap applied in Fig. 4.17.
The calibration step can introduce subtle variations in the retargeted perfor-
mance as visualized in the heatmap in Fig. 4.18. The optimized weight map
can also serve as a starting point for artists to achieve interesting retargeting
effects.

Limitations

While our method only requires a small number of shapes for each char-
acter, we do require that these shapes are in semantic correspondence and
creating such shapes through capture or sculpting requires time and effort
from artists. This is a problem that we do not address in this work and be-
lieve that techniques like Li et al. [Li et al., 2010] can mitigate to a certain
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Figure 4.17: A retargeting strength map (top) can be painted to spatially control the
retargeting result (bottom). For columns 4 and 5, the patch blendweights
are amplified by a factor of 1.5 in the masked regions.

extent. In the absence of a shared topology, a predefined mapping between
the source and target patches needs to also be provided. Finally, though our
method provides several ways for artists to intuitively control the retargeted
result, these edits (Fig. 4.12, Fig. 4.17) require re-solving the entire sequence.

4.2.5 Summary

In conclusion, we present a local anatomically constrained method for high
fidelity facial performance retargeting that is ready for use in demanding
production pipelines. Our offline algorithm leverages the expressive power
of local blendshape rigs to obtain an initial estimate of the retargeted perfor-
mance. Then in a second step, an anatomical model built using the target
character’s facial geometry is used to constrain the retargeted performance
to an anatomically plausible subspace. The result is a powerful method that
can perform highly realistic retargeting given only a handful of shapes in
correspondence (20 shapes) when compared to full blown production rigs
with hundreds of shapes. Our method additionally allows artists to control
several aspects of the retargeted performance in order to achieve the perfect
look for their animation. We demonstrate several benefits of our method
with a detailed user study. Future work could potentially investigate mit-

123



Facial Performance Synthesis

Figure 4.18: We show the effect of calibrating a weight map between a source character
(left) and two target characters (two rows on the right)

igating the requirement of having source and target patch layouts to be in
correspondence, and pave way for similar techniques to be used in human-
to-creature retargeting too. We hope that our new tool benefits animators
that spend innumerable hours in producing a realistic facial animation.

4.3 Facial Animation with Disentangled Identity and Motion
using Transformers

4.3.1 Introduction

In the past several years, we have witnessed a steady increase of data-driven
algorithms for 3D human motion modeling. Examples include deep neural
networks for solving problems like facial performance capture from monoc-
ular video [Feng et al., 2021], dynamic hand tracking [Boukhayma et al.,
2019], and full body motion reconstruction [Zheng et al., 2019]. The common
thread among all data-driven methods is the need for high-quality training
data. When it comes to modeling the non-rigid motion of 3D shapes in fa-
cial performances, training data can be difficult to acquire, often involving
synchronized multi-camera setups, scheduling of human performers, and
then time-consuming reconstruction techniques and quality checks. As a re-
sult, today’s methods for data-driven facial performance applications often
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Subject 1

Frames

Subject 2

Subject 3
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Figure 4.19: We extend 3D morphable models to include the time dimension, with a
novel transformer network that can synthesize and analyze 3D geometry
sequences of arbitrary length. Our method disentangles facial identity from
motion, allowing one to generate arbitrary animations for different sub-
ject identities. Each row above corresponds to a unique identity and the
columns correspond to frames from a randomly sampled animation from
the learned motion manifold of our performance transformer.

require strategies for dealing with the “small sample size problem”, such as
augmenting the dataset with synthetic examples.

When it comes to synthetic human modeling, recent generative neural net-
works have excelled at synthesizing images depicting realistic full-head por-
traits of people in static poses (e.g., StyleGAN [Karras et al., 2019] and its
variants). But these methods are not yet able to synthesize dynamic faces
with realistic non-rigid motion, as seen in a real facial performance. In terms
of three-dimensional representations, morphable 3D face models [Blanz and
Vetter, 1999] can be readily and easily sampled to synthesize novel identities
and poses. However, once again we face the challenge of synthesizing dy-
namic motion for the sampled 3D shapes. Motion synthesis, in particular for
3D shapes, is an area that is considerably less explored. A niche area that has
received some attention is the class of methods that can animate a 3D face
model from audio input [Karras et al., 2017a][Taylor et al., 2017][Richard et
al., 2021], but often using a model without proper motion priors. To date,
there is still no comprehensive framework for unconstrained dynamic mo-
tion synthesis that can output arbitrarily long 3D facial performances. In
the absence of such a framework, applications that require data augmenta-
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tion must settle for simpler solutions for sampling facial expressions, such
as random walks within the latent space of 3D models that lack temporal
coherence and realism. The result is unsatisfactory data and a large domain
gap for applications that target real human behavior.

In this work, we address the problem of realistically modeling and synthe-
sizing the non-rigid deformation of 3D faces, presenting a framework that
is directly applicable in several scenarios involving 3D facial performances.
Key to our approach is the disentanglement of the constant facial identity
component from the time-varying performance itself, given a sequence of
deforming 3D shapes. To this end, our method is inspired by (and extends)
the semantic model in [Chandran et al., 2020] that represents static faces in-
dividually, within an identity-agnostic expression latent space. Here, we further
consider the temporal dimension and propose a new model that can repre-
sent entire sequences of expressions in facial performances as points within
an identity-agnostic performance latent space. This new model is designed as
a transformer autoencoder, building upon transformer networks [Vaswani
et al., 2017] that are naturally suitable for operating on data sequences with
arbitrary length, such as facial performances in 3D animation. First, our
transformer-based encoder converts an input neutral 3D face and a tempo-
ral sequence of blendweight vectors into an identity code and a performance
code. Thanks to the transformer’s self-attention mechanism, our model can
automatically determine important temporal correlations between arbitrary
pairs of frames, in order to learn an identity-agnostic motion manifold. As a
result, we demonstrate how this model provides a means to synthesize new
performances that generalize over arbitrary identities and sequence lengths
(see Fig. 4.19). This is done using our new identity-modulated decoder,
which transforms the performance code into an output performance with
the desired identity and length. Our transformer autoencoder allows for
arbitrary-length inputs and outputs at both training and inference time, al-
lowing us to train on captured performances of any length. We train our
model on two distinct face datasets, and further illustrate its generalization
capabilities on a third dataset consisting of full 3D bodies.

While the main motivation for our work lies in facial animation and data
augmentation for deep learning, our method has potential value in other
fields as well. The ability to generate synthetic human motion can aid the en-
tertainment industry in synthesizing realistic performances of background
characters in films or video games. In the fast moving telepresence and
metaverse field, it may be useful to generate synthetic motion of personal
avatars or digital assistants. Our method can also be used for temporal data
processing, offering tools like compression, denoising, and temporal upsam-
pling. In the following, we also demonstrate applications such as perfor-
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mance synthesis, performance retargeting and retiming, key-frame interpo-
lation and completion of missing performance data.

4.3.2 Related Work

So far, most work on generating 3D shapes such as faces and bodies has
focused on modeling geometric variability over sets of individual shapes
without any notion of temporal ordering, e.g., [Ranjan et al., 2018b][Gecer et
al., 2019][Chandran et al., 2020][Abrevaya et al., 2019b][Li et al., 2020b][Jiang
et al., 2019]. We begin our review of related work starting with conventional
3D morphable models followed by their recent neural counterparts.

Linear Parametric Shape Models. Blend shapes [Lewis et al., 2014] are a
popular, artist-friendly representation for navigating the span of a specific
class of shapes. Blanz and Vetter [Blanz and Vetter, 1999] used principal
component analysis (PCA) and proposed a 3D morphable model (3DMM)
of human faces. Vlasic et al. [Vlasic et al., 2005] later proposed a global
multi-linear model that disentangles facial identity and expression, which
was extended by Wang et al. [Wang et al., 2020] to a local multilinear model
offering greater expressiveness. FLAME [Li et al., 2017a] is another practical
face model that incorporates skinning to articulate the jaw, neck and eye-
balls. Recently, Ploumpis et al. [Ploumpis et al., 2020] extended the human
head 3DMMs to also include parts other than the face like the cranium, ears,
eyes, teeth, and tongue. An excellent review of 3DMMs for human faces is
given in [Egger et al., 2020]. For human bodies, SMPL [Loper et al., 2015a]
is perhaps the most well-known, articulated linear model that has proven to
be immensely useful in several applications.

Deep Shape Models. While linear 3D shape models are easy to con-
trol, they are severely limited by their expressiveness. Nonlinear, varia-
tional autoencoders were successfully adopted for modeling human faces
and bodies [Bagautdinov et al., 2018][Tan et al., 2018]. Researchers work-
ing on neural geometry processing have also leveraged graph convolu-
tional networks [Ranjan et al., 2018b][Hanocka et al., 2019][Bouritsas et al.,
2019][Gong et al., 2019][Zhou et al., 2020b], as well as other network archi-
tectures used to model static 3D shapes such as point nets operating on point
clouds [Qi et al., 2017a][Qi et al., 2017b], Generative Adversarial Networks
(GANs) [Gecer et al., 2019][Abrevaya et al., 2019b], and recent diffusion-
based techniques [Sharp et al., 2022]. On witnessing the success of neu-
ral shape models, researchers have also attempted to semantically control
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them [Li et al., 2020b][Jiang et al., 2019][Chandran et al., 2020][Bailey et al.,
2020][Abrevaya et al., 2019b][Fernández Abrevaya et al., 2018]. In the con-
text of faces, by disentangling facial identity and expression, either in super-
vised [Li et al., 2020b][Chandran et al., 2020][Bailey et al., 2020] or unsuper-
vised fashion [Jiang et al., 2019][Abrevaya et al., 2019b][Fernández Abrevaya
et al., 2018], these powerful nonlinear models can be intuitively controlled
by a human artist. However, unlike our model, none of these linear or deep
shape models include a representation of temporal dynamics. As a result,
these techniques capture solely spatial shape correlations, but not tempo-
ral correlations. Simply traversing the parametric space induced by these
models does not generally provide sequences of 3D shapes showing realis-
tic temporal deformations.

Motion Modeling. To synthesize temporal sequences with facial perfor-
mances, previous works have explored the use of audio to drive a 3D face
[Karras et al., 2017a][Taylor et al., 2017]. While the method of [Karras et al.,
2017a] directly outputs a 3D mesh, the method of [Taylor et al., 2017] outputs
animation parameters that can be used to animate a generic face rig using
a static 3D morphable model. In modeling and learning the dynamics of
full human bodies, DYNA [Pons-Moll et al., 2015] extends the SMPL model
by modeling soft tissue dynamics with an auto-regressive model. SoftSMPL
[Santesteban et al., 2020] extends DYNA with an LSTM based architecture
to model secondary dynamics. By reasoning about the hierarchy of joints
in the human body [Aksan et al., 2019], researchers have also explored un-
constrained human body motion generation and key-frame inpainting with
recurrent models [Holden et al., 2020][Harvey et al., 2020][Martinez et al.,
2017], VAEs [Yan et al., 2018][Ling et al., 2020], transformers [Li et al., 2020a],
generative networks [Zhou et al., 2020a], and even normalizing flows [Hen-
ter et al., 2020]. Recently, Li et al. [Li et al., 2021a] proposed hierarchical
motion VAEs for learning a prior over human body movements. While their
work shares the spirit of learning a motion manifold with ours, they learn a
prior over fixed-length sequences and operate on a set human skeletal topol-
ogy. Likewise another 4D model specifically tied to the SMPL body model
[Jiang et al., 2022] uses gated recurrent units to model temporal dynamics of
human shapes. To our knowledge, no generic disentangled 4D morphable
shape model like ours exists for human faces.

Transformers in Shape Modeling. Transformers were originally intro-
duced in the context of natural language modelling [Vaswani et al., 2017].
Lin et al. [Lin et al., 2021a] use a vanilla transformer to reconstruct coarsely
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posed human bodies and hands from images, and a learnable MLP to up-
sample the meshes to full resolution. In a follow up work [Lin et al.,
2021b], the authors coupled their previous vanilla transformer with graph-
convolutional layers and showed better accuracy in body and hand recon-
struction. More recently, Chandran et al. [Chandran et al., 2022] also pro-
posed the use of a transformer architecture to capture spatial correlations
across vertices in static 3D shapes. In contrast, our work uses a transformer
architecture to learn temporal correlations over sequences of shapes. Trans-
formers for generating sequences of human bodies has also been recently
explored by Song et al. [Song et al., 2022] who concentrate on a multi-person
skeleton generation use case and by Hong et al. [Hong et al., 2022] for the
generation of human body animations from text input. The recent work by
Petrovich et al. [Petrovich et al., 2021] is closest in spirit to ours: it introduces
Actor, a transformer variational autoencoder for action-conditioned genera-
tion of human body poses. In contrast to their work, our model also serves
a 4D morphable model for shapes and as shown in Section 4.3.4, our net-
work design converges faster and provides more accurate reconstruction on
validation sequences, thanks to our novel performance encoder and styled
transformer decoder.

In summary, we believe our work presents the first 4D morphable model that
can represent rich, coherent human shapes, with a variety of applications, as
demonstrated in the following.

4.3.3 Disentangled Motion Model

In this section, we describe our transformer-based architecture that intro-
duces a notion of time into deep geometry models. Although we describe
the method in the context of facial performance, we also show in Sec-
tion 4.3.4 that our method can also be used to model dynamic motion of
other shapes as well, such as full human bodies.

Network Architecture

An overview of our network, a performance autoencoder for disentangled
motion modeling, is shown in Fig. 4.20. At a high level, the input to our
method is (i) a neutral 3D face shape with a particular identity, and (ii) a
sequence of blend weights that describe a facial performance. Note that,
by design, identity and performance are already disentangled on the input
side. The two inputs are separately fed into an identity shape encoder and
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Figure 4.20: Our disentangled motion model is designed as a transformer-based autoen-
coder and leverages self-attention to capture temporal correlations in se-
quences of vectors with blend shape weights. The two separate encoders
yield a pair of identity and performance codes (zid, zper f ), which the sin-
gle decoder transforms back into an output sequence of 3D shapes with the
desired identity and performance length.

a performance encoder, yielding an identity latent code, zid, and a perfor-
mance latent code, zper f . These two codes are then supplied to the single
decoder, which in turn reproduces the output performance with the chosen
facial identity.

While the encoders allow us to represent the identity and the overall per-
formance with a single pair of codes, the decoder allows us to regenerate
the performance with optionally different identity and temporal length. To
accomplish this decoding task, the output zid and zper f are first position-
encoded (for the desired output performance duration) and fed into the de-
coder, which has a transformer architecture with style-based modulation.
The decoder transforms the sequence of position-encoded inputs into an
output sequence of latent shape codes. Finally, this sequence of output codes
are individually passed through a shape decoder to produce the 3D shapes
for the output performance. All modules in our architecture are trained end-
to-end, in a fully supervised manner, by encoding and decoding the training
performances with the original (same) identity and temporal length.

Once trained, our model offers a disentangled latent space of facial identities
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and performances that can be freely combined to generate previously un-
seen, new outputs. When decoding a performance with a single 3D shape,
our model can behave as a conventional 3D morphable shape model. But
most important here is the added ability to model the dimension of motion
over time. Our 4-D morphable model can therefore serve as a powerful prior
for many applications in deformable shape modeling, as illustrated in Sec-
tion 4.3.4. Next, we discuss the various components of our network and
their designs in further detail.

Identity Shape Encoder Following Chandran et al. [Chandran et al.,
2020], we model our identity shape encoder as a simple multilayer percep-
tron (MLP) with 4 linear residual layers followed by GeLU activations. The
identity is provided as a neutral shape mesh (i.e., without expression) and
we subtract a canonical face shape (e.g., the mean of the dataset), in order to
obtain small per-vertex 3D displacements, which are flattened into an input
vector. The output of the shape encoder is a single 128-dimensional latent
vector which we refer to as the identity code zid. The identity code captures
the shape of the given subject in the neutral expression. It is important to
note that this shape encoder only ever receives neutral faces of subjects (with
different identities), helping us achieve explicit disentanglement between fa-
cial identities and expressions over time. In contrast, and as described next,
the performance encoder only receives subject-agnostic performance data
(codes describing generic expressions, such as blend shape weights). It is
the task of the transformer decoder to combine the information and model
the subject-specific expressions and motion of the face. While all results in
our paper use this simple MLP as the identity encoder, we evaluate different
architecture choices in our supplemental document.

Performance Encoder The goal of this network module is to encode a
facial performance into a condensed latent representation. As facial perfor-
mances can be of arbitrary duration, it is important for the performance en-
coder to be able to handle input sequences of varying lengths, which can also
represent small parts of longer performances. For these reasons, we model
our performance encoder as a transformer, an architecture that is naturally
suited for handling sequences of arbitrary length. As such, the transformer
encoder takes an arbitrarily long performance as input and always generates
a single 128-dimensional latent performance code zper f .

Another important component of our model is that the performance encoder
should be identity-agnostic in order to achieve the desired disentanglement.
A convenient, identity-agnostic input representation of a facial shape is a
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set of blend shape weights, which can be used to blend subject-specific ex-
pressions to generate desired final shapes [Lewis et al., 2014]. Facial models
based on blend shapes are very common, as they tend to be semantically
meaningful and offer artists an intuitive means of interaction. Therefore, we
represent facial performances as sequences of blend weight vectors, which
will be encoded by our performance encoder.

Each frame of a performance is represented as a blend weight vector, which
we referred to as a token, following the transformer literature. These vectors,
on their own, present no notion of time. To be processed by a transformer in
a meaningful manner, the blend weight vectors have to be position-encoded.
Two types of position-encoding are commonly used, absolute and relative.
Absolute sinusoidal position-encoding involves the addition of a fixed set of
sinusoids, each corresponding to a unique position, onto the input tokens.
However, recent work has shown that relative position-encoding via the AL-
iBi attention mechanism [Press et al., 2021] gives superior performance and
extrapolates better to longer sequences at inference time. We thus adopt rela-
tive encoding and first perform blend weight embedding by applying linear
projections to each input token, independently, before passing them through
our performance encoder, which uses the ALiBi position encoding scheme
at each layer. Our performance encoder has 4 transformer blocks with ALiBi
position encoding. The performance encoder then mixes information across
its input tokens and produces an equal number of output tokens. To extract
a single performance latent code, we follow a common strategy [Devlin et
al., 2019][Ranftl et al., 2021][Petrovich et al., 2021] and append an additional
token P to the input. P is a global, 128-dimensional performance query code
that is optimized with the network weights. Given the transformer output
tokens, we extract only the one corresponding to P, which gives the desired
128-dimensional performance code zper f . This code encapsulates the tem-
poral dynamics of the input blend weight vectors, in a condensed manner,
within the learned latent space of performances. Note that the identity and
performance codes need not be of the same dimension.

Style-Modulated Transformer Decoder

So far we have reduced the neutral shape of a subject and a performance
sequence of blend weight vectors into two latent codes, zid and zper f . Our
goal now is to combine the identity and performance to obtain a subject-
specific motion representation. To allow for variable-length outputs and to
properly leverage temporal correlations during the decoding of 3D perfor-
mances, we also model the decoder as a transformer. Here, we introduce
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a novel style-based transformer architecture that achieves better reconstruc-
tions and faster convergence when compared to a standard transformer de-
coder (see results in Section 4.3.4).

We query the decoder by providing it with a sequence of input tokens,
whose number indicate the length of the desired output performance. Each
identity token is a position-encoded version of the identity code zid, while
each performance token is a position-encoded version of zper f . These tokens
are injected into each transformer layer of the decoder and combined via
style-based modulation, Fig. 4.20 (bottom-right). The output of the decoder
is a sequence of latent shape tokens, each of which encodes information on
the desired identity and the expression at the particular frame in time.

Time Encoder. As discussed in Section 4.3.3 for the encoder, relative
position-encoding (PE) using ALiBi can outperform absolute PE with sinu-
soids. However, here, decoding with relative PE would result in a sequence
of constant input tokens that simply duplicates zid and zper f to achieve the
desired output length; the decoder would hardly be able to successfully re-
construct a performance. For this reason, we resort to absolute PE of zid and
zper f in our decoder. Standard PE defines a fixed set of sinusoids for discrete
positions in time and adds these to the input tokens. In our case, however,
this discretization affects our ability to freely and continuously sample (in-
terpolate) our temporal domain to decode sequences of arbitrary length. We
thus adopt an alternative PE scheme that is simple, yet powerful: we define
the decoder input as a sequence of scalars ti ∈ [0, 1] that represent normal-
ized time indices of the desired frames to be decoded. We then learn the PE
γ(ti) of each ti together with our network, by modeling the mapping γ(·) as
an additional time encoder MLP γ(·). More specifically, we model γ(·) as an
MLP with sinusoidal SiRen activations [Sitzmann et al., 2020]. Each encoded
token γ(ti) is then added with a zid or zper f to complete our continuous PE.
We validate the performance of our new PE scheme versus standard sinu-
soidal PE in Section 4.3.4 and in the appendix Section A.2.

Style-Based Modulation. As illustrated in Fig. 4.20 (bottom-right), the
position-encoded performance tokens are further individually passed through
an additional affine layer that extracts frame-specific information from each
performance token, leading to an equal number of expression tokens. Each
per-frame expression token is then modulated by the position-encoded iden-
tity token at their corresponding instance in time, before they are mapped
onto queries, keys and values inside the transformer.
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Decoder Architecture. Our performance decoder consists of 4 style-
modulated transformer layers. The performance tokens are converted into
per-frame expression tokens at each of the 4 layers of the decoder, result-
ing in layer-specific tokens that are modulated by the corresponding iden-
tity token. Our style modulation with performance tokens can be thought
of as skip connections from the performance latent space into different lev-
els of the transformer decoder. We empirically observe that, analogous to
the effect of skip connections in residual networks, our style modulation at
multiple stages of the decoder allows for faster convergence and better per-
formance, likely due to better gradient flow during training. Other than the
style modulation, our decoder uses standard transformer blocks with resid-
ual connections, layer normalizations, and GeLU activations. The output
of our transformer decoder is a sequence of latent tokens which have both
identity and frame-specific expression information. This sequence of output
tokens are then passed independently through a shape decoder to recon-
struct the output sequence of shapes.

Shape Decoder

The shape decoder performs the final step of converting the per-frame out-
put tokens from the decoder into per-frame subject-specific 3D shapes. The
architecture of our shape decoder is similar to that of the identity shape en-
coder. We use a residual MLP of 4 layers and GeLU activations. The shape
decoder processes each token independently and predicts a list of 3D ver-
tex offsets, which are added to the canonical shape to produce the desired
geometry for each frame. We evaluate and compare alternative architecture
choices for both the shape encoder and decoder in our supplemental mate-
rial.

4.3.4 Results

Our disentangled motion model naturally lends itself to several applica-
tions in 4D shape modeling. This section first describes the datasets our
network was trained on, and then shows reconstruction results as valida-
tion. It also evaluates some of our design choices, presents ablation stud-
ies, and finally highlights applications of our motion model. For training
details, additional applications (re-timing performances and mixing styles
across performances), and encoding robustness, please refer to the supple-
mentary document.
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Datasets

To show generality of our method, we apply our motion model separately
on three different datasets, including 3D faces and full bodies, as described
below.

SDFM: The SDFM dataset consists of 3D face meshes introduced for se-
mantic deep face modeling [Chandran et al., 2020]. The data includes both
static facial expressions as well as tracked dynamic performances for a sub-
set of the individuals. In this work, we use only the subset of data cor-
responding to the 20 subjects with dynamic performances (which includes
both dialog speech and dynamic expressions). To make the data compatible
with our network, we used the 24 expressions to build a blend shape model
for each actor, and then converted the performances from mesh sequences to
blend weight sequences by fitting the blend shapes to each frame of geome-
try (following [Chandran et al., 2020]). The meshes contain 5257 vertices in
correspondence, and in total we obtained 114 performance sequences total-
ing approximately 23000 frames. We used a random sample of 90 sequences
for training, and the rest for validation. Fig. 4.21 (left) shows the reconstruc-
tion for 2 frames of a validation performance for the SDFM dataset.

COMA: This dataset also contains 3D face meshes [Ranjan et al., 2018b],
each with 5023 vertices. The data includes 12 individuals each performing
12 dynamic expressions, for a total of 144 performances and 20465 combined
frames of geometry. All 144 performances were used for training, minus ran-
domly chosen sequences of 60 consecutive frames from 20 different perfor-
mances that were used for validation. Following a similar strategy as with
SDFM, we chose the 12 extreme expressions to create a blend shape model
per actor, and converted the mesh sequences to blend weight sequences for
our network. Fig. 4.21 (center) shows the reconstruction for 2 frames of a
validation performance for COMA.

AMASS: This is a large database of human motion capture [Mahmood et
al., 2019] with SMPL parameterization [Loper et al., 2015a] for its dynamic
sequences. Although this parameterization is inherently shape and pose dis-
entangled, the human body spans a much more diverse space of movements
than faces and might bring forth different challenges. To demonstrate that
our method can learn motion manifolds under such challenges scenarios as
well, we train our method on a subset (CMU, DanceDB, KIT) of the AMASS
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Figure 4.21: We show 2 frames from reconstructed validation performances for each of
the datasets we apply our method on. Given that the entire performance
is compressed to a single 128-dimensional code, reconstruction results are
comparatively close.

dataset. Our performance encoder now receives a sequence of SMPL pose
parameters as input instead of blend weights (Kindly refer to our supple-
mentary material for details on how we modify our architecture to train
on human bodies). We train our performance decoder by using the SMPL
model as a fixed differentiable module to decode vertex positions identical
to [Pavlakos et al., 2019][Petrovich et al., 2021]. We leave out a random sub-
set of 20 sequences for validation. Fig. 4.21 (right) shows the reconstruction
for 2 frames of a validation performance for the AMASS dataset.

Table 4.2: Performance Reconstruction Errors on 3 different datasets
Dataset Validation error (mm)
SDFM [Chandran et al., 2020] 1.47
COMA [Ranjan et al., 2018b] 0.62
AMASS (CMU, KIT, DanceDB) [Mahmood et al., 2019] 7.19
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For all three separately-trained models, a single 128-dimensional perfor-
mance code was able to reproduce the sequences of movements after
position-encoding. In Table 4.2, we show the validation reconstruction er-
ror on the three datasets. Please also refer to the reconstructed performances
in the supplemental video. These reconstruction results demonstrate that
our transformer architecture can serve as a compressed motion manifold for
the generation of moving 3D shapes, including facial and full-body perfor-
mances.

Ablation Studies

We now present experiments that motivate several of our design choices. To
keep compute costs low, we perform our ablation on a subset of the SDFM
dataset consisting of 23 dynamic facial performances (≈5000 frames) of a
single subject. We leave out 4 performances for validating the performance
of our different variants.

Architecture Design. As mentioned earlier, a related technique for gen-
erating human motion sequences is the Actor model [Petrovich et al., 2021],
which is based on a transformer variational autoencoder. We aim to un-
derstand if a similar network design would perform sufficiently well in our
setting, and therefore we replaced our performance encoder with the varia-
tional encoder from [Petrovich et al., 2021] and our style-modulated trans-
former decoder with a standard transformer decoder identical to the one
used in Actor. For a fair comparison, we adjusted the size of the both models
to keep their capacities approximately the same. We refer to this modified
version of our architecture as the Simple variant, and we trained both archi-
tectures on a dataset of real world facial performances from a single subject.
Fig. 4.22 analyzes the convergence and reconstruction behavior of the two
architectures. As we can see, our proposed architecture not only converges
to a lower error much faster at training time, but also achieves lower error
on validation performances, justifying our novel network design.

Position-Encoding. In Section 4.3.3 we describe that the latent codes cor-
responding to the identity and the performance are both position-encoded
before being passed to the transformer decoder. The decoder requires a
minimum of at least one of the codes to be position-encoded, and thus we
have three options: (1) position-encode only the identity code, (2) position-
encode only the performance code, or (3) position-encode both. We evaluate
all three of these options with a small experiment on our ablation dataset,
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Figure 4.22: (Left) Our style modulated transformer decoder converges to a lower error
faster than a simple transformer encoder - decoder architecture. (Right)
Position-encoding both the identity and performance codes results in
marginally the best performance. Our SiRen time encoder extrapolates bet-
ter to unseen sequence lengths without sacrificing performance.

where we use conventional sinusoids that are added on top of the corre-
sponding latent codes. Fig. 4.22 illustrates that position-encoding both the
shape code and the performance code results in the fastest convergence of
the transformer and also provides the highest reconstruction quality. Finally,
replacing the fixed set of sinusoids with the SIREN-based MLP, as described
in Section 4.3.3, has little effect on reconstruction quality and convergence
speed. However, it makes our position encoding compatible with continu-
ous interpolation and allows us to optimize for temporal shifts as explained
in our key-frame projection experiment below.

Shape Encoder and Decoder. Our method itself is agnostic to the choice
of the encoder and decoder that are used to represent 3D shapes. This al-
lows us to readily leverage advances in graph/mesh convolution and other
deep learning techniques, extending them to model motion as well. In the
supplemental document, we present an additional ablation study where we
replace the fully connected shape encoder and decoder modules with a state-
of-the-art graph convolution technique [Gong et al., 2019]. The supplemen-
tal material also contains additional ablation studies on the effect of network
capacity and variable sequence length training on our model.
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Figure 4.23: One of our main applications is generating novel performances, which we
demonstrate here (and in the suppl. material). Left: novel performances
generated by our method trained on the SDFM dataset. Right: two differ-
ent motions sampled from our model trained on the AMASS dataset.
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Figure 4.24: Our method allows to easily retarget performances from one individual
(row 1) to any others (rows 2 and 3).
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Figure 4.25: Two input performances (rows 1 and 3) can be interpolated, as we show
here at 50% interpolation (row 2). The trajectories of a point on the lower
lip (last column) show that interpolation is more than just simple blending
of the input frames.

Applications

We now illustrate different applications of our disentangled motion model
for 3D+time shape manipulations. As we demonstrate example applications
on human motion, please refer to the supplemental video where the ani-
mated results can be properly appreciated.

Generating Novel Performances. A natural application of our method is
the generation of novel performances. Generating automatic animation and
synthetic data for training neural networks are main motivations for our
work. Importantly, the generated motions should be coherent, smooth and
look natural. Once our network is trained, we can sample the latent space
to obtain new performance codes, which can be mapped onto any identity
through our transformer decoder. We treat the performance latent space as
a multivariate Gaussian distribution for sampling. Fig. 4.23 shows novel
performances on sampled identities from the SDFM dataset and two novel
performances generated by our model trained on the AMASS subset. The
movements generated by our model are smooth, realistic and also capture a
wide variety of deformations.
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Figure 4.26: Our method can seamlessly interpolate complex performances on human
bodies too. In this figure, two counteracting performances; throwing with
the right hand (rows 1) and throwing with the left (row 3) can be interpo-
lated, to result in interesting inbetweens as shown here at 50% interpola-
tion (row 2).

Performance Retargeting. Our method naturally disentangles the latent
identity space from the performance space. This means that we can fix the
performance code and simply vary the identity code to retarget a perfor-
mance onto different identities. Fig. 4.24 shows performance retargeting re-
sults, where we encoded a captured performance from one actor (row 1)
and then sampled two different latent identity codes to reconstruct the cor-
responding performance on the target identities (rows 2 and 3). Note that the
decoder mixes identity- and expression-specific information, allowing it to
capture identity-specific facial deformation, which is an important aspect for
maintaining realism. Performance retargeting is an important application on
its own, or can also be used as a means to generate additional large amounts
of 3D animations (by retargeting a corpus of captured performances onto a
variety of synthetic characters).

Interpolation and Extrapolation. An interesting application of 4D motion
models is interpolating between two or more different performances, which
can be challenging in the case of performances with different lengths. In
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Figure 4.27: Extrapolation: (left) We trace the (y-axis) trajectory of a point on the
lower lip when using the same performance code to query output perfor-
mances of 60, 90 and 120 frames respectively. Here, the performance code
corresponds to random transitions between extreme facial expressions, cre-
ating large non-linear movements. Our method is able to continue the
performance for durations never seen during training. Key-frame inter-
polation: (middle) Our pre-trained network can be used as a motion prior
for projecting key-framed facial expressions. Our motion manifold allows
for non-linear inpainting of missing frames, while also respecting the key-
frame constraints, compared to the linear interpolation which results in a
more robotic performance. Performance Denoising: (right) We de-noise a
discontinuous performance by projecting a sequence with a strong discon-
tinuity into our performance latent space. The reconstructed performance
plausibly smooths out the transition, as shown by the trajectory of a lower
lip point.

our framework, performance interpolation is easily achieved by interpolat-
ing the performance codes in the latent space of the model. Once decoded,
the result is a non-linear interpolation of the inputs. Interpolating in latent
space trivially addresses the case of performances with different lengths. In
Fig. 4.25, we show the result of 50% interpolation between two different per-
formance codes. We also visualize the trajectory of a point on the lower lip
for both the original and interpolated performances, as well as 25% and 75%.
Note how the interpolated performance is more than just a simple blend-
ing of the per frame shapes, and produces a completely new performance
with new timing and expression transitions, yet still captures the essence
of the original performances. Note that while interpolating performances
as a whole, the model does not interpolate expressions in a pairwise man-
ner, but actually allows for both neighboring and distant frames to be in-
fluenced through self-attention. As such, while one cannot intuitively con-
trol the interpolated performance due to the nonlinear nature of our trans-
former decoder, linear interpolation of performance codes always produces
a plausible, temporally smooth performance, highlighting the smooth mo-
tion manifold learned by our model. In Fig. 4.26, we show a similar example
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of performance interpolation on human bodies too. Please refer to our sup-
plementary material for more animations.

Performance extrapolation is also easily enabled by our model. As the length
of the generated output sequence is dictated by the length of the position-
encoding of the latent codes, one can artistically lengthen a performance by
feeding an additional number of position-encoded identity codes as input to
the performance decoder. As an experiment, we take our model trained on
sequences of 60 frames, and then queried longer performances of up to 120
frames at inference time. Our method produces plausible shape deforma-
tions even for sequences much longer than what it was trained on, Fig. 4.27
(left).

Inpainting by Projection. Like any other morphable model, our temporal
motion model allows for the projection of new shapes into its latent space.
We formulate this projection step as an optimization problem. Specifically,
we optimize for a latent identity and performance code that, when position-
encoded and fed through the pre-trained decoder, reproduces the given (po-
tentially incomplete or corrupted) performance data. Thus, our motion man-
ifold can be used to not only project full performances but also to in-paint
partial animations with missing data, or even sparse key-frame animations.
In these cases the optimization objective is modified such that the recon-
structed performance matches the available frames only, naturally filling in
the rest with coherent motion. In Fig. 4.27 (right), we show an example
of projecting a set of evenly spaced key-frames into our motion manifold.
Existing morphable models have no notion of time and can only linear in-
terpolate between key-frame poses. In contrast, our result produces more
interesting non-linear interpolation of the key-frames.

Performance Blending and De-noising. Noisy or implausible perfor-
mances can also be projected into our motion manifold to obtain more nat-
ural motions. To demonstrate this effect we stack the blend weight vector
sequences of two discontinuous facial performances as a single temporal
sequence and feed this to our performance encoder. The resulting perfor-
mance reconstructed through the decoder shows a smooth transition from
one performance to the other (Fig. 4.27).
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4.3.5 Summary

We propose a new 3D+time framework for modeling and realistically syn-
thesizing arbitrary dynamic motion for 3D shapes like human faces, with
demonstrated extension to full 3D bodies. By design, our transformer-based
architecture naturally models the motion manifold of performances while
disentangling the time-varying shape deformation from the constant iden-
tity component in the performance. This capability allows our model to gen-
eralize better and to synthesize performances with arbitrary identity and
length. We show applications of novel performance generation, retargeting,
interpolation, extrapolation, projection and more. The main limitation of our
method is the tradeoff between performance compression and reconstruc-
tion quality. Naturally, a single 128-dimensional performance code cannot
represent all the information in a very long performance. An interesting di-
rection for future work is thus the optimal partitioning of long performances
into segments that are better suited for encoding. Another limitation of our
work is that we currently do not model physically based constraints. As a
result, we cannot always guarantee high-quality geometry around regions
like the lips (e.g., lip contacts, lip stickiness, etc.) for faces, and cannot pre-
vent self intersections in the case of human bodies. Incorporating physical
(anatomical) constraints into our method could be very beneficial in future
work, to further improve the quality of results, especially for human bod-
ies. Nevertheless, our disentangled motion model shows great potential in
the automatic generation of realistic animation, in the 4D manipulation of
animation data, and is also ideally suited for augmenting datasets with co-
herent synthetic 3D performances for deep learning applications.

4.4 Chapter Summary

In this chapter, we extended the techniques for static geometry synthesis
from Chapter 3 with techniques capable of generating animations. Two par-
allel approaches were presented and discussed, one based on facial perfor-
mance retargeting (see Section 4.2), and another based on a 4D (3D + Time)
morphable model (see Section 4.3). In the next chapter, we will have a look at
the final component of our data generation workflow which is photorealistic
appearance synthesis.
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C H A P T E R 5
Facial Appearance Synthesis

So far we presented techniques for static and dynamic geometry synthesis
in Chapter 3 and Chapter 4 respectively. These methods have enabled us to
leverage the high quality geometry from the face database Chapter 2 to rep-
resent and/or modify a given face shape, with the goal of generating novel
expressions and performances. In the larger context of the goals of this the-
sis, what is missing still is a technique to render facial geometry in a fully
photorealistic manner, while also accounting for the regions unaccounted
for by the facial geometry, like hair, eyes and clothing. In this chapter, we
address this final component with controllable high quality appearance syn-
thesis.

5.1 Introduction

In the context of creating photorealistic images, particularly in the case of
faces, image based generative models [Karras et al., 2019][Abdal et al., 2021]
have substantially pushed the limits of what is possible in recent years, by
generating imagery that is virtually indistinguishable from portrait pho-
tographs. However while some of these generative models can be indeed be
conditioned on certain generic facial attributes [Tewari et al., 2020b] [Tewari
et al., 2020c], they lack the ability to be finely conditioned on facial geometry,
which is perhaps the most crucial quality to look for in the context of gener-
ating images with corresponding 3D ground truth. Nonetheless, the ability
of such generative models to create photorealistic images for arbitrary iden-
tities, does make them an candidate for consideration in this task. On the
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other hand, conventional rendering techniques offer the ability to precisely
convert a given scene with certain geometric and material properties into an
image, but are restricted in their requirements of requiring complete knowl-
edge of the scene, which is often not available or practically impossible to
provide. In this thesis, we propose a hybrid approach that will combine
the best of both conventional and deep generative rendering. Our experi-
ments to understand the inner workings of a class of style based generative
networks [Karras et al., 2019] [Karras et al., 2021] led us to observe closely,
its building blocks, capabilities and limitations. We particular observed the
reliance of such generative models on a particular operation called Adap-
tive Instance Normalization or AdaIN; an operation originally proposed for
neural style transfer [Huang and Belongie, 2017], in transferring global sta-
tistical properties from one domain to another. In this thesis, we propose
a generic extension of this normalization technique called Adaptive Convo-
lutions or AdaConv that is a mathematical generalization of AdaIN and is
suitable for applications in both neural style transfer, and generative neural
networks.

This chapter is a consolidation of our findings in extending AdaIN and our
proposal for a hybrid face rendering approach. This chapter begins by first
taking a closer look at AdaIN in context of style transfer, and elaborates on
AdaConv in Section 5.2. Then in the second half of this chapter, we propose
a comprehensive workflow that demonstrates how traditional facial geome-
try and appearance from the face database Chapter 2 can be combined with
a powerful pre-trained generative network for controllable high quality ap-
pearance synthesis in the wild in Section 5.3.

5.2 Adaptive Convolutions - A Generalized Normalization
Technique For Neural Networks

5.2.1 Introduction

In recent years, convolutional neural networks (CNNs) have been used to
explore and manipulate the style of images. Image style is often defined by
image features such as overall color and local structure of brush strokes, in
the context of paintings, or the pose and expression of a face in generative
image applications. Style is also defined at different resolutions, and thus
can include both the global identity of a face as well as the local structure of
freckles on the skin. Research in this area gained a lot of momentum with
the advent of neural style transfer, originally proposed by Gatys et al. [Gatys
et al., 2016], where a CNN is trained to reproduce the content of one input
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Content ImageStyle Image AdaIN AdaConv (Ours)

Style Transfer Style-based Generation

Figure 5.1: We propose Adaptive Convolutions (AdaConv), an extension of Adaptive
Instance Normalization (AdaIN) for image style transfer, which is able to
transfer both statistical and structural style elements. AdaConv can also
be applied to generative models such as StyleGAN for photorealistic image
synthesis on a multitude of datasets

image, but rendered with the style of another image. In a similar spirit,
generative adversarial networks (GANs) have been used to produce realistic
synthetic images with style defined by a random vector input, for example
in the creation of synthetic face images [Karras et al., 2019].

The widespread approach for manipulating style is through adaptive in-
stance normalization (AdaIN), a method that transforms the mean and vari-
ance of image features. For example, AdaIN is often used to transfer fea-
ture statistics of a style image onto a content image. Since its definition by
Huang et al.in 2017 [Huang and Belongie, 2017], this operation has already
become commonplace in CNN-based image manipulation literature. One
major drawback of AdaIN, however, is that the statistic computation is a
global operation; thus localized spatial structure in the style cannot be ef-
fectively captured and transferred. A concrete example is shown in Fig. 5.1
(row 1) where the style image has distinct features like black and white cir-
cles and squares. The AdaIN result transfers the statistics of that image to
the content images, but the result lacks any structure of the style. A similar
phenomenon can be seen in row 2, for a different style image.

In this work we introduce an extension to AdaIN called Adaptive Convolu-
tions (AdaConv), which allows for the simultaneous adaptation of both sta-
tistical and structural style. In the context of style transfer, instead of trans-
ferring a simple pair of global statistics (mean and standard deviation) from
each style feature, our approach estimates full convolution kernels and bias
values from the style image, which are then convolved on the features of the
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content image. As these kernels better capture localized spatial structure in
the style, AdaConv can more faithfully transfer structural elements of the
style image to the content image, as illustrated in Fig. 5.1 (columns 4 and 7).

The concept of predicting convolution kernels for deep learning tasks has
already shown some promise in fields such as video frame interpolation
[Niklaus et al., 2017a][Niklaus et al., 2017b][Niklaus et al., 2020] and de-
noising [Bako et al., 2017][Vogels et al., 2018]. Here we leverage this idea
to extend AdaIN for more general image style manipulation. AdaConv
can replace AdaIN in virtually every application where the latter has been
adopted, providing a new, generic building block in CNN-based image gen-
eration and style manipulation. To illustrate the generality of AdaConv,
we demonstrate its application in both style transfer as well as style-based
generative face modeling (StyleGAN [Karras et al., 2019], and provide a
user study to demonstrates the effectiveness of AdaConv in preserving style
structure during style transfer.

5.2.2 Related Work

This section reviews prior work in the domains of neural style transfer,
modulation layers in generative models and kernel prediction that are more
closely related to our work.

Neural Style Transfer based on CNNs was initially proposed by Gatys et
al. [Gatys et al., 2016]. While their method allowed for transferring arbi-
trary style between images, it was based on an slow optimization procedure.
Johnson et al. [Johnson et al., 2016] addressed this issue with the introduction
of perceptual losses, allowing for a significant speed-up of the optimization
and achieving real-time results. In parallel, Ulyanov et al. [Ulyanov et al.,
2016] proposed a style transfer method that speeds up inference even fur-
ther, by evaluating a feed-forward neural network that is style-specific and
pre-trained. In a follow up work [Ulyanov et al., 2017], they also replaced
batch normalization (BN) layers by instance normalization (IN) to produce
higher quality results without impacting speed. To improve control over
the style transfer result, Gatys et al. [Gatys et al., 2017] subsequently in-
troduced explicit color, scale and spatial control by reformulating the loss
function in both optimization-based and feed-forward methods [Gatys et
al., 2017]. Following up on the idea of IN, Dumoulin et al. [Dumoulin et al.,
2017] proposed conditional instance normalization (CIN) and conditioned
the normalization layer on the style, allowing a single model to perform
style transfer from one of 32 pre-defined styles or their interpolation. Ghiasi
et al. [Ghiasi et al., 2017] further extended CIN to allow transfers to arbitrary
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styles, unseen at training time; this was achieved using a large corpus of
styles to train an encoder that transforms a style image into the condition-
ing latent vector. Cheng et al. [Chen and Schmidt, 2016] proposed patched-
based style swap method for arbitrary style transfer. Concurrently, Huang et
al. [Huang and Belongie, 2017] proposed a method for arbitrary style trans-
fer, by effectively making IN adaptive to the mean and standard deviation of
the style features, thus leading to AdaIN. Li et al. [Li et al., 2017c] extended
this method by whitening and coloring the latent features given the style.
This idea was further extended by Sheng et al. [Sheng et al., 2018] with a
style decorator module and multi-scale style adaptation. Other works also
looked at meta networks for style transfer [Shen et al., 2018a], faster style
transfer using learned linear transformations [Li et al., 2019] and style trans-
fer of stereoscopic images [Chen et al., 2018]. More recently, Jing et al. [Jing
et al., 2020] noticed that directly replacing the statistics of the content fea-
tures with those of the style features may be sub-optimal; instead, their dy-
namic instance normalization (DIN) method trains a style encoder to output
the new statistics for the content features, while also adjusting the size and
sampling locations of subsequent convolutions layer. Besides instance nor-
malization, adversarial learning was also explored by Kotovenko et al. [Ko-
tovenko et al., 2019] to better disentangle style from content. Additional
in-depth descriptions of other Neural Style Transfer methods are presented in
the recent review paper by Jing et al. [Jing et al., 2019]. The aim of our work
is to further extend AdaIN by predicting entire convolution kernels and bi-
ases according to the style image, to transfer both the statistics as well as the
local structure of the style.

Modulation layers in generative models have also contributed to other break-
throughs beyond style transfer. Most notably, StyleGAN [Karras et al., 2019]
uses the original version of AdaIN, but the input style statistics are predicted
by an MLP from a Gaussian noise vector. To mitigate some visible artifacts
caused by AdaIN, StyleGAN2 [Karras et al., 2020a] replaces it with a weight
demodulation layer, which only normalizes and modulates the standard de-
viation, without changing the mean. As AdaIN and its variants only trans-
form global statistics, they are insensitive to localized, spatial semantics in
the style input. To address this limitation, new methods have been proposed
to predict spatially-varying normalization parameters from an input spatial
layout image [Park et al., 2019b][Zhu et al., 2020c][Jing et al., 2020]. SPADE
[Park et al., 2019b] replaces the global affine tranformation of AdaIN with
per-pixel transformations regressed from an input semantic mask. SEAN
[Zhu et al., 2020c] further extends SPADE by considering an additional style
vector with the input layout mask. Both SPADE and SEAN preserve the con-
ditioning spatial layout for the purpose of semantic image generation; they
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effectively control how each kernel is emphasized or suppressed at particu-
lar image locations. In contrast, our AdaConv method generates completely
new kernels at test time. Also, SPADE and SEAN are not directly suitable
for application in style transfer, where the spatial layout of the content image
must be preserved.

Kernel prediction has also been explored in previous work. Note that all of
the above methods for feature normalization and modulation follow a sim-
ilar procedure: they define scalar affine transformations that are applied
on each feature channel independently. The main differences are found in:
(i) whether or not the transformation parameters are hand-crafted, learned
during training, or predicted at test time; and (ii) whether the per-channel
transformations are global or spatially-varying. Those methods that regress
global transformations can also be understood as predicting 1× 1 2D ker-
nels at test time. For style transfer, Chen et al. [Chen et al., 2017b][Chen et
al., 2020a] learn style-specific filter banks that are convolved on the content
image’s features. Their method is limited to filter banks learned at train-
ing time; it cannot generate new kernels for unseen styles given only at test
time. Jing et. al [Jing et al., 2020] claim to be able to regress dynamic con-
volutions from the input, using their generic DIN blocks; however, the re-
ported experimental results are limited to 1 × 1 transformations. Related
work on kernel prediction also goes beyond style transfer. Jia et al. [Jia et
al., 2016] present dynamic convolutions for video and stereo image predic-
tion, in which test-time features are reshaped into new filters that are ap-
plied either convolutionally or in a location-specific way. State-of-the-art
methods for denoising Monte Carlo renderings [Bako et al., 2017][Vogels
et al., 2018] [Gharbi et al., 2019] use neural networks to predict dynamic
kernels applied to reconstruct the final denoised frame. Neural networks
were also proposed to predict denoising kernel for natural images taken
in burst mode with a handheld camera [Mildenhall et al., 2018][Xia et al.,
2020]. Niklaus et al. [Niklaus et al., 2017a] predict frame interpolation kernels
for video; they later extended this work to predict separable convolution pa-
rameters [Niklaus et al., 2017b][Niklaus et al., 2020]. Xue et al. [Xue et al.,
2016] use a CNN to predict motion kernels from random Gaussian variables
used to synthetic plausible next frame. Esquivel et al. [Zamora Esquivel et
al., 2019] predict adaptive kernels which are used to reduce the number of
layers required to accurately classify images under limited computational
resources. In the remainder of this paper, we explore a similar idea that
leverages kernel prediction at test time to improve style transfer and style-
based modulation in generative models.
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5.2.3 Feature Modulation with AdaConv

We now describe AdaConv and our kernel predictors, showing how Ada-
Conv generalizes and extends the typical 1 × 1 affine transformations in
style-based feature modulation. We begin by drawing a parallel with
AdaIN, in the context of style transfer, and then show how AdaConv al-
lows for better conditioning on local feature structure, for better transfer of
spatial style, while also being applicable in high-quality generative models
outside style transfer.

Overview

Consider the usual style representation {a, b} ∈ R2, where a and b represent
the style as scale and bias terms, respectively (e.g., for style transfer, a and
b are the mean and standard deviation of the style image features). Given
an input feature channel with values x ∈ R and the desired style, AdaIN
applies a style-defined affine transformation to normalized input features,

AdaIN(x; a, b) = a
(

x− µx

σx

)
+ b , (5.1)

where µx and σx are the mean and standard deviation over the feature chan-
nel. Thus, AdaIN changes only the global statistics of each channel based
on the conditioning style parameters {a, b}. Note that the whole channel
is modulated equally, regardless of the spatial distribution (structure) of the
feature values around each sample x.

Our first step towards extending AdaIN is thus to introduce a conditioning
2D style filter f ∈ Rkh×kw , replacing the scale term and yielding extended
style parameters {f, b}. This filter allows for modulating the feature channel
in a spatially-varying way, according to the local structure in a neighborhood
N (x) around sample x,

AdaConvdw(x; f, b) = ∑
xi∈N (x)

fi

(
xi − µx

σx

)
+ b , (5.2)

= ∑
xi∈N (x)

AdaIN(x; fi, b) .

Note that this depthwise AdaConv variant subsumes AdaIN, which is a spe-
cial case with a 1× 1 filter f and N (x) = {x}.

Our second and final step towards our full AdaConv modulation extends
this depthwise variant by expanding the input style parameters to also in-
clude a separable, pointwise convolution tensor p ∈ RC, for an input with
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C feature channels. This enables AdaConv to perform modulation based on
a style that captures not only global statistics and spatial structure but also
correlations across features xc in different input channels c,

AdaConv(x; p, f, b) = ∑
c

pc AdaConvdw(xc; fc, bc) . (5.3)

The input style {p, f, b} for AdaConv effectively includes a depthwise-
separable 3D kernel [Howard et al., 2017b], with depthwise and pointwise
convolution components, and per-channel biases. The actual number of
depthwise and pointwise convolutional kernels used to modulate an in-
put is a design choice and can be arbitrarily large. As we later describe
in Section 5.2.3, this can be controlled using the number of groups ng in a
depthwise-separable convolutional layer.

In the following, we propose a kernel prediction framework for AdaConv
and show how it can be used as a general replacement for AdaIN to achieve
more comprehensive style-based conditioning in style transfer and also in
other high-quality generative models.

Style Transfer with AdaConv

For style transfer, we begin with the original architecture of Huang et
al. [Huang and Belongie, 2017] and also apply the same content and style
losses during training. However, instead of directly mapping the global
style statistics onto those of the content features using AdaIN, we use our
new kernel predictors with AdaConv to more comprehensively transfer dif-
ferent properties of the style. An overview of our style transfer architecture
is given in Fig. 5.2.

The input style and content images are encoded using a pre-trained VGG-19
[Simonyan and Zisserman, 2015b] encoder to obtain latent features of style
S and content C. For kernel prediction, the style features S are encoded
further by a style encoder ES to obtain a global style descriptorW . FromW ,
our kernel prediction networks K = {K1, K2, .., KN} output depthwise-separable
convolutional kernels [Howard et al., 2017b] with per-channel biases. These
predictions are ingested into all layers of the decoder D, which outputs the
style-transferred result.

Our style transfer architecture employs 4 kernel predictors that operate at 4
different resolutions of the decoded image, with kernels of different dimen-
sions. Each decoding layer has an adaptive convolution block (Fig. 5.3), in
which the predicted depthwise and pointwise convolutions precede a stan-
dard convolution. These standard convolutional layers are responsible for
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style image

…

…

VGG-19

VGG-19

result

Trainable modules
Fixed modules

AdaConv
VGG features
Global style embedding

content image

Figure 5.2: Network architecture with our new kernel predictors and AdaConv for
structure-aware style transfer.

learning style-independent kernels that are useful to reconstruct natural im-
ages and remain fixed at test time. The encoder ES, the kernel predictors K
and the decoder D are trained jointly to minimize the same weighted sum of
content and style losses in [Huang and Belongie, 2017], within the VGG-19
latent feature space.

Style Encoder We now turn to the goal of predicting convolutional ker-
nels from the style features S , to be applied to the content features C at ev-
ery scale of our image decoder. Here, an intermediary step is to compute
a style representationW that comprehensively describes the style image at
different scales, while being guided by the style transfer loss. This design
choice is also motivated via analogy with state-of-the-art generative model-
ing [Karras et al., 2019][Karras et al., 2020a], where the term ’style’ denotes
both global and local properties of an image.

The pre-trained VGG-19 network translates the original input style image
with (channels, height, width) dimensions equal to (3, 256, 256) into a style
tensor S with dimensions (512, 32, 32) at the VGG-19 relu4 1 layer. Here, the
receptive field does not cover the whole style image. Hence, we reduce S
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Figure 5.3: Architectures of the global style encoder ES, kernel predictor Ki, and struc-
tural modulation in an AdaConv block with the resulting depthwise-
separable convolutional kernel applied on input content features (top right).

into our global embeddingW by training an additional encoder component,
ES, as shown in Fig. 5.3.

Our style encoder ES includes 3 initial blocks, each one with a 3 x 3 convo-
lution, an average pooling operation, and a leaky ReLU activation. The out-
put is then reshaped and fed to a final, fully-connected layer that provides
the global style descriptor, which is in turn reshaped back into an output
tensor W of size (sd, sh, sw). The dimensions of this embedding are hyper-
parameters and defined as a factor of the size of the kernel to be predicted.

Due to the use of this fully-connected layer, our network is limited to work
with input style images of fixed dimensions (3, 256, 256). However, the di-
mensions of the content image are not restricted, since it flows through a
fully convolutional component of the network.

Predicting Depthwise-Separable Convolutions Each one of our kernel
predictors K in Fig. 5.2 is a simple convolutional network whose input is the
style descriptor W , while the output is a depthwise-separable kernel. The
choice of predicting depthwise-separable kernels [Howard et al., 2017b] is
motivated by the desire to keep the kernel predictor simple and computa-
tionally efficient, while also making the subsequent convolution faster.

A standard convolutional layer takes an input feature tensor of dimensions
(1, cin, h, w) and convolves it with a kernel tensor of size (cout, cin, kh, kw),
where cin and cout are the number of input and output channels. A per-
channel bias is also added to the output. Thus, the number of weights re-
quired by such layer is cout × cin × kh × kw + cout. Depthwise-separable con-
volution reduces this number by collecting the input channels into ng inde-
pendent groups and by applying separate spatial and pointwise kernels that
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learn structural and cross-channel correlations respectively. The required
number of weights is reduced to cout × cin

ng
× kh × kw + cout. For a depthwise

convolutional layer with ng = cin, each channel of the input is convolved
with its own set of cout/cin filters. This is followed by a pointwise convolu-
tion with a 1× 1 kernel to expands the number of channels in the output,
adding a per-channel bias to the final output.

Here, it is important to note that the four AdaConv layers in our decoder
have cin equal to 512, 256, 128, and 64, decreasing as the spatial resolution
increases. Thus, the kernel predictor at the lowest spatial resolution would
usually have the highest number of parameters. To uniformly distribute
our network’s capacity over the successive resolution layers, we set a larger
ng ∈ {cin, cin

2 , cin
4 , cin

8 } at lower resolutions and gradually decrease it over
successive layers, leading to better results (a comparison with constant ng =
cin is given in the supplement). ng is set identically for both the depthwise
and pointwise convolutional kernels.

Thus, each kernel predictor K outputs the necessary weights for the depth-
wise convolutional AdaConv layer in that scale of the decoder. These
weights include: (i) spatial kernels of size (cout,

cin
ng

, kh, kw), (ii) pointwise ker-
nels of size (cout, cout

ng
, 1, 1), and (iii) a bias term b ∈ Rcout .

The input to each kernel predictor K is the global style descriptorW of size
(sd, sh, sw), which is fed through convolutional and pooling layers that out-
put spatial kernels of the target dimension, Fig. 5.3. These layers may consist
of standard or transposed convolutions, whose parameters are determined
at design time and depend on the size of kernels to be predicted. To predict
pointwise 1× 1 kernels, we poolW to a size (sd, 1, 1) and then perform a 1D
convolution to predict cout pointwise kernels. We use a separate predictor
for per-channel biases, similar to that for pointwise kernels. Once the ker-
nels and biases are predicted, they are used to modulate an input as shown
in the right half of Fig. 5.3.

Training

To compare against existing techniques in style transfer (see Fig. 5.4), we
train our method using the COCO dataset [Tsung-Yi et al., 2014] as content
images and the WikiArt dataset [Nichol, 2016] as style images. For the re-
maining comparisons to AdaIN, we used a custom content dataset of around
4000 human faces captured in a controlled studio setting as content images
and continued to use the WikiArt dataset as style images. For the experi-
ments where we use faces as content, we re-train both AdaIN and AdaConv
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from scratch for a fair comparison. To train our method, we use the Adam
optimizer with a learning rate of 1e-4 and a batch size of 8. For AdaIN we
use the same settings as in [Huang and Belongie, 2017]. Additional details
on our training are presented in the supplementary material.

5.2.4 Results

We now show results of using AdaConv as an extension of AdaIN for style
transfer and generative modeling.

Style Transfer

Our work is primarily motivated by the application of image style transfer,
much like the original AdaIN [Huang and Belongie, 2017]. In this section,
all our results are created with a style descriptor size sd = 512 and a kernel
size of 3× 3.

Qualitative Comparisons. We first compare AdaConv with several style
transfer methods, including Huang and Belongie’s AdaIN [Huang and Be-
longie, 2017], Chen and Schmidt [Chen and Schmidt, 2016], Ulyanov et
al. [Ulyanov et al., 2017], Gatys et al. [Gatys et al., 2016], Jing et al. [Jing
et al., 2020], Li et al. [Li et al., 2017b], Sheng et al. [Sheng et al., 2018], and
Johnson et al. [Johnson et al., 2016]. Fig. 5.4 shows that our approach per-
forms comparably with the current state of the art, and is notably strong in
preserving the structure of the style image. For instance, the structure of
the water in the sailboat image (first row) resembles the hair strands in the
style image; the structure of the brush strokes in the artistic paintings are
transferred naturally to the content images.

As AdaConv extends AdaIN, we perform a more thorough comparison in
Fig. 5.5. In all cases, AdaConv renders a content image that is more faith-
ful to the structure (local spatial distribution) of the style image, while also
transferring the global statistics of the style. AdaIN cannot transfer the style
structure, only the global statistics of the style.

Style Rotations. We further highlight the benefit of AdaConv in preserv-
ing style image structure by applying the same style image under various
degrees of rotation. Arguably, a rotated style image is in fact a different
style. However, this notion is largely lost when transferring the style using
AdaIN, since global feature statistics remain mostly the same under rotation.
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Content ImageStyle Image Huang & Belongie Chen & Schmidt Ulyanov et al. Gatys et al.Ours (AdaConv)

Content ImageStyle Image Ours (AdaConv) Jing et al.
(VGG)

Jing et al.
(MobileNet)

Li et al. Huang & Belongie Sheng et al. Johnson et al.

Figure 5.4: AdaConv performs comparably with current state-of-the-art methods. Our
method is particularly good at transferring the local structure of the style
image to the content image.

We illustrate this effect in Fig. 5.6, where we transfer a style image under
four different rotations to the same content image (taken from the last row
of Fig. 5.5). As we can see, AdaConv successfully preserves the spatial orien-
tation of the style image in the transferred result, whereas the AdaIN results
look mostly the same independent of rotation. We encourage the reader to
view more rotation results in the supplemental video.

Style Interpolation. As with AdaIN, we can also interpolate in style space
to generate results that mix multiple input styles. In the case of AdaConv,
we interpolate the output of the style feature encoder, before the kernel pre-
dictor. The interpolated style descriptor then produces kernels that alter
the structure of the decoded result. As a result, structural elements of the
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Content ImageStyle Image AdaIN AdaConv (Ours)

Figure 5.5: Compared to AdaIN, our AdaConv extension is better at maintaining the
structure of the style image thanks to our kernel prediction approach.
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Figure 5.6: When rotating the style image, the style orientation is transferred well to
the content image using AdaConv, while AdaIN results are mostly rotation-
invariant, since the global statistics do not vary much under rotation.

style images are smoothly interpolated spatially. This can be observed in
Fig. 5.7, where we interpolate between two style images that have very dif-
ferent structure, and apply the result to a content image of a face. As com-
pared to AdaIN, AdaConv generates in-between results that have structure
which is also in-between the structure of the two style images. For example,
one can easily see structural elements like thick lines actually deforming and
warping from one result to the other using AdaConv.

User Study. We also ran a user study to compare results of AdaConv and
AdaIN. Participants evaluated a total of 10 side-by-side style transfer results
obtained by AdaIN and AdaConv, with the two results displayed in a ran-
domized order. The participants were asked to choose a result based on the
following 3 questions: (1) Which style transfer result preserves the content image bet-
ter? (2) Which style transfer result preserves the style structure from the style image better?
(3) Which style transfer result is overall doing a better job at transferring the style to the
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Figure 5.7: As we interpolate between two style images, the AdaConv results are
smoother than AdaIN, and we can follow individual structures as they de-
form spatially from one result to the other with the AdaConv method.

content image? A total of 185 participants from multiple countries, age groups and
backgrounds took part in our online survey. We present the results of our user study
in Fig. 5.8. As expected, 93.9% of the participants felt that AdaIN is better at content
preservation, while 92% felt that AdaConv was capturing the style structure better.
Overall, a strong majority of the participants, 71.8%, said that AdaConv did a better
style transfer job.

Video Style Transfer. Finally, as seen on the supplemental video, AdaConv
performs style transfer on video sequences with good temporal stability even when
naı̈vely applying transfer to each frame independently. Improved temporal stability
could be achieved by extending AdaConv with an optical flow technique for video
style transfer [Chen et al., 2017a].
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Figure 5.8: Results of a user study comparing AdaIN to AdaConv on 3 different ques-
tions (please refer to the text).

Extensions to Generative Models

Though originally proposed for style transfer, AdaIN has found its way into a multi-
tude of applications including generative models like StyleGAN [Karras et al., 2019]
and StyleGAN2 [Karras et al., 2020a], where it has been used to inject ‘style’ into
a generator network that is trained in an adversarial fashion. As AdaConv is an
extension of AdaIN, we demonstrate its suitability for generative networks by in-
corporating it, together with our kernel predictors, into a StyleGAN2-like network.

At each scale of the StyleGAN2 generator, the per-channel mean and standard de-
viation (A) predicted by an MLP are used to modulate the convolutional layer’s
weights using AdaIN (Fig. 5.9, left). Note, however, that the kernel weights are
learned during training and only their scaling is adapted at test time. In con-
trast, our AdaConv blocks predict full depthwise-convolutional kernels from the
input style parameters at test time. Thus, we replace each weight demodulation
block in StyleGAN2 with an AdaConv block that performs ‘style-based’ depthwise-
separable convolution on the up-sampled input from the previous layer (Fig. 5.9,
right). A noise vector is also transformed through an MLP into an input ‘style’W
for the kernel predictor in each AdaConv block. Since depthwise convolutions have
fewer parameters than standard convolutions, we follow the adaptive convolution
with a standard 2D convolution in the same block. Then per-channel biases and
Gaussian noise are added and the output is fed into the next AdaConv block.

We trained this modified StyleGAN2 generator on the FFHQ, CelebHQ, AFHQ-
wild and AFHQ-dog datasets at a resolutions of (256 × 256). Our modified genera-
tor and the discriminator from StyleGAN2 are trained with the same hyperparam-
eters and loss functions as [Karras et al., 2020a]. We trained our generative network
on a single Nvidia2080Ti GPU for 300K iterations (∼1.2m real images) at a batch
size of 4. We show some examples of synthetic faces and wild animals in Fig. 5.10.
These results were generated with a style descriptor size sd = 128 and a kernel size
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Figure 5.9: Demodulation blocks in StyleGAN2 and our alternative network with Ada-
Conv blocks.

of 3× 3. Additional results of using AdaConv in a generative setting are provided
in the appendix (see Section A.3).

5.2.5 Summary

In this work we propose Adaptive Convolutions (AdaConv ) for structure-aware
style manipulation. As an extension to adaptive instance normalization (AdaIN),
AdaConv predicts convolution kernels and biases from a given style embedding,
which can be woven into the layers of an image decoder to better adjust its behav-
ior at test time. In the context of neural style transfer, AdaConv can transfer not
only global statistics but also the spatial structure of a style image onto a content
image. In addition, AdaConv is also applicable in style-based image generation
(e.g. StyleGAN), as we have demonstrated, and virtually everywhere AdaIN has
been employed. It provides a new, generic building block for ingesting condition-
ing input data into CNN-based image generation and style manipulation.

Acknowledgements. We would like to thank Maurizio Nitti for creating our
style images.
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Figure 5.10: AdaConv can also be applied to generative architectures like StyleGAN2
for realistic image synthesis.

5.3 Rendering with Style : A Hybrid Rendering Approach for
Controllable High Quality Face Portraits

Now we will look at how a generative model can actually be used for the generation
of photorealistic portraits. This project ties together with our work on geometry
and performance synthesis and will complete our holistic pipeline for training data
generation.

5.3.1 Introduction

The creation of digital humanoid characters continues to play a dominant role in
film and video game productions. Today’s advanced techniques greatly facilitate
the creation and rendering of digital humans, increasing their popularity also in
episodic content. With the advent of immersive virtual environments, AR/VR and
the current push for virtual telepresence, there has never been a greater need for
methods that can capture and render realistic digital humans efficiently, while re-
quiring little artist effort.
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b) Ray-traced Skina) Geo & Maps c) Complete Neural Render d) Expressions e) Lighting g) Viewpointf ) Env. Map

Figure 5.11: Given a 3D face geometry and appearance maps (a), we perform traditional
ray-tracing on skin pixels (b), and then project the result into a neural
image generator network to inpaint non-skin pixels (c) resulting in a high
quality render that matches the geometry and skin appearance. Our method
can robustly render animations of facial expression (d), lighting changes
(e), different environment maps (f) and viewpoint animations to some ex-
tent (g). Here, (d) through (g) were created independently and show dif-
ferent hairstyle, clothing and backgrounds from column to column, with
consistency within each column.

Leveraging the latest advances in multi-view imaging and computational photog-
raphy, an important body of research on facial scanning and performance capture
has given rise to powerful methods for creating digital content that includes high-
resolution 3D scans of an actor’s face, with corresponding appearance textures for
high-fidelity skin rendering. However, getting skin to render realistically is only
part of the process, as other facial attributes such as eyes, the interior of the mouth,
facial and scalp hair are all just as important to convey realism. Unfortunately, fill-
ing in the missing parts in 3D scans remains a tedious task that requires many work
hours from skilled artists to obtain a high-quality digital human.

An attractive alternative to the traditional modeling and rendering pipeline is the
recent advent of so-called neural rendering techniques [Tewari et al., 2020a], which
can synthesize complete photo-realistic images without explicitly modeling the un-
derlying scene properties nor its complex light transport process. Instead of using
hand-crafted rendering models, neural rendering bypasses the traditional graph-
ics pipeline and exploits deep learning techniques to encapsulate the complexity
of the rendering task into a learned, data-driven rendering module. In particular,
image generators based on Generative Adversarial Networks (GANs) [Goodfellow
et al., 2014] have gained attention from the wider graphics and vision community,
for their ability to learn the image formation model from large image datasets and
then create new images that are indistinguishable from real ones. Along these
lines, style-based image generators [Karras et al., 2019][Karras et al., 2020b] have
rapidly grown in popularity for their ability to synthesize a complete portrait of
a human face with extremely high-fidelity. Follow up work has shown that these
synthetic face images can be controlled by traversing the latent space of the net-
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work [Härkönen et al., 2020][Shen et al., 2020][Abdal et al., 2021], allowing seman-
tic manipulation of attributes like head pose, illumination and facial expressions.
It is even possible to project real face images into the latent space of these genera-
tors [Abdal et al., 2019][Abdal et al., 2020][Zhu et al., 2020c][Xia et al., 2021], open-
ing up a host of editing applications for portrait images. However, in comparison
with traditional rendering, this neural approach offers significantly less control, in
particular when the task is to render a specific identity in a desired expression with
a given viewpoint and illumination conditions - the typical problem in computer
graphics. The problem is further complicated when one wishes to render not just a
single image but a consistent video of facial animation (e.g., performances or even
simple camera movements) with facial attributes that change gradually and consis-
tently across subsequent images, in a controllable manner. Despite the progress so
far in both fields, there is still a large gap between the precise but time-consuming
controllability of traditional face rendering and the efficient but difficult-to-control
neural approaches.

In this work we take a step towards bridging this gap, as we propose a new neural
rendering pipeline driven by traditional, high-quality facial performance capture
and skin appearance rendering. Our goal is to render multiple full-head portraits
from realistic but incomplete facial scans, bypassing the burden of explicitly cre-
ating a complete 3D head asset with hair, eyes, and inner mouth. Our method
starts by rendering the facial skin of the digital actor in high quality (without the
complexity of modeled hair, eyes, and inner mouth) in the desired expressions and
scene configurations. We then perform an optimization to simultaneously project
these partial renders into the latent-space of a pre-trained image generator (Style-
GAN2 [Karras et al., 2020b]), obtaining full-head renders including the hair, eyes,
and mouth interior. The neural rendered attributes are finally composited with the
high-quality facial skin renders, yielding complete portrait images. Importantly,
we take special care to optimize over all frames with a regularization approach that
aims at consistently inpainting across a sequence of images, to preserve the face
identity and scene properties over time. As in the traditional animation pipeline,
artists have the familiar full level of control over skin appearance, facial expression,
lighting and camera viewpoint, while the neural rendering step allows for realis-
tically inpainting the missing areas of the rendered face mesh automatically. As a
result, the input sequence of skin renders is transformed into a sequence of realistic,
full-head portraits of a digital human (Fig. 4.19).

Going beyond face rendering in the field of entertainment, our work offers a sec-
ond major benefit in the field of data-driven machine learning. Deep learning ap-
proaches for facial reconstruction [Lin et al., 2020][Lattas et al., 2020][Feng et al.,
2020] and facial recognition [Wang and Deng, 2021] rely on high quality labeled
datasets of facial images. Obtaining such datasets of photo-real faces with ground
truth labels (e.g.3D geometry, appearance, pose, and lighting) is incredibly chal-
lenging. Our new neural rendering approach is ideally suited to help alleviate this
problem. We demonstrate this ability by applying our rendering technique on a
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face model built from hundreds of state-of-the-art 3D face scans with high-quality
appearance textures [Chandran et al., 2020]. This allows us to automatically create
an unlimited number of photo-realistic portrait images with corresponding ground-
truth skin geometry and appearance maps, besides known camera and lighting pa-
rameters, all of which can be used in training neural networks for downstream ap-
plications like face reconstruction or recognition.

5.3.2 Related Work

We first review traditional methods for face modeling and rendering, and then dis-
cuss the recent explosion of neural rendering research.

Traditional Face Modeling And Rendering

Modeling a human face for photo-realistic rendering is a challenging task, as even
the slightest inaccuracy could flag the entire render as uncanny. Over the last two
decades, advances in computer vision have helped bootstrap face modeling, by pro-
viding artists with automatically generated, high-resolution 3D scans of faces, ob-
tained from multi-view imagery of an actor under passive illumination [Bradley et
al., 2010][Beeler et al., 2010][Beeler et al., 2011]. These approaches however are tar-
geted at reconstructing the skin surface only and fail to properly reconstruct facial
hair, eyes, teeth or the intrinsic appearance properties of the face, such as albedo,
skin oiliness, roughness and translucency due to subsurface scattering. Some tar-
geted methods were able to reconstruct eyes [Bérard et al., 2014][Bérard et al., 2016],
teeth [Wu et al., 2016a][Velinov et al., 2018], and hair [Beeler et al., 2012][Hu et al.,
2014][Hu et al., 2017] but unifying everything to a single complete digital human
remains challenging, and computing photo-realistic renders requires knowledge of
the complex appearance properties of all the components. When it comes to the
skin, a solid body of research has focused on facial appearance modeling and ac-
quisition, following the seminal work of Debevec et al. [Debevec et al., 2000], which
paved the way for a large body of techniques using active illumination in light
stages [Ghosh et al., 2008][Ghosh et al., 2011] [Fyffe et al., 2011], using flash pho-
tography [Fyffe et al., 2016], multiplexed illumination [Gotardo et al., 2015][Fyffe et
al., 2016] or more recent passive methods [Gotardo et al., 2018][Riviere et al., 2020].
As with 3D scanning, these appearance capture techniques are limited to capturing
skin and thus cannot accurately estimate geometry and light scattering properties
of a complete human head, including inner mouth, eyes, or complex structures like
hair. Nevertheless, our approach is to leverage these well-defined methods for high
quality facial skin modeling and rendering, and we propose to build on top of these
techniques by combining traditional rendering with recent advances in neural face
rendering.
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Neural Rendering

Even if traditional methods do exist for capturing, modeling and rendering all the
components of a digital face, putting them all together for a photoreal digital human
requires a lot of manual work by skilled artists. For this reason, researchers are
turning to deep learning and using neural networks to circumvent the traditional
rendering pipeline with its modeling requirements and complex simulations of light
transport across multiple facial components.

Deep face rendering: An early source of inspiration comes from the fact that
some complex light transport effects such as subsurface scattering can be mod-
eled as simple filtering on the image plane [Jimenez et al., 2009]. Since convolu-
tional neural networks (CNNs) are particularly well suited for estimating appro-
priate convolution kernels from training data, “deep shading” approaches began
to emerge [Nalbach et al., 2017]. Another important step towards rendering realis-
tic digital humans came from advances in image-to-image translation using U-Nets,
which can be trained to translate a rendering of a human face or body into a more re-
alistic image that closely matches reference real images [Martin-Brualla et al., 2018].
The deferred neural renderer of [Thies et al., 2019] further improved generalization
over appearance properties and novel view synthesis by completely dropping the
initial hand-crafted shaders and learning a texture of neural features, which is sam-
pled onto the image plane of the desired camera view using a coarse 3D geometry
estimate; the final step feeds the projected texture into the image-to-image transla-
tion CNN (the neural renderer). Other similar approaches have also been proposed
that do not require a 3D mesh as proxy geometry and, instead, learn neural fea-
tures for point clouds [Aliev et al., 2020] or 3D grids of neural voxels [Lombardi
et al., 2019]. Neural radiance fields (NeRFs) also leverage neural volume render-
ing by tracing a ray into a particular scene [Mildenhall et al., 2020]. These neural
approaches can render full human heads (and even full bodies) with impressive
realism. However, they are limited to rendering a particular person in a particu-
lar lighting environment, while their training requires an extensive set of images of
that person across different views and body poses. A relightable neural renderer
was proposed by Meka et al. [Meka et al., 2020]; it was trained on an even larger
image dataset, captured in a light stage under a single directional light at a time.
An encoder was also trained that outputs a neural texture for a new person not
seen during training; however, this encoder does not have the same fidelity of an
optimized, person-specific neural texture and still requires input images and proxy
geometry captured in a light stage, under controlled illumination.

Face image synthesis using GANs: Another line of neural rendering research
explores Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] that
can be trained in an unsupervised way over very large face image datasets, with-
out requiring any proxy 3D geometry. These networks can learn powerful implicit
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models that produce realistic human portraits with both male and female faces of
different identities, ethnicities, ages, expressions, viewpoint, lighting, hair styles,
accessories (glasses, ear rings) and backgrounds [Karras et al., 2017a][Karras et
al., 2019][Karras et al., 2020b][Choi et al., 2018][Choi et al., 2020][Huang et al.,
2017][Tang et al., 2018][Shen et al., 2018b]. Some of these 2D image generators do
have an explicit understanding of the underlying 3D scene [Nguyen-Phuoc et al.,
2019] [Chan et al., 2021][Schwarz et al., 2020], but do not yet provide the same vi-
sual quality of other image generators. Overall, as researchers soon realized, these
pre-trained networks can be effectively turned into “neural morphable face mod-
els” when paired with a projection algorithm that optimizes for the network’s in-
put parameters as to approximate the appearance of a given real image [Abdal et
al., 2019][Abdal et al., 2020][Zhu et al., 2020a][Zhu et al., 2020b]. Among these
pre-trained models, StyleGAN [Karras et al., 2019] and StyleGAN2 [Karras et al.,
2020b][Karras et al., 2021] have stood out not only due to their representative power
and realism, but also due to the large degree of disentanglement in the different
dimensions of the latent codes. Several recent papers have explored the latent
space of StyleGAN and StyleGAN2 using facial attribute classifiers as to identify
“editable” latent dimensions corresponding to semantically meaningful attributes
such as facial pose, lighting, expressions, gaze, gender, age, glasses, hair and beard
styles [Härkönen et al., 2020][Shen and Zhou, 2020][Shen et al., 2020][Abdal et al.,
2021][Wu et al., 2020]. Knowledge of such dimensions has then allowed for ma-
nipulating the latent code as to produce high-level semantic edits on both synthetic
and (projected) real images with unprecedented ease and realism. In a non-face set-
ting, Zhang et al. [Zhang et al., 2021] investigate the latent space of a pre-trained
generative model by training an additional network with a differentiable renderer
to identify latent dimensions that control viewpoints. Fine-grain control with such
approaches is still lacking, as it is often difficult to edit a specific facial attribute
without unintentional side-effects on other attributes such as facial identity. The
StyleRig approach of Tewari et al. [Tewari et al., 2020b] proposes controlling the
portraits generated by StyleGAN by translating more intuitive edits applied on a
3D deformable face model (3DMM). However, only synthetic images generated by
StyleGAN can be manipulated, and not real ones. In addition, the simple renderings
of their 3DMM are devoid of skin detail and do not provide enough constraints on
facial identity. Their subsequent work [Tewari et al., 2020c] describes an optimiza-
tion approach for editing a real image with a pre-trained StyleRig network, using
the real image to anchor the editing results via an identity preservation loss. Still,
the demonstrated results show the expression edits are limited to adding a smile,
pose remains nearly frontal, and lighting smooth. While we consider a different ap-
plication and indeed find that StyleGAN2 limits viewpoint manipulation, we show
results in a more varied range of expressions and lighting conditions with consis-
tent identity. Kowalski et al. [Kowalski et al., 2020] also approach the concept of
semantically controlling real images by using intuitive parameters borrowed from
computer graphics. They train their own GAN with two separate encoders (for real
and synthetic data) with a shared latent space and a single image decoder. Garbin et
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al. [Garbin et al., 2020] project non-photorealistic face renders into the StyleGAN2
latent space to obtain more realistic full head portraints. Although their work is
somewhat similar to ours, it has a different goal: they wish to approximately con-
trol the output of the generative network but allow the resulting face to deviate from
the input non-realistic appearance; we provide final photo-realistic skin renders and
only seek to consistently inpaint the missing components (hair, eyes, inner mouth,
and background) from the StyleGAN2 output. Pernuš et al. [Pernuš et al., 2021]
recently explored a masked optimization scheme to obtaining more spatial control
over the projection of individual frames into the StyleGAN2 latent space. Another
stream of recent work explores training an encoder network that receives an input
image and predicts the latent vector that approximates the input as closely as possi-
ble through a pre-trained generator. Such a StyleGAN2 encoder [Richardson et al.,
2021] was extended by [Tov et al., 2021] to also allow for the semantic manipulation
of the provided image. With such encoder, the recent PhotoApp method [Mallikar-
jun et al., 2021] achieves good consistency on viewpoint and lighting manipulations
on a real face image, at the expense of requiring a large multiview, light stage train-
ing dataset for supervised learning. Alaluf et al. [Alaluf et al., 2021] later identified
that simple StyleGAN2 encoders are sub-optimal in their ability to faithfully recon-
struct the input image and proposed an iterative encoding scheme that improves
reconstruction quality. Overall, previous work has focused on projecting and edit-
ing individual complete images. In contrast, our method focuses on inpainting the
missing areas in skin renders and optimizes for simultaneous neural renderings un-
der artist-controllable expression, camera viewpoint, and illumination. This is done
while still matching the desired skin render and promoting a temporally consistent
identity and configuration in the synthesized components.

5.3.3 Rendering with Style

This section describes Rendering with Style, our hybrid face rendering approach that
combines traditional, high-quality renderings of incomplete facial scans and in-
painting using a pre-trained neural face model. Rendering with Style allows for the
generation of photorealistic sequences of full-head human portraits.

We consider a scenario in which high-quality 3D facial geometry and appearance
maps are available a priori, either through capture methods using a state-of-the-art
photogrammetry system [Gotardo et al., 2018][Riviere et al., 2020], or otherwise syn-
thesized programmatically or artistically. These assets are typical results available
when creating a digital human, but typically only represent the facial skin surface.
We expect the skin geometry to be defined by a mesh with UV-parameterization
defining the space of appearance maps such as diffuse and specular albedo, spec-
ular roughness, and high-frequency geometric detail from displacement maps. We
also assume that a 3D facial blendshape model, another common asset used in fa-
cial animation, has been precomputed. Thus, using standard ray-tracing software,
this 3D face skin mesh can already be rendered quite realistically in different facial
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expressions, viewing points, lighting conditions, and appearance parameters, with
the familiar level of control. However, this model is still missing hair, ears, eyes, in-
ner mouth (teeth, gums, tongue), all of which are important attributes that typically
demand many more hours of work to generate a complete head of a realistic digital
human asset.

Here, instead of continuing down the traditional digital human pipeline, we pro-
pose an alternative approach based on neural rendering. We leverage the fact that
powerful image-based face models such as StyleGAN2 [Karras et al., 2020b], pre-
trained on very large face datasets, capture high-level semantics and correlations
across the different elements of the human head. We thus leverage these correla-
tions to generate full human head portraits from our high-quality 3D skin renders
that, although incomplete, do encode rich information on facial identity, its many at-
tributes, and the surrounding lighting environment. We highlight that our method
can also be used without modification with the more recent Alias-Free StyleGAN2
[Karras et al., 2021], which is even better suited for animation. Our optimization en-
ergies are also largely generator agnostic, enabling our method to readily leverage
future advances in GANs.

The following sections present a detailed description of the two main stages in our
hybrid rendering pipeline: traditional rendering for the skin pixels (Section 5.3.3),
and neural projection using StyleGAN2 as our face model for the rest of the image
(Section 5.3.3). The final result will be a composite of the two steps, keeping the best
from both approaches (Section 5.3.3).

Traditional Rendering

In the first step of our pipeline, we render high-fidelity facial skin geometry, con-
sisting of high-resolution 3D meshes with 4K displacement maps that capture fine
geometric detail down to pore level. The data also includes appearance maps (4K
albedo and specular intensity) acquired using recent capture methods [Beeler et al.,
2011][Riviere et al., 2020]. Following Riviere et al. [Riviere et al., 2020], we ren-
der skin as a two-layer model where the top layer is described by a Cook-Torrance
[Cook and Torrance, 1981] microfacet BRDF model covering a diffuse layer where
we model subsurface scattering through diffusion, following the texture-space tech-
nique of d’Eon et al. [d’Eon et al., 2007]. We further render a mask which covers
only parts of the face that correspond to skin and follow the approach described in
Karras et al. [Karras et al., 2019] to align the render to a 2D canonical space prior
to projecting into the latent space of StyleGAN2. Fig. 5.12 shows an example input
to our neural projection procedure, which we describe in the next section. Later, in
Fig. 5.23, we also discuss how the quality of the data and the rendering itself can
affect the visual quality of the final results.
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Figure 5.12: Our processing pipeline starts by generating high-quality skin renders via
the traditional rendering pipeline with corresponding masks that indicate
pixel targets for the rendering loss of the neural projection step.

Neural Projection

Given an input sequence with K high-quality rendered images Ik, depicting the skin
surface of a particular person, our goal now is to generate a new sequence of neural
projection images

Pk = StyleGAN2(xk) ≈ Ik, k ∈ 1, 2, . . . , K , (5.4)

using a pre-trained StyleGAN2 generator as the image formation model of our full-
head portraits Pk. Following the natural analysis-by-synthesis approach for fitting
morphable face models to images, we optimize the sets of StyleGAN2 input param-
eters xk (see below) as to generate facial images whose skin patches resemble those
of our high-quality physically-based renderings. We thus explore the correlations
learned by StyleGAN2 to plausibly and realistically inpaint the face elements that
are missing in each Ik.

We focus on the scenario in which all the Ik depict the same person and, therefore,
seek to preserve with high fidelity not only the facial identity, but also the (so far
unconstrained) missing facial elements and surrounding features, which must be
generated in a semantically consistent way over the output sequence Pk. These
requirements rule out the straightforward naive approach of optimizing for each
projection Pk independently, for two main factors: (1) even the optimization of a
single StyleGAN2 latent code is a nontrivial, nonlinear optimization problem that
can lead to different local optima, corresponding to very different inpainted areas
(see Section 5.3.4 and Fig. 5.24 for an illustration); and (2) a naı̈ve, greedy projection
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Figure 5.13: The multi-frame neural projection step uses a pre-trained StyleGAN2 net-
work as a morphable face model to realistically inpaint the missing at-
tributes of an initial sequence of ray-traced images (with optional back-
ground cues). To avoid overfitting and facilitate consistent inpainting,
projections are not required to exactly match the skin renders. The final
compositing step embosses the full-detail raytraced skin appearance on top
of the projection results.

strategy inevitably overfits the highly-detailed skin renders in each Ik and, as a side-
effect, small spurious correlations learned by StyleGAN2 introduce inconsistencies
into the unconstrained inpainted areas.

To generate a sequence of full-head portraits with inpaintings that are semantically
consistent and realistic, we therefore propose a novel optimization procedure that
projects all the input renderings Ik simultaneously, while also enforcing additional
constraints on the projections Pk and on their associated set of optimization param-
eters xk (Fig. 5.13). We formulate our search for the optimal set of image param-
eters X as an energy minimization problem over the entire input image sequence
I = {I1, I2, . . . , IK},

min
X

Erend(X, I) + Econs(X), X = {xk, k = 1, 2, . . . , K} . (5.5)

This problem comprises not only the usual data term with rendering constraints
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Erend(X, I), masked by the skin pixel mask, but also an inpainting consistency en-
ergy Econs(X) that largely operates in the nullspace of Erend(X, I), as detailed in Sec-
tion 5.3.3 and Section 5.3.3.

Parameterization To derive an adequate parameterization for this non-trivial,
non-linear optimization problem, we first note that we do not require that the pro-
jections Pk exactly match the skin renders Ik, as the rendered skin appearance is
restored by our final blending step (Section 5.3.3). Thus, our main goal here is the
inpainting of missing portrait elements, which must look realistic and correlate well
with the rendered skin patches. And to maintain realism, we must ensure that our
solutions remain in a well-behaved location of the StyleGAN2 parameter space (al-
though this generator has been pre-trained on a large number of human images,
it has been found to also generate unrealistic faces and even cat faces [Zhu et al.,
2020c]). Further as we shown in Fig. 5.25, an unconstrained projection of partial
renders into StyleGAN2 can result in unrealistic inpaintings.

For the aforementioned reasons, we model each parameter vector xk using convex
linear combinations of N known, latent basis vectors bn that are randomly sampled
in a well-behaved region of the StyleGAN2 latent space. Before the optimization, we
sample basis vectors in the initial Z-space and feed each one through the different
MLPs within StyleGAN2, at each resolution level, to obtain basis vectors bn in the
final S-space. As in Karras et al. [Karras et al., 2020b], we also apply truncation to
remain in a well-behaved region near the origin. These pre-generated basis vectors
are the N columns of a basis matrix B (similar to [Garbin et al., 2020]). Here, we fur-
ther split matrix B (respectively, each bn) uniformly into many fixed-size segments
Bc of contiguous rows, c ∈ {1, . . . , C}. We then model

xk =


B1

B2
. . .

BC




αk1
αk2

...
αkC

 , s.t.


α ≥ 0, ∀α ∈ αkc

‖αkc‖1 = 1, ∀kc
, (5.6)

where each αkc ∈ RN has weights of a convex linear combination that represents
a segment of xk. Thus, solving for our sequence of projections X corresponds to
optimizing for K weight vectors αk = [αk1, αk2, . . . , αkC] ∈ RNC.

This new representation with C partitions allows us to control the number of
degrees of freedom in our parameterization αk and its expressibility (more per-
segment weights); it allows us to reach a balance between exploring parameter cor-
relations within each block Bc, while also benefiting from the good semantic disen-
tanglement across the different Bc, which define good building blocks of solutions
with high realism. For our experiments in Section 5.3.4, we always sampled a set of
N = 64 random basis vectors and partitioned them into 64 segments per resolution
layer of StyleGAN2 (C = 1152 segments in total). Segment lengths do not change
during optimization. Although future work could investigate better segmentation
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strategies, we empirically found this strategy to provide good expressiveness and
also realistic solutions in well-behaved regions of the StyleGAN2 latent space. An
ablation study on N and C is presented in Section 5.3.4.

During optimization, the weights αkc of each segment are passed through a softmax
function before applying them on their corresponding basis vectors. This ensures
that the blended segment of xk is always within the convex hull of the basis seg-
ments. Although the total number of (softmax) weights in each vector αk seems
large, in practice very few of them are non-zero (roughly 6 per segment αkc). In the
following, for simplicity of notation, we define our optimization energies only in
terms of X, xk, Pk and Ik.

As mentioned, our basis vectors bn are defined in the S-space of StyleGAN2. Op-
timizing X in S-space is preferable due to its excellent level of feature disentan-
glement and fine control, as recently shown by Wu et al. [Wu et al., 2020] for the
manipulation of individual projections. In our case, computing the K projections
in S-space allows some parameter segments to change per target Ik and better fit
the individual skin renders, while other segments that represent inpainted areas
can be consistently constrained across all K projections. In contrast to previous
work, our projection method does not require hierarchical optimization over dif-
ferent spaces of StyleGAN2 to achieve good convergence [Abdal et al., 2020][Abdal
et al., 2021][Tewari et al., 2020c].

To introduce spatial variability and detail, StyleGAN2 adds random noise maps
to its intermediary feature channels at different resolutions. These perturbations
affect the generated images locally, for example changing a smooth hairstyle to a
more frizzy one. In our optimization, a single set of spatial noise maps (at different
resolutions) is shared by all the generated projections Pk. In contrast to previous
work, here we can simply sample these maps randomly and do not need to fit them
to the input images. The one exception is for animations that contain camera view-
point changes, where the fixed 2D detail generated by the noise maps would be
inconsistent with the 3D projections. Thus, for these examples with camera motion
we disable the noise component. Note that rendered skin areas still maintain their
full level of detail due to our final, compositing step.

Rendering Energy As already noted, we do not require StyleGAN2 to match
with high fidelity the unique identity features seen in our high-quality input skin
renders; optimization is thus focused on guiding the inpainting of the missing parts
onto the neural projected image Pk, without overfitting the traditional renders. After
optimization, a final compositing step is performed to emboss all the fine detail of
Ik onto the resulting, complete portrait Pk (Section 5.3.3).

To guide inpainting in Pk using the information available in the ray-traced input
RGB images Ik, we use a combination of the popular LPIPS perceptual loss [Zhang
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et al., 2018] and a face segmentation loss derived from [Yu et al., 2020],

Erend(X, I) = λrend ∑
k

∥∥Mk
(
Φ(Ik)−Φ(Pk)

)∥∥2
F + (5.7)

λseg ∑
k

∥∥Mk
(
Ψ(Ik)−Ψ(Pk)

)∥∥2
F . (5.8)

Here, Φ(·) denotes the set of feature activations from layers conv1-1, conv1-2, conv2-
2, conv3-3 of a pre-trained VGG-16 network [Simonyan and Zisserman, 2015c]; Mk
denotes the masking of only those features corresponding to rendered skin patches
in each Ik. To generate projections Pk with a better alignment of the contours of
the eyes and mouth regions, we derive a loss term in Eq. 5.8, based on the activa-
tions of the final feature layer Ψ(·) of a face segmentation network, before its last
softmax layer [Yu et al., 2018][Yu et al., 2020]. This additional term helps substan-
tially improve the alignment of facial features especially the lips as we demonstrate
in in Section 5.3.4. This additional segmentation term may also be used to control
the spatial layout of the inpainted terms [Pernuš et al., 2021]. The weights λrend
and λseg are used to balance the strength of these rendering energies relative to the
consistency constrains below, to avoid overfitting.

Optionally, to provide a simple mechanism for controlling the inpainting of the
background, we also allow the first rendering term in Eq. 5.7 to include small areas
with render targets for background pixels. These per-image background constraints
can come from simple scribble lines, or from parts of existing images (i.e., the lat-
long environment map used to render the skin targets), thus providing additional
information on background visibility and even lighting that is useful to guide the
inpainting during the optimization (see Fig. 5.17 and Fig. 5.19 for examples).

Inpainting Consistency Energy Since the rendering energy above still leaves
some of the inpainted areas largely underconstrained and susceptible to spurious
correlations in StyleGAN2, this section derives additional constraints that operate
mainly in the nullspace of Erend(·) and promote consistency across the inpainted
areas of the sequence of projections Pk.

The inpainting consistency constraints comprise different terms in both the Style-
GAN2 S-space and on the projected image plane,

Econs(X) = λmean ∑
k

∥∥xk − x̄
∥∥2

2 + (5.9)

λtemp ∑
k

∥∥xk − xk−1
∥∥2

2 + (5.10)

λinpt ∑
k

∥∥M̃k
(
Φ(Pk)−Φ(P̄)

)∥∥2
F . (5.11)

The first loss term in Eq. 5.9 promotes consistency by minimizing the variance of
each style parameter of the vectors xk, with x̄ denoting the mean vector. When the
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sequence of projections has a well-defined temporal ordering (i.e., animation), a
non-zero weight λtemp is used in Eq. 5.10 to penalize differences between temporal
neighbors. This constraint enforces inpainting consistency by effectively minimiz-
ing the length of the path from the first through the last animation frames in latent
space.

The third term in Eq. 5.11 specifically enforces consistency of the inpainted areas
(hair, eyes, teeth, etc) and is applied on the image plane, where we can better spec-
ify the spatial extent of the consistency constraints. To better tolerate small in-plane
motion, we apply the same LPIPS perceptual loss on the inpainted areas, as de-
scribed for Eq. 5.7. This term is disabled (λinpt = 0) when the camera view (and
head pose) changes significantly throughout the projections (when we expect large
in-plane motion of inpainted areas) and when different per-frame background tar-
gets are provided in the rendering term in Eq. 5.7. The anchoring target P̄ for the
inpainted areas is automatically generated by first computing a rough solution X
with a single parameter segment (C = 1 in Eq. 5.6). From this first solution, we
compute the mean projection P̄, generated from the mean x̄ in latent space, and
then penalize variations from this average inpainting on the image plane using a
complement mask M̃k, which does not affect the raytraced skin pixels.

Note that the parameterization in Section 5.3.3 already guarantees that our solutions
remain in a well-behaved region of the latent parameter space (no other regulariza-
tion term is needed to prevent drifting towards unrealistic face projections).

Optimization Details

Our multi-frame neural projection was implemented in pyTorch using an Adam
optimizer. To optimize over arbitrarily long sequences of K projections, we store
our global set of parameters X in a K × N × C tensor, with N = 64 basis vectors
and C = 1152 parameter segments. This tensor is optimized over multiple epochs
just as when training a regular neural network. At each iteration in an epoch,
we retrieve a small temporal window (batch) of consecutive projections xk to be
feed forward through the StyleGAN2 generator, obtaining images that are subject
to our rendering and consistency constraints. This strategy allows us to optimize
X without constraining the sequence length K or running into GPU memory bot-
tlenecks. For very long sequences, computation time is the main drawback. The
experiments in Section 5.3.4 were all run on a single 1080Ti GPU, taking on aver-
age 60 seconds per input frame, with a pre-trained StyleGAN2 model at resolution
1024× 1024. Optimization was run for 200 iterations with a batch size of 2 projec-
tions and learning rate lr = 0.1 . The different weights of our energy terms were set
as: λrend = 1, λseg = 0.01, λmean = 0.0001, λtemp = 0.0001, λinpt = 0.1.
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Final Compositing

Although StyleGAN2 is a very powerful portrait generator, it still cannot faithfully
reproduce the person-specific, high-frequency detail in the input skin renders Ik.
For this reason, the optimization procedure described in Section 5.3.3 is designed to
compute neural projections Pk that match each Ik only closely enough as to provide
high-quality, realistic inpaintings for the areas that are missing on each Ik. After
optimization, small discrepancies still exist between the desired skin appearance on
Ik and the neural face render Pk.

To obtain final images I∗k that combine the original skin renders and the inpainted
areas, our method leverages the set of well-studied and well-defined methods for
traditional face rendering, instead of trying to replace them. Thus, this final step
in our rendering pipeline uses traditional compositing to blend the details from the
original render Ik onto the neural projection Pk,

I∗k = (G ∗ M̂k)Ik + (1− G ∗ M̂k)Pk . (5.12)

Here, G denotes a Gaussian filter that is convolved on the skin mask M̂k to yield an
alpha matte that has ones within the rendered skin area, zeros outside, and blended
smoothly at the borders. For better blending, M̂k is the result of first applying mor-
phological erosion (30 steps of 1 pixel) on the original skin mask Mk, illustrated in
Fig. 5.12, before the Gaussian blur. We provide an evaluation of how close the neural
projection result matches the target face render in Section 5.3.4, along with an illus-
tration of the quality improvement achieved with this compositing step (Fig. 5.29).

5.3.4 Results and Evaluation

Figure 5.14: Our method can automatically complete ray-traced faces (top) to create
photo-realistic face renders that match diverse target skin identities (bot-
tom).

Here and in the supplemental video, we showcase the results of Rendering with Style
starting with different examples of neural projection rendering (Section 5.3.4), fol-
lowed by an evaluation of the algorithm with ablations (Section 5.3.4). Finally we
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Figure 5.15: Our multi-frame neural projection method yields consistent inpaintings
across different expression frames. In addition, thanks to the final com-
positing step, the results also match the target high-detail skin renders.

demonstrate how our method can be used to generate realistic, synthetic training
data for deep learning applications (Section 5.3.5).

Neural Projection Rendering

We first demonstrate the power of our rendering approach and its ability to gen-
erate complete digital human renders for many faces in Fig. 5.14. Thanks to the
generative power of StyleGAN2 combined with the compositing of rendered skin,
the resulting faces match the identity, viewpoint and illumination of the traditional
render, but are automatically completed with plausible hair, eyes and backgrounds.

Animating Expression. An important component of our approach is that we
can render multiple frames in a consistent way. Fig. 5.15 illustrates several facial ex-
pressions, rendered with consistent identity including hair, eyes and background.
Fig. 5.16 shows further examples of different subjects. Note that we include only
one of the target renders for context, but all expression renders were used in our
joint optimization across frames. We encourage the reader to view the supplemen-
tal video for more examples of consistent full portrait renderings under facial per-
formance animations.

Rendering with Style allows the typical levels of control available in traditional face
rendering, for example, we can change the environment map to create a novel light-
ing condition, different from the captured studio lighting. Several results are shown
in Fig. 5.17 for different people with animated expressions under different lighting
environments. The figure also illustrates how the inpainting of the background is
guided by parts of the image used as environment map when rendering the skin.
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Figure 5.16: Our face rendering method can produce consistent results across expression
frames of different people. Here we show only the first input ray-traced
render in the first column (to save space).
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Figure 5.17: Examples of consistent expression rendering under different lighting envi-
ronment, for different subjects. Note that a small portion of the background
is added as soft constraints to guide the neural rendering towards the image
used as environment map for skin rendering.

Animating Illumination. Now, consider the goal of rendering a consistent
identity that matches the scene illumination, while the illumination changes.
Fig. 5.18 shows three different illumination scenarios, with light coming from the
left, front, and right. The results are photo-realistic renditions of the target digital
human, consistently completed and plausibly lit from the desired light (a full ani-
mation is shown in the supplemental video). Pushing the method to more extreme
scenarios, we can optimize over a sequence of renders showing more drastically
varying illumination, created using wildly different environment maps. Fig. 5.19
shows that our method can maintain a consistent identity across frames, including
all inpainted human body parts, despite the different per-frame lighting and back-
ground constraints.

Animating Viewpoint. Another parameter that is easy to control in the tradi-
tional graphics pipeline is camera viewpoint. In our experiments, we have found
that obtaining consistent facial inpaintings under free viewpoint variations is still
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Figure 5.18: Here we show that varying the lighting direction still produces a consistent
identity with a realistic render, demonstrated on two subjects.
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Figure 5.19: We demonstrate consistent neural projection rendering under different (ex-
treme) environment lighting.

very challenging with the current StyleGAN2 model. Reliably, our method can gen-
erate realistic facial renders within +/− 30 degrees. Fig. 5.20 shows an example of
subjects rendered under different viewpoints. While the results look realistic, some
temporal instability does occur (see accompanying video), and the method begins to
degrade at more extreme viewpoints (around and beyond +/− 30 degrees), where
the inpainted areas remain static, as visible in the video. However, there is already a
considerable amount of work being done to improve current image generators and
encoders [Mallikarjun et al., 2021] that can benefit our approach in the near future.

Combined Animations. Finally, we show examples of animating multiple com-
ponents in combination, for example animating the lighting or viewpoint during a
performance, and simultaneously animating all three components. Some examples
are shown in Fig. 5.21, and further illustrated in the supplemental video. It is clear
that varying multiple scene properties at once does challenge the optimization, and
some artifacts do start to appear, both in the form of under-fitting the desired skin
renders as well as introducing minor temporal instabilities in the inpainted regions
(e.g., the third row of Fig. 5.21). Fig. 5.22 shows that better results are obtained
when varying all scene components (expression, viewpoint and illumination), but
only one at a time, still with a single optimization for a single identity. Note that for
Fig. 5.21 and Fig. 5.22, the ray-traced skin renders have been omitted due to space
limitations.

Evaluation

Recent work has shown that non-photorealistic renders of faces can be projected
into the latent space of StyleGAN2 to approximately control the image generation
process [Garbin et al., 2020]. One limitation of that approach is that the resulting
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Figure 5.20: Facial renders sequence with changing viewpoint for two subjects: under
free viewpoint, obtaining consistent facial inpaintings is still very chal-
lenging with the current StyleGAN2 model. Our method can generate
more consistent inpaintings within +/− 30 degrees.
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Figure 5.21: Rendering with Style allows for varying multiple combinations of scene
properties simultaneously in a single optimization, for example expression
and illumination, expression and viewpoint, and expression, viewpoint and
illumination all together. With increased variability, conflict between the
energy terms also increases and results can degrade (bottom row).

face image does not closely match the rendered input geometry. Our method is
designed to obtain a close match between the shape of the rendered face and the
final face. Still, we require a more elaborate high-quality skin render as the input.
Inspired by Garbin et al. [Garbin et al., 2020], here we first apply our method on
simple OpenGL rendered faces, to determine the importance of high fidelity in the
original renders. As Fig. 5.23 shows, the StyleGAN2 latent space is able to closely
match even the non-photorealistic OpenGL renders, creating uncanny results. We
conclude that our method works best with higher quality ray-traced face renders,
as shown on the right of Fig. 5.23.

We also wish to highlight the importance of our main contribution - the ability to
optimize the neural projection over all frames in a sequence consistently. Without
this optimization, simply performing an independent projection for each frame in
a sequence (e.g.following Image2StyleGAN++ [Abdal et al., 2020]) results in incon-
sistent renders as shown in Fig. 5.24. Clearly, the hair, background, clothing can all
change from frame to frame, which is an unsuitable result for most applications.
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Figure 5.22: Simpler scenario where more consistent inpainting is obtained when vary-
ing all scene components (expression, viewpoint and illumination), but
only one at a time, still with a single optimization for a single identity

OpenGL Render Result Ray-Traced Render Result

Figure 5.23: Applying our method on non-photorealistic face renders yields uncanny
results (first 3 columns), showing the importance of the high-quality ray-
tracing component (compared in the 4th column).
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Figure 5.24: Optimizing each frame independently as done in related work (e.g.,
Image2StyleGAN++) results in large inconsistencies across frames of
the same sequence, whereas our method leads to consistent inpainting
(Fig. 5.15).

Target

W W+ S Ours

Unconstrained Optimization Convex Opt.

Figure 5.25: Unconstrained hierarchical optimization in StyleGAN2 latent spaces (W ,
W+, and S) results in unrealistic inpainting of the mouth and eye re-
gions. Our convex optimization approach generates more plausible in-
painting while still matching the target skin well.
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Figure 5.26: We compare different basis sizes for our convex optimization approach. In
practice, N = 64 basis vectors produces good results with a manageable
basis size. Error plots show the per-pixel norm of RGB errors, on a scale of
0-1.

Figure 5.27: Effect of splitting the parameter vector into different numbers of segments
(per resolution layer): in practice, 64 segments per layer are enough to yield
good fits to the rendered skin targets. Error plots show the per-pixel norm
of RGB errors, on a scale of 0-1.
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Target w/o Seg. Loss with Seg. Loss

Segmentation Error without Error with

Figure 5.28: Optimizing with a face segmentation loss helps the neural projection to
match facial features like the mouth.

Target Projection Composite

Figure 5.29: Our neural projections closely match the target skin render but not exactly.
Therefore, we composite the skin render with the projection in order to ob-
tain the final face render.
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Finally, we perform an ablation study to justify our design decisions and parameter
value choices. As discussed in Section 5.3.3, we parameterize our problem using
convex linear combinations of C segments from N known, latent basis vectors ran-
domly sampled near the center of the StyleGAN2 latent space. One main reason for
doing so is to ensure that the inpainted areas, such as eyes and teeth, remain realistic
while optimizing to match the target skin pixels. In our first ablation, we compare
this approach to general unconstrained optimization in the latent space. As shown
in Fig. 5.25, hierarchically optimizing in each of the StyleGAN2 parameter spaces
(W , W+, and S) sacrifices inpainted regions in order to match the skin pixels, re-
sulting in unrealistic eyes and inner-mouth regions. Iterating across these different
spaces works well in the simpler case of projecting a complete image into StyleGAN2.
However, when projecting incomplete renders instead of real images, the missing
non-skin areas have no rendering target and remain largely unconstrained. In this
case, hierarchical optimization occasionally drifts into regions of the latent space
that produce unrealistic inpainting. The proposed convex optimization better lever-
ages correlations between rendered and missing areas, providing better building
blocks for more photorealistic solutions, particularly in the inpainted areas. Next
we must determine the hyperparameters of this convex optimization, namely the
number of basis vectors (N) to use, as well as the number of segments (C) to divide
the parameter vector into. Fig. 5.26 shows the result of projecting 2 different subjects
into StyleGAN2 with varying numbers of basis vectors. Given the overall quality
of the projections and the skin error map, we found that N = 64 is a reasonable
tradeoff of quality over basis size. Note that lower numbers of basis samples (e.g.
4, 16, 32) may predominantly contain samples from one gender, which can result in
inpainting a male face with long hair and earrings as we see in the first row. Fig. 5.27
shows a similar evaluation of the number of segments to break the parameter vec-
tor into. We found that 64 segments per resolution layer (C = 1152) are enough to
provide good fits to the skin renders, while more than 64 did not improve results.
In addition, an important component of our optimization is the face segmentation
loss derived from [Yu et al., 2020] (Eq. 5.8). In Fig. 5.28 we show that optimizing
with this loss helps the neural render to match facial features like the mouth region.
Note that in all the ablation figures so far, we have shown pure projection results
before our compositing step (Section 5.3.3). Despite our efforts to optimize within
the StyleGAN2 space to match a desired face skin render, the goal is actually not to
match it perfectly but rather generate plausible inpainting for the surrounding pix-
els. Fig. 5.29 shows how close the neural projection can match a target render, and
additionally shows the final result obtained via our compositing approach, keeping
the realistically inpainted pixels and the high quality traditional ray-traced pixels.

5.3.5 Dataset Generation

As we mentioned in Section 5.3.1, a second major application of our work is in sup-
port of large-scale dataset generation for deep learning. In particular, our method
can be used to generate an unlimited number of photorealistic face images with cor-
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Figure 5.30: Randomizing different components of the optimization process can result
in different variations of neural face completion (columns 2, 3, 4) given a
single ray-traced sample (column 1), which can be used as a tool for high
quality synthetic data generation.

190



5.4 Chapter Summary

responding ground-truth 3D geometry, appearance maps, viewpoint, and lighting.
Such a dataset would have great value in the fields of monocular 3D face reconstruc-
tion and facial recognition under uncontrolled, in-the-wild conditions. Of course,
one way to generate data samples is to vary the identity, expression, illumination
and viewpoint as we have shown in Section 5.3.4. However, another very power-
ful approach is to vary the random seed used for sampling our latent basis vectors
within the StyleGAN2 domain, which allows us to obtain different inpainting re-
sults even for the same identity, expression, lighting, and viewpoint combination.
Specifically, with different seeds we can synthesize realistic renditions with differ-
ent hairstyles, hair and eye colors, jewelry, clothing, and background, as illustrated
in Fig. 5.30. Furthermore, our method is not limited to only captured data of real
people, but can be applied to fully synthetic 3D face geometry (e.g.as generated
by Chandran et al. [Chandran et al., 2020]). Fig. 5.31 demonstrates photorealistic
renders of fully synthetic digital humans (with known ground-truth 3D geometry,
appearance, viewpoint and lighting) that can help train downstream deep learning
applications. As such, we believe our neural rendering method provides a valuable
tool for many application domains.

5.4 Chapter Summary

This paper has presented Rendering with Style, a novel method for rendering high-
quality, photorealistic digital humans, combining the high degree of controllabil-
ity of traditional rendering with the representative power of a GAN. This new hy-
brid method leverages state-of-the-art techniques for the acquisition, modeling and
rendering of skin appearance to render an incomplete face likeness in an arbitrary
scene, and then project the skin renders into the latent space of a pre-trained image
generator that plausibly synthesizes the missing parts. As a result, sequences of
high-quality but incomplete ray-traced facial geometry are enriched with realistic
hair, ears, eyes, and inner mouth areas that would otherwise require many hours of
work from skilled artists to produce using traditional rendering alone.

Rendering with Style is the first method to leverage multiple, simultaneous neural
projections with an optimization procedure especially designed to avoid overfitting,
which if overlooked can lead to unrealistic results with poor temporal coherency. To
maintain realism, a novel parameterization is derived that provides new building
blocks for estimating photorealistic solutions within a well-behaved convex sub-
space of the latent parameter domain. A novel rendering energy is also proposed
to avoid overfitting and better align the neurally impainted and traditionally ren-
dered face areas. Coherency across multiple neural renderings is promoted via a
new inpainting consistency energy that acts on the missing image areas that are not
constrained by the traditional renderings. The output is a complete, photorealistic
image sequence that retains the identity of the person with artistic control on facial
expression, lighting, and head pose.
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Of course, Rendering with Style is not without its limitations. Like with most deep
learning techniques, our approach can be limited by biases in the datasets used to
pre-train the neural image model. These biases can result in sub-optimal perfor-
mance for certain ethnicities, age groups, head poses, or facial expressions that are
insufficiently captured by the generator’s training data. More specifically, we cur-
rently rely on the StyleGAN2 model that was trained predominantly on portraits
that are nearly frontal-facing. In addition, image generators such as StyleGAN2
capture 3D semantics only implicitly, making it difficult to inpaint some attributes
consistently across different viewpoints (e.g., the complex occlusion and in-plane
motion of long hair). We also found it challenging to consistently vary all scene
components at the same time (expression, illumination and viewpoint). Regarding
resolution, even though we can easily render high-resolution skin patches, the cur-
rent resolution of our inpaintings is limited to the 1024× 1024 spatial resolution of
the last StyleGAN2 layer. Finally, our work has not yet focused on adding artistic
control over the inpainted areas, such as the color of eyes, hair, and hair length, nor
trying to match the inpainted regions to a photograph of a real individual. How-
ever, we believe that simple strategies can be used to alleviate this need, such as
using hand-drawn scribble lines or rendered segmentation masks of simple 3D pri-
ors for regions such as hair [Hu et al., 2015], or even project a real image together
with the traditional renderings to provide reference teeth, eyes, and hair style to
guide the inpainting.

Nonetheless, given the current pace at which research is advancing in the fields of
deep learning and neural rendering, we are confident that these limitations can be
addressed in future work. For instance, StyleGAN2 has just been updated to re-
move aliasing artifacts and better generate animation [Karras et al., 2021], another
step forward that nicely meets our goals. In addition, new image generators are be-
ing developed that do capture a more explicit understanding of the 3D scene [Chan
et al., 2021]. Our approach is flexible and can readily incorporate these recent im-
provements.

We also expect that Rendering with Style will facilitate new advances in other appli-
cations of deep learning, such as monocular facial capture in-the-wild, by provid-
ing a means to generate a virtually unlimited amount of realistic training data with
ground-truth 3D geometry, appearance, lighting, and viewpoint.

Another exciting topic for future work is to explore some of the dimensions of Style-
GAN2 that have been recently identified as highly disentangled and capturing se-
mantically meaningful facial attributes [Abdal et al., 2021]. These findings could
be leveraged to further extend our hybrid rendering pipeline to allow for adding
beard, glasses and altering other facial attributes via simple edits to specific dimen-
sions of our optimized parameter vectors.
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Figure 5.31: Here we show that our method can render fully synthetic, controllable
digital humans, created by a facial geometry variational autoencoder.
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C H A P T E R 6
Conclusion

Facial performance capture has become a fundamental and essential part of almost
every modern visual effects workflow, with actor-generic, in-the-wild real time fa-
cial performance being a long standing moonshot of the visual effects community.
Capturing high quality facial (skin) geometry in real time given an arbitrary cap-
ture scenario (unknown actor, unknown scene, single/multi camera setup etc.)
would enable numerous applications including onset pre-visualization and direc-
tion, speeding up artist workflows, better feedback for actors etc, to state a few.
While it is indeed great to have such capability, the face capture community has
thus far primarily operated with offline, high quality approaches, primarily because
current real time approaches cannot match the quality of offline techniques that are
well engineered, computationally expensive algorithms. However today the indus-
try has reached a stage where real time facial performance capture is an urgent ne-
cessity rather than a convenience. The primary reason for this change is that there is
unprecedented demand for high quality content due to the explosion of streaming
platforms and the multiple means through which people consume entertainment
today. Not only is there demand for high budget movies and series from large stu-
dios, but also from individual content creators on social media, where there is an
emerging market to create digital content with quality on-par with full blown vi-
sual effects houses. This demand manifests itself in the form of tighter and tighter
deadlines that will soon become impossible for existing production workflows to
meet. We have already started to hear of several cases where unreasonable produc-
tion deadlines are causing artists to sacrifice their work-life balance and leading to
burn outs 1.

While real time facial performance is indeed possible today, it operates under a
few assumptions that restrict its use to certain scenarios. The most common as-

1https://nofilmschool.com/problem-vfx-right-now-and-how-fix-it
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sumptions include knowning the subject that will be captured before hand and
having acccess to a large amount of training data for the given subject, or having
access to a particular capture setup or condition at training and inference [Laine et
al., 2017][Lombardi et al., 2018a][Ma et al., 2021][Li et al., 2021b][Cao et al., 2015].
While many of these assumptions are indeed reasonable, the possible scenarios un-
der which one would like to perform face capture is vast and these specialized so-
lutions naturally do not generalize to other situations. As a result, actor-generic,
in-the-wild, real time face capture is still an open problem and will invariably be
solved with deep learning, with solutions ranging from large AI models [Brown et
al., 2020][Ramesh et al., 2022] with billions of parameters to specialized implicit net-
works designed to operate on human faces [Wang et al., 2022]. With that in mind,
like any neural solution, these networks will come with their own requirement of
a large or specialized training database with all kinds of ground truth. Then the
problem of solving generic real time face capture will be reduced to having access
to or the ability to generate high quality training data in a controllable manner for
any and every application scenario.

In this thesis, we recognize this data bottleneck and take preliminary steps towards
addressing semantically meaningful face modelling for controllable data generation
and proposed various techniques and tools that enable application developers and
artists to create virtually an infinite number of training data points for any applica-
tion in the area of face capture.

We address controllable face data generation by looking at three different aspects of
facial data

• Static facial geometry modelling and synthesis (see Chapter 3)

• Dynamic performance or animation synthesis (see Chapter 4)

• Photorealistic facial appearance synthesis (see Chapter 5)

6.0.1 Contributions

Contributions in Geometry Synthesis

We make two main contributions in facial geometry synthesis. We first propose
a semantic deep face model, which combines the semantic interpretability of linear
3D morphable models with the nonlinear expressivity of deep neural networks. Our
semantic deep face model offers familiar blendweight based controls to an artist
to control the expression of the output face shape, while also modleling complex
nonlinear identity specific deformations in the decoder. Our identity-expression
disentanglement enables joint geometry and appearance synthesis and has offers
all capabilities of regular 3D morphable models and serves as an expressive 3D face
prior. We show applications in joint geometry and appearance synthesis, shape
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interpolation, retargeting, and actor specific 2D landmark driven real time facial
performance capture.

Our second contribution is the extension of the previously proposed semantic deep
face model with a novel transformer based architecture that allows for modelling
shapes agnostic of their mesh connectivity. We propose the shape transformer,
which leverages the self-attention mechanism to learn spatial correlations across
points on a face, allowing the neural network to model shapes with an arbitrary
number of points agnostic to how they’re connected. The shape transformer can be
applied to all tasks that the semantic deep face model supports, while empowering
the model with a higher expressivity, even with a much smaller network. The shape
transformer supports new applications in shape super resolution, shape inpainting,
extreme resolution shape modelling with shapes of upto half a million vertices, and
local retargeting.

Our approach for semantically controllable face geometry modelling allows one to
intuitively manipulate a given shape or synthesize novel identities and expressions,
allowing for the creation of high quality static geometry for use in downstream
applications.

Contributions in Performance Synthesis

We proposed to look at the problem of generating facial performances (geometry)
for a given actor (sometimes referred to as the target actor) in two ways i) by re-
targeting existing performances to the target actor, and ii) through a data driven
approach that extends the static geometry models with a notion of time to model
animation.

For the retargeting approach, we proposed a local, anatomically constrained retar-
geting technique for faces. Our method takes a small number of blendshapes for
the source and target character, and can retarget any facial performance from the
source to the target in high fidelity, without compromising the identity of the tar-
get character. Our method qualitatively outperforms standard techniques used in
the industry for facial retargeting including global blendshapes [Lewis et al., 2014],
deformation transfer [Sumner and Popović, 2004] and naive delta transfer. Our
method requires substantially fewer shapes than a global blendshape model and
also produces with outputs with fewer geometric artifacts than deformation trans-
fer. Production workflows have already started to absorb and use the proposed
retargeting technique highlighting its ease of use and compatibility with existing
workflows.

Our second solution for synthesizing facial performances takes a data-driven ap-
proach and extends the semantic deep face models from Chapter 3 by leveraging
a transformer to model a sequence of facial expressions into a performance latent
space. Our approach continues to disentangle facial identity from performance, and
allows for complex manipulations of facial performances like inpainting inbetween
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keyframes, performance denoising, retiming, and even generating an infite number
of synthetic performances via latent space sampling.

The proposed techniques for facial performance synthesis enables the creation of
facial animation for any given identity in a controllable manner for downstream
applications.

Contributions in Appearance Synthesis

The third area in which this thesis makes contributions is in controllable facial ap-
pearance synthesis or the task of creating photorealistic imagery that goes together
with a given geometry. We proposed a hybrid rendering approach, that combines
traditional rendering and neural rendering with a deep generative model for the
creation of photorealistic full head portraits. We formulate our approach as gener-
ator inversion problem, where we optimize for latent parameters of a pre-trained
image generator that best approximate a ray traced skin render(s). This new hy-
brid method leverages state-of-the-art techniques for the acquisition, modeling and
rendering of skin appearance to render an incomplete face likeness in an arbitrary
scene, and then project the skin renders into the latent space of a pre-trained image
generator that plausibly synthesizes the missing parts. As a result, sequences of
high-quality but incomplete ray-traced facial geometry are enriched with realistic
hair, ears, eyes, and inner mouth areas that would otherwise require many hours
of work from skilled artists to produce using traditional rendering alone. Our opti-
mization proposed the first method that can consistently invert a sequence of skin
renders, while inpainting the regions missing in the render like the hair, eyes, cloth-
ing and background.

In the process of doing so, we identified a widely used building block in these
2D generative backbone networks called Adaptive Instance Normalization (AdaIN)
and extended it with AdaConv . As an extension to AdaIN, AdaConv predicts con-
volution kernels and biases from a given style embedding, which can be woven into
the layers of an image decoder to better adjust its behavior at test time. AdaConv ,
similar to AdaIN, can also be utilized in the context of neural style transfer to trans-
fer not only global statistics but also the spatial structure of a style image onto a
content image.

Summary of Contributions

With the contributions listed above, this thesis enables the creation and manipul-
tation of high quality facial geometry in an artist interpretable manner, to produce
virtually an unlimited number of animations for the generated face shapes via re-
targeting or through deep animation synthesis, and to convert the gnerated anima-
tions into a sequence of photorealistic face portraits, allowing for the creation of
an infinitely large dataset of photorealistic faces with access to every ground truth
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scene information like geometry, appearance, lighting, camera etc; and thereby ad-
dressing the crucial data bottleneck required to train future real time face capture
systems.

6.0.2 Limitations

We will now discuss limitations of the tehcniques proposed in this thesis and sug-
gest directions to address these shortcomings.

Geometry Synthesis Our semantic deep face models rely on the assumption that
blendweights are inherently a identity agnostic representation of a facial expression.
While this is true in theory, in practice, we often train these models on finite datasets
where a unique sequence of blendweights might occur only in the performance of a
particular identity. In such cases, our model might learn to spuriously correlate the
blendweight vector with a facial identity, leading to suboptimal disentanglement.
To address this identity leak, alternative parameterizations of facial expressions like
muscle fibre activations could be explored [Choi et al., 2022].

Our neural solutions also do not take into account any physical effects into account
like collisions. Extending the proposed approaches with a differentiable simulator
[Klár et al., 2020][Srinivasan et al., 2021][Yang et al., 2022] could enable us to training
these networks with much less data.

A novel application enabled by the shape transformer is shape inpainting with only
a forward pass. However, this requires the input to be provided in a canonical
space, and devoid of any rigid motion. Extending the inpainting capability of the
shape transformer to operate in arbitrary coordinate systems would enables its use
in practical settings such as marker based face capture.

Performance Synthesis Our retargeting approach, while capable of transferring the
expressiveness of the source performance over to the target, do not necessarily take
into account the style of the target character. Modelling characteristic aspects of
the target character, like a particular mannerism or a speaking style, during the
retargeting might offer additional realism to the results.

Our data driven approach for synthesizing performances makes use of a latent
space transformer. As with any transformer based network, our approach suffers
from poor extrapolation to sequence lengths longer than those used at training time.
We however expect future research in transformers to naturally alleviate this issue.

While our performance synthesis techniques take into account the disentanglement
between facial identity and expression, they do not provide a higher level knob, in
the form of image, text or audio, for driving the generated performance. However
this should be a relatively straightforward addition by incorporating recent multi-
modal encoding techniques like CLIP [Radford et al., 2021].
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Conclusion

Appearance Synthesis We proposed an optimization based approach for consis-
tently inpainting partial face renders with a pre-trained generative model. We ob-
serve that our method requires substantial parameter tweaking to provide visu-
ally pleasing results when provided with challenging viewpoints, expressions and
lighting conditions. Incorporating a 3D aware generative backbone [Chan et al.,
2022] could mitigate this issue. Further, having a 3D aware generative network
that can be finely conditioned on a given facial skin geometry will futher provide
additional benefits like producing photoreal images without needing a costly opti-
mization step.

6.0.3 Future Work

In this thesis, we have primarily looked at the problem of controllable data genera-
tion to train deep neural networks for face capture. Face capture so far has primarily
been seen reduced to facial skin capture. Even though there has been a lot of work
in the capture and modelling of other regions of the face such as the eyes [Bérard
et al., 2016], jaw [Zoss et al., 2018], hair [Beeler et al., 2012] [Winberg et al., 2022]
etc, these techniques often require dedicated hardware setups and separate work-
flows. Future face capture should concentrate on holistic full head capture with
lightweight capture setups. We are already starting to see a lot of progress in this
direction with the rise of neural radiance fields (NERFs) [Mildenhall et al., 2020][Ma
et al., 2021][Wang et al., 2022].

We are at a unique point in time where the rapid rise of technology in the last few
years has led to several disruptive inventions in the space of face capture with tech-
niques like NERFs [Mildenhall et al., 2020][Müller et al., 2022] and diffusion models
[Ho et al., 2020] [Rombach et al., 2021] redefining what was possible and inspiring
new applications. As such, the face capture community is posed with the prob-
lem of figuring out how existing workflows need to adapt and evolve to keep up
with this technological progress as opposed to driving the technological progress
like they did in the past decade. A very important problem that will need to be
sorted out between corporations, academia, lawmakers and artists is the issue of
copyright, consent and the democratization of large scale AI models. We hope that
the techniques presented in this thesis for controllable data generation, where a user
has full knowledge of the list of assets used to generate a photoreal image, will help
alleviate some of these copyright issues going forward and enable the productiza-
tion of large AI models in an ethical manner.

At a even higher level, we need to remind ourselves of the purpose of face capture
moving forward. So far it’s primary purpose has served media and entertainment
and has enabled studios and artists to story tell in a convincing fashion. It is also in-
creasingly playing an important role in medicine with simulation based approaches
helping in surgery planning [Dorda et al., 2022]. With the rise of the virtual tele-
conferencing, augmented and virtual reality, and perhaps inevitable future virtual
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worlds where people spend a majority of their time, what purpose does face cap-
ture serve? What else does it have to do that we cannot do today? AI progress in
the last 2 year especially is changing the landscape for face capture at such a rapid
pace that the future might already be here. We just have to see through the clutter.
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A P P E N D I X A
Additional Experiments

A.1 Geometry Synthesis

Here we provide additional experimental results and details of the Shape Trans-
former (see Section 3.3). In this section, we evaluate several design choices and
measure their effect on the performance of the Shape Transformer. Since training
the Shape Transformer exhaustively on a complete dataset, under all possible con-
figurations was a challenge computationally, we used a reasonably sized toy dataset
consisting of 10 subjects from the SDFM dataset [Chandran et al., 2020] in 24 differ-
ent expressions, resulting in a total of 240 shapes for our ablation study. We primar-
ily analyzed two aspects of performance (i) the convergence of the network and (ii)
the reconstruction quality to make a design choice.

A.1.1 Choice of Architecture

In this experiment, we evaluate the effect of 4 incremental changes to a naive trans-
former decoder in a Shape Transformer setting. We begin with (i) a naive XCiT
transformer decoder with a single linear layer to predict the output offsets, and in-
clude our style modulation in variant (ii). Variant (iii) adds a transformer encoder
to variant (iii). Finally, variant (iv) is the full Shape Transformer model that replaces
the single layer offset predictor in the previous variants with a 4 layer MLP with
residual connection. This effect of these incremental changes on the performance of
the Shape Transformer is shown in Fig. A.1.

203



Additional Experiments

Ground 
Truth

Simple
Decoder

Styled
Decoder

Styled
Decoder

+ Encoder

Shape
Transformer

Shapeformer

120100806040

100

80

60

40

Iterations

Simple Decoder
Styled Decoder
Styled Decoder + Encoder
Shape Transformer

20

Lo
ss

200

Figure A.1: Our architectural changes incrementally improve the reconstruction qual-
ity, with the proposed Shape Transformer architecture achieving an optimal
balance between reconstruction quality and convergence.

A.1.2 Choice of Attention Mechanism.

Another design choice in the Shape Transformer is the attention mechanism. As
we discuss in Section 3.3, Self attention [Vaswani et al., 2017] suffers from quadratic
complexities and cannot be used for very long sequences, and thus motivated our
use of the cross covariance attention introduced in [El-Nouby et al., 2021]. In
Fig. A.2, we show the effect of choice of attention on the Shape Transformer. We
find that Standard attention achieves better results, but is impractical for our pur-
poses due to its limiting sequence lengths. We note that the Shape Transformer will
benefit from any improvements made to the self attention mechanism in transform-
ers as it remains a heavily researched topic.

A.1.3 Additive vs. Concatenated Position Encoding.

We also evaluate the choice of additive vs. concatenated position encoding. As seen
in Fig. A.3, concatenating the latent positions and the latent offsets works best in
our use case.
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Transformer indicated concatenated position encoding works best for this
setting.
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Figure A.4: Shape Transformers are built with GeLU activation functions because they
provide the highest reconstruction quality and fast convergence rate.

A.1.4 Choice of Activation Function.

We now measure the effect of different activation functions used by the transformer
blocks in our architecture, on the convergence and reconstruction quality. We com-
pare three different activation functions, GeLU, ReLU and Sine. Fig. A.4 illustrates
the reconstruction errors using the different functions, as well as a plot of the con-
vergence. As can be seen, GeLU activation functions provide the best quality and
convergence speed.

A.2 Performance Synthesis

In this section, we provide additional results and details of the our 4D morphable
models for faces (see Section 4.3).

A.2.1 Training Details

We train all the modules in our motion-model end-to-end, with a reconstruction
loss on the generated performance. The reconstructed 3D shapes are compared to
the ground truth performance with an MSE objective. For most of the experiments
in Section 4 of the main paper, we trained our model on fixed-length sequences of
60 frames. In the next section we present an ablation on variable length training.
We train 3 different models, one for each of the 3 different datasets that we describe
in Section 4.3.4. Training is performed on an Nvidia 3090 GPU with a batch size of
64, a learning rate of 1e−4, and the Adam optimizer.
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A.2 Performance Synthesis

A.2.2 Additional Architecture Details

Fig. 4.20 of the main text provides a network overview of our disentangled motion
model. The main components were described in detail in the main text, however
due to space limitations, we describe the smaller components here in the supple-
mental material. Specifically, we now show details of the Blendweights Embedding
network and the Time Encoder network. For both networks, please refer to Fig. A.5.
The Blendweights Embedding network processes vectors of blend weights for dif-
ferent frames independently, and the multiple outputs of this MLP are processed by
the performance encoder transformer. The Time Encoder takes time values as input
and creates learned position codes for each time instant.

A.2.3 Human body Experiments

For our experiments on the AMASS dataset [Mahmood et al., 2019], we do not
regress vertex displacements as we do in the case of faces, but instead regress to
continuous 6D joint angle representations [Zhou et al., 2019] as done in v-poser
[Pavlakos et al., 2019]. Since the SMPL model is already a disentangled parameteric
model of the human body, we use a simplified form our architecture for training
on the AMASS dataset which is as shown in the figure Fig. A.6. While our training
objectives are identical to Actor [Petrovich et al., 2021], our modulated architecture
offers additional benefits as demonstrated in Section 4.3.4.

Figure A.5: Blendweights embedding architecture: On the left, we show a detailed look at
our blendweights embedding MLP, which processes blend weights of frames
independently. The multiple outputs of this MLP are then processed by
the performance encoder transformer. Time encoder: On the right half, we
see the architecture of our Time encoder MLP γ(.). Our time encoder is a
simple 3 layer MLP with sinusoidal activations, which takes time as input
and outputs a learned position code for each time instant.

A.2.4 Baseline Comparisons

In the absence of our learned motion manifold, a simple baseline to generate facial
animations is to perform a random walk in the parametric space of a blendshape
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Figure A.6: For training our style modulated performance decoder on human bodies,
we resort to the parameteric representation of the SMPL model and use it
as fixed differentiable module at training time to penalize vertex positions
similar to Petrovic et al.

rig. Such a random walk often results in uncanny performances with noisy trajecto-
ries Fig. A.7 (left), whereas our method results in smooth nonlinear trajectories that
better resemble those obtained from a captured performance. Kindly refer to our
supplementary video for an animation example.

In the case of inpainting keyframes, we extend of the main paper with additional
baselines of choosing the Nearest Neighbor performance from the dataset that
matches the keyframes best in a least squares sense. However as seen in Fig. A.7
(right), this nearest performance clearly does not match many of the keyframes well.
Also in the context of keyframe interpolation, a random walk in blendshape space
can match the starting keyframe well through initialization, but is not guaranteed to
match the remaining keyframes. Finally, we also compare the result of our keyframe
interpolation with an off-the-shelf tool for motion planning 1, which requires care-
ful and cumbersome selection of parameters, and still yields robotic performances
similar to those from linear interpolation. In contrast, our method does not suffer
from these drawbacks and generates realistic, nonlinear inpainting that perfectly
satisfies the user-defined keyframes.

We now present additional ablation studies that motivate our design choices and
measure the effect of alternative options on the performance of our network.

A.2.5 Variable Sequence Length Training

As discussed in the main text, we model our performance encoder as a transformer,
which is an architecture that is naturally suited for handling input sequences of ar-

1https://github.com/meco-group/omg-tools
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Figure A.7: Left: Additional baseline experiments comparing the trajectories generated
by our method vs. random walks in a blendshape space. Right: For a
keyframe interpolation setting, we provide additional visualizations of tra-
jectories generated by picking the closest performance from the training
dataset, and one obtained through off-the-shelf motion simulation tools.
Kindly refer to our supplemental video where our method qualitatively pro-
vides the best result in comparison to such simple baselines.

bitrary length. Most of the results in our work are created with models trained on
fixed-length sequences of 60 frames. In this ablation, we try to understand the effect
of varying sequence lengths at training time on the performance of the model. We
train two different models, one trained with fixed length sequences of 60 frames
and a batch size of 64. Then, we re-train the same network with variable sequence
lengths and a batch size of 1. Specifically, the variable lengths correspond to the full
sequence lengths available at training time. In the SDFM dataset [Chandran et al.,
2020], facial performances range from 110 to 617 frames in length. At each train-
ing iteration, the full performance is decoded. The convergence results of training
both models is shown in Fig. A.8. Training is slower with varying frame lengths,
but for the same number of iterations the variable length model has seen effectively
less samples because of the batch size being set to 1. Unlike the work of Petro-
vich et al. [Petrovich et al., 2021], our variable-length model does converge without
the need for pre-training with 60 frame-length sequences. This is likely due to our
style modulated transformer decoder. Also of note, we observe that variable length
training yields a model that can extrapolate better to longer sequence lengths at test
time.

A.2.6 Encoder-Decoder Architecture

As we discuss in Section 3.1.1 of the main paper, the architectural choice of the
shape encoder (and decoder) can be arbitrarily complex. In our work, we use a
simple MLP similar to [Chandran et al., 2020]. However, recent progress in graph
convolutional neural networks has shown that exploiting the topology of a mesh
during convolution can be beneficial. We wish to show that our disentangled mo-
tion model is not tied to any shape encoder/decoder framework, and can benefit
other models as well, like graph convolution networks. Thus, we evaluate the effect
of replacing the MLP in the encoder and decoder with an equivalent encoder and
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Figure A.8: We compare training our model on fixed length sequences of 60 frames with
a varying sequence length. Even without pre-training, our model shows
reasonable convergence. Note that at a given instance in time, the variable
length model has effectively seen 1/64th of the number of training samples
as the other Fixed model, due to different batch sizes.

decoder from Spiral Net++ [Gong et al., 2019]. Fig. A.9 contains a detailed break-
down of both our encoder variants. The architecture of the decoder is essentially
the same but in the reverse direction. In Table A.1, we show the validation error
on the SDFM dataset [Chandran et al., 2020]. Both encoder/decoder frameworks
naturally complement our disentangled motion model, and we can see that having
optimal shape encoder/decoders that capture spatial correlations like Spiral Net++
performs better than a simple MLP.

Table A.1: Architecture of Shape Encoder - Decoder
Architecture Validation error (mm)
SDFM [Chandran et al., 2020] 1.47
SpiralNet++ [Gong et al., 2019] 1.33
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A.2 Performance Synthesis

Figure A.9: We breakdown two different architectural choices for our shape encoder. On
the top, we see the simple 4 layer MLP that is similar to the one used by
Chandran et al.. A flattened list of vertex displacements is processed by
a MLP to eventually result in the identity code zid. In the bottom half of
the figure, we show an alternate breakdown of our encoder using dilated
spiral convolutions, where each vertex spiral is processed independently by
the model. On top of each linear layer, the number of features associated
per vertex is shown in green. Below each linear layer, the spiral length and
the dilation used at that layer is displayed in blue. After 3 layers of spiral
convolutions, the per-vertex features are flattened to form a vector, which is
subsequently passed through a final linear layer to obtain the identity code
zid.

A.2.7 Performance Code Size

Recall that our performance encoder (Section 3.1.2 of the main text) reduces input
performances to a 128-dimensional performance code. To evaluate different sizes
of the performance code, we train our model to predict performance codes of size
128, 256, 512 dimensions, respectively. We perform this study on the SDFM dataset
and report numbers on our validation set (see Fig. A.10). As we can see from Ta-
ble A.2, code dimensions 128 and 256 are comparable in performance. 512 starts
to overfit on the training set and therefore generalizes poorly. On larger datasets,
e.g. [Mahmood et al., 2019], bigger networks could perform better, in particular
at higher-dimensional performance codes. We leave such a further exploration to
future work.
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Figure A.10: We show the convergence of our model for performance codes of 3 different
sizes. We use a performance code of 128 dimensions for our experiments.
Without a large enough dataset, using a high dimensional performance
code results in poor validation performance.

A.2.8 Transformer Capacity

Finally, we also perform an ablation on the number of layers and attention heads
used in our performance transformers Fig. A.11. Empirically we observed faster
convergence when using shallow transformers, while the number of self attention
heads did not have a major impact on performance. We used 4 transformer blocks
with 8 heads in both our encoder and decoder.

A.2.9 Additional Experiments

Section 4.3.4 in the main text illustrated several applications of our method. We
now highlight even further applications and experiments that our model supports.

Retiming Our method allows for retiming captured performances by simply
modifying the relative positions of key-frames that are input to our performance
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Table A.2: Size of the Performance Code
Dim Validation error (mm)
128 1.47
256 1.62
512 3.68

enoder, and also by modifying the position encoding of the shape/performance
codes that are fed as input to the decoder. This allows us to speed up, slow down
and even reverse performances in a straightforward manner. Please refer to our
supplementary video for this result.

Style Mixing Another application that is enabled by our method is style mixing.
Our style-based decoder allows for the mixing and matching of styles at different
layers of the decoder and can be readily used to produce novel performances. In
our supplementary video, we show a style mixed performance which was obtained
by mixing the styles of two different captured performances at different stages of
the decoder.

Encoding Robustness Finally, we perform an experiment to test the robust-
ness of our performance encoder with respect to the number of input frames re-
quired at inference time in order to obtain a valid performance code. Since the
encoder is a transformer, any number of input frames may be provided. For this ex-
periment, we trained the model on performances of length 60 frames, and then we
encoded a new performance several times, divided into 10, 20, 30, and 60 frames, re-
spectively, yielding 4 different performance codes, which are then passed through
our decoder to reconstruct 4 sets of 60 frames. We observe that the performance
codes obtained from even partial information are able to reasonably capture the
essence of the original performance. Interestingly, we observe that this effect also
depends on the facial performance itself. For example, for performances where
there is a lot of movement, the performance encoder requires more input frames in
order to capture all movements, while for performances with less articulation even
a few frames are sufficient. For this result, please refer exclusively to the animations
in the supplementary video.

A.3 Adaptive Convolutions

Here we show additional results and evaluations of using AdaConv (see Sec-
tion 5.2) for style transfer and generative modelling.
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Figure A.11: Convergence of our performance transformers of different capacities on a
subset of the AMASS dataset. The rapid convergence of shallow trans-
formers could be attributed to the limited size of our training datasets.

A.3.1 Other Results: Multiscale Style Transfer

As described in the main text Section 5.2, the predicted kernels and biases in Ada-
Conv are applied at every resolution of the decoder independently. This means that
it is easy to mix styles at different scales during decoding, for example use the ker-
nels predicted from one style for the coarse scale layers, and the kernels predicted
from a different style for the fine scale layers. We illustrate such an application
in Fig. A.12, showing both the complete style-transferred results for two different
styles independently, and in the center of the figure we show the combined mul-
tiscale style transfer result where the coarse and fine scale styles come from the
different style images. The content image is that on the first row of Fig. 5.4, main
text.

In this supplemental section, we present supporting experiments and ablation stud-
ies that validate some of our design choices.
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Figure A.12: AdaConv allows users to combine different styles at different resolutions
to achieve interesting artistic effects.

A.3.2 Comparisons to multi-scale AdaIN

As we show in Section 5.2, our decoder applies the predicted kernels at multiple
scales. This is different from the simple decoder of AdaIN that transfers feature
statistics only at the lowest scale. We modify the standard AdaIN decoder such
that feature statistics are transferred at multiple scales of the decoder, similar to our
decoder. We refer to this variant of AdaIn for style transfer as AdaIN-Multiscale.
We also modify our multiscale AdaConv decoder such that it applies the predicted
kernels only at the lowest spatial resolution. We refer to this variant of our archi-
tecture that performs adaptive convolutions only at the lowest spatial resolution as
simply AdaConv-Singlescale. We train the newly defined modules AdaIn-Multiscale,
AdaConv-Singlescale similarly to AdaIN and AdaConv respectively. In Fig. A.13, we
qualitatively compare the style transfers resulting from the 4 methods.

A.3.3 Effective of style dimension and groups across scales

In Fig. A.14, we show how changing the number of groups in our decoder, and the
style dimension sd can affect the resulting style transfer.

A.3.4 Effect of kernel size

The predicted kernel size is a hyper-parameter in our method that is set by the
user at design time. The kernel size has an interesting effect on the result of the
style transfer. To demonstrate this qualitatively, we train a dedicated decoder, each
with sd = 64 and predict kernels of varying sizes {1, 3, 5, 7}. We present qualitative
results in Fig. A.15. As one would expect, increasing the size of the predicted kernel,
distorts the content further. Using smaller kernels preserves the contours on the
content image better.
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Figure A.13: We qualitatively compare AdaIN, AdaConv-Singlescale (which applies
adaptive convolutions only at the lowest scale), AdaIN-Multiscale (the
modified decoder for AdaIN where statistics are transferred at all scales of
the decoder) and AdaConv (our decoder which applies adaptive convolu-
tions at all scales). For this experiment, both AdaConv models use kernel
predictors that predict kernels of size 3x3 and sd = 64. We see that the
AdaConv models can result in style transfers with less artifacts and can
capture the structural properties of the style image, while the multiscale
AdaIN variant seems to remain faithful to the content the most.

(a) Style (b) Content
(c) AdaConv 

(ng=1, 
sd=64)

(d) AdaConv 
(ng=[1, 1/2, 1/4, 1/8], 

sd=64)

(e) AdaConv 
(ng=[1, 1/2, 1/4, 1/8], 

sd=256)

(f ) AdaConv 
(ng=[1, 1/2, 1/4, 1/8], 

sd=512)

Figure A.14: (a) The input style image (b) the content image (c) AdaConv decoder
trained with ng = 1 at all scales and sd = 64. (d-f) AdaConv decoder
trained with an decreasing number of groups ng = {1, 1/2, 1/4, 1/8} at
each scale and sd = 64, 256, and 512 respectively. Although qualitatively,
the results look similar for each of these configurations, balancing the de-
coder’s capacity across multiple scales by varying the groups helps with
stabilizing the training.
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Style Content 1 x 1 3 x 3 5 x 5 7 x 7

Figure A.15: Predicting kernels of bigger sizes alters the structure of the content image
more, while kernels of lower sizes preserve contours in the content better.

A.3.5 Effect of normalization

AdaIN normalizes each channel in the content features before transferring the fea-
ture statistics from the style image. In our method, since we predict depthwise-
separable kernels that convolve with the content features directly, we found that the
explicit normalization of the content features is not necessary. In Fig. A.16, we show
multiple examples of style transfers where we apply AdaConv with and without
normalizing the input features. For this purpose, two separate models were trained.
Though qualitatively the results look similar, we find that normalizing the input fea-
tures before applying AdaConv helps with training stability and aids convergence.

A.3.6 Weighting the style loss

Since AdaConv directly manipulates both the statistical and structural properties of
the content image, it can result in style transfers that prefer the style image structure
much more than AdaIN. We would like to note that even after explicitly increasing
the weight on the style loss, AdaIN cannot produce similar results. To illustrate this,
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Figure A.16: We observed that explicitly normalizing the content features isn’t neces-
sary for AdaConv although it helps with convergence. For this experi-
ment, AdaConv uses kernel predictors that predict kernels of size 3x3 and
sd = 64.

we re-train both AdaConv and AdaIN by giving varying importance (λS) to the
style loss {1, 10, 100}. The original implementation of AdaIN uses λS = 10. For this
experiment, to remain fair to AdaIN, we apply the proposed adaptive convolutions
only at the lowest scale of the decoder. The rest of the decoder for AdaConv is
identical to the one used by AdaIN. As we see in Fig. A.17, even with a high weight
of 100 on the style loss, AdaIN cannot recreate the style structure in the final result
as well as AdaConv . We further observe that a higher weight on the style for
AdaConv results in greater structural modifications to the content image. Therefore,
AdaConv offers the possibility for users to choose a style weight that will yield the
desired style transfer.

A.3.7 Additional results for generative models

Quantitative Results

In Table A.3, we provide the FID metric of using AdaConv in styleGAN2’s generator
[Karras et al., 2020a]. For these results, we train the modified generator from Fig. 9
of the main paper on single Nvidia2080Ti with a batch size of 4. The discriminator
only saw a total of 1.2 million real images during training in our case compared to
around 25 million images in [Karras et al., 2020a]. Though our FID metrics are well
below the state of the art on all the three datasets, our initial results are qualitatively
promising and indicate that our method can be also used in generative settings
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AdaConv

Content

AdaIN

weight = 1 weight = 10 weight = 100 weight = 1 weight = 10 weight = 100 weight = 1 weight = 10 weight = 100

AdaConv

AdaIN

Figure A.17: We show the effect of varying the weight of the style loss for both AdaConv
and AdaIN. For AdaConv, we use a kernel size of 3x3 and sd = 64. We can
see that even with a high weight on the style, AdaIn is not able to produce
structure-aware style transfer like AdaConv.

too. We intend to continue our exploration of using AdaConv for such generative
networks in the future.

Dataset niters FID
FFHQ (256 x 256) 300K 22.15

CelebHQ (256 x 256) 300K 25.12
AFHQ-Wild (256 x 256) 300K 10.69
AFHQ-Dog (256 x 256) 300K 18.27

Table A.3: Preliminary FID metrics of using AdaConv instead of AdaIN in styleGAN2
like generative network.

Qualitative Results

In Fig. A.18, Fig. A.19, Fig. A.20 and Fig. A.21, we show synthetic images generated
by using the AdaConv block in styleGAN2 as discussed in the main text. All images
shown in these figures were generated by our network and any likeness to persons
living/dead is purely coincidental.
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Additional Experiments

Figure A.18: Uncurated generations (ψ = 0.5) on FFHQ dataset at 256 x 256
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A.3 Adaptive Convolutions

Figure A.19: Uncurated generations (ψ = 0.5) on CelebHQ dataset at 256 x 256
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Additional Experiments

Figure A.20: Uncurated generations (ψ = 0.5) on the AFHQ-wild dataset at 256 x 256
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A.3 Adaptive Convolutions

Figure A.21: Uncurated generations (ψ = 0.5) on the AFHQ-Dog dataset at 256 x 256
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tic deformation transfer. ACM Trans. Graphics (Proc. SIGGRAPH), 28(3), 2009.

[Beeler and Bradley, 2014] Thabo Beeler and Derek Bradley. Rigid stabilization of facial
expressions. ACM Transactions on Graphics (TOG), 33(4):44, 2014.

[Beeler et al., 2010] Thabo Beeler, Bernd Bickel, Paul Beardsley, Bob Sumner, and Markus
Gross. High-quality single-shot capture of facial geometry. ACM Trans. Graphics (Proc.
SIGGRAPH), 29(3):40:1–40:9, 2010.

[Beeler et al., 2011] Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel, Paul Beard-
sley, Craig Gotsman, Robert W. Sumner, and Markus Gross. High-quality passive facial
performance capture using anchor frames. ACM Trans. Graphics (Proc. SIGGRAPH), 30,
2011.

[Beeler et al., 2012] Thabo Beeler, Bernd Bickel, Gioacchino Noris, Paul Beardsley, Steve
Marschner, Robert W Sumner, and Markus Gross. Coupled 3d reconstruction of sparse
facial hair and skin. ACM Trans. Graphics (Proc. SIGGRAPH), 31(4):1–10, 2012.

226



References

[Bérard et al., 2014] Pascal Bérard, Derek Bradley, Maurizio Nitti, Thabo Beeler, and
Markus H Gross. High-quality capture of eyes. ACM Trans. Graphics (Proc. SIGGRAPH),
33(6):223–1, 2014.

[Bérard et al., 2016] Pascal Bérard, Derek Bradley, Markus H. Gross, and Thabo Beeler.
Lightweight eye capture using a parametric model. ACM Trans. Graph., 35(4):117:1–
117:12, 2016.

[Bhagavatula et al., 2017] Chandrasekhar Bhagavatula, Chenchen Zhu, Khoa Luu, and
Marios Savvides. Faster than real-time facial alignment: A 3d spatial transformer net-
work approach in unconstrained poses. CoRR, 2017.

[Bhat et al., 2013] Kiran S. Bhat, Rony Goldenthal, Yuting Ye, Ronald Mallet, and Michael
Koperwas. High fidelity facial animation capture and retargeting with contours. In
Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
page 7–14. Association for Computing Machinery, 2013.

[Blanz and Vetter, 1999] Volker Blanz and Thomas Vetter. A morphable model for the
synthesis of 3d faces. In ACM Trans. Graphics (Proc. SIGGRAPH), number 1999, pages
187–194, 1999.

[Blanz et al., 2004] Volker Blanz, Kristina Scherbaum, Thomas Vetter, and Hans-Peter Sei-
del. Exchanging Faces in Images. Computer Graphics Forum, 2004.

[Bogo et al., 2017] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
Dynamic FAUST: Registering human bodies in motion. In IEEE Computer Vision and
Pattern Recognition (CVPR), 2017.

[Booth et al., 2016a] J. Booth, A. Roussos, S. Zafeiriou, A. Ponniahy, and D. Dunaway.
A 3d morphable model learnt from 10,000 faces. In IEEE Computer Vision and Pattern
Recognition (CVPR), volume 00, pages 5543–5552, June 2016.

[Booth et al., 2016b] James Booth, Anastasios Roussos, Stefanos Zafeiriou, Allan Ponniah,
and David Dunaway. A 3d morphable model learnt from 10,000 faces. IEEE Computer
Vision and Pattern Recognition (CVPR), pages 5543–5552, 2016.

[Borno et al., 2018] Mazen Al Borno, Ludovic Righetti, Michael J. Black, Scott L. Delp,
Eugene Fiume, and Javier Romero. Robust physics-based motion retargeting with re-
alistic body shapes. In ACM / Eurographics Symposium on Computer Animation, 2018.

[Bouaziz and Pauly, 2014] Sofien Bouaziz and Mark Pauly. Semi-supervised facial ani-
mation retargeting. 2014.

[Bouaziz et al., 2013] Sofien Bouaziz, Yangang Wang, and Mark Pauly. Online modeling
for realtime facial animation. ACM Trans. Graphics (Proc. SIGGRAPH), 32(4), 2013.

[Boukhayma et al., 2019] Adnane Boukhayma, Rodrigo de Bem, and Philip H.S. Torr. 3d
hand shape and pose from images in the wild. In IEEE Computer Vision and Pattern
Recognition (CVPR), 2019.

227



References

[Bouritsas et al., 2019] G. Bouritsas, S. Bokhnyak, S. Ploumpis, S. Zafeiriou, and M. Bron-
stein. Neural 3d morphable models: Spiral convolutional networks for 3d shape repre-
sentation learning and generation. In IEEE International Conference on Computer Vision
(ICCV), pages 7212–7221, 2019.

[Bradley et al., 2010] Derek Bradley, Wolfgang Heidrich, Tiberiu Popa, and Alla Sheffer.
High resolution passive facial performance capture. ACM Trans. Graphics (Proc. SIG-
GRAPH), 29(4):41, 2010.

[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901, 2020.

[Brox et al., 2004] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical
flow estimation based on a theory for warping. In European Conference on Computer
Vision (ECCV), volume 3024, pages 25–36, May 2004.

[Brunton et al., 2012] Alan Brunton, Augusto Salazar, Timo Bolkart, and Stefanie Wuhrer.
Comparative analysis of statistical shape spaces. CoRR, abs/1209.6491, 2012.

[Brunton et al., 2014] Alan Brunton, Timo Bolkart, and Stefanie Wuhrer. Multilinear
wavelets: A statistical shape space for human faces. CoRR, abs/1401.2818, 2014.

[Bulat and Tzimiropoulos, 2017] Adrian Bulat and Georgios Tzimiropoulos. How far are
we from solving the 2d & 3d face alignment problem? (and a dataset of 230, 000 3d
facial landmarks). IEEE International Conference on Computer Vision (ICCV), pages 1021–
1030, 2017.

[Cao et al., 2013] Chen Cao, Yanlin Weng, Stephen Lin, and Kun Zhou. 3d shape regres-
sion for real-time facial animation. ACM Trans. Graphics, 32(4):41:1–41:10, 2013.

[Cao et al., 2014a] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou. Facewarehouse: A 3d
facial expression database for visual computing. IEEE Transactions on Visualization and
Computer Graphics, 20(3):413–425, 2014.

[Cao et al., 2014b] Chen Cao, Qiming Hou, and Kun Zhou. Displaced dynamic expres-
sion regression for real-time facial tracking and animation. ACM Trans. Graphics (Proc.
SIGGRAPH), 33(4), 2014.

[Cao et al., 2014c] Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun. Face alignment by
explicit shape regression. IEEE Journal on Computer Vision, 107(2):177–190, 2014.

[Cao et al., 2015] Chen Cao, Derek Bradley, Kun Zhou, and Thabo Beeler. Real-time high-
fidelity facial performance capture. ACM Trans. Graphics, 34(4), jul 2015.

228



References

[Cao et al., 2016] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. CoRR, abs/1611.08050, 2016.

[Carrigan et al., 2020] Emma Carrigan, Eduard Zell, Cédric Guiard, and Rachel McDon-
nell. Expression packing: As-few-as-possible training expressions for blendshape
transfer. Computer Graphics Forum, 39, 2020.

[Chan et al., 2021] Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gor-
don Wetzstein. Pi-gan: Periodic implicit generative adversarial networks for 3d-aware
image synthesis. In IEEE Computer Vision and Pattern Recognition (CVPR), pages 5799–
5809, June 2021.

[Chan et al., 2022] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Box-
iao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh
Khamis, Tero Karras, and Gordon Wetzstein. Efficient geometry-aware 3D generative
adversarial networks. In CVPR, 2022.

[Chandran et al., 2020] Prashanth Chandran, Derek Bradley, Markus Gross, and Thabo
Beeler. Semantic deep face models. In International Conference on 3D Vision, pages 345–
354, 2020.

[Chandran et al., 2022] Prashanth Chandran, Gaspard Zoss, Markus Gross, Paulo Go-
tardo, and Derek Bradley. Shape transformers: Topology-independent 3d shape mod-
els using transformers. In Computer Graphics Forum (Proc. Eurographics), 2022.

[Chaudhuri et al., 2019] Bindita Chaudhuri, Noranart Vesdapunt, and Baoyuan Wang.
Joint face detection and facial motion retargeting for multiple faces. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9719–9728,
2019.

[Chen and Kim, 2021] Zhixiang Chen and Tae-Kyun Kim. Learning feature aggregation
for deep 3d morphable models. In IEEE Computer Vision and Pattern Recognition (CVPR),
2021.

[Chen and Schmidt, 2016] Tian Qi Chen and Mark Schmidt. Fast patch-based style trans-
fer of arbitrary style. arXiv preprint arXiv:1612.04337, 2016.

[Chen and Zhang, 2019] Zhiqin Chen and Hao Zhang. Learning implicit fields for gener-
ative shape modeling. IEEE Computer Vision and Pattern Recognition (CVPR), 2019.

[Chen et al., 2017a] Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, and Gang Hua.
Coherent online video style transfer. In IEEE International Conference on Computer Vision
(ICCV), pages 1114–1123, 2017.

[Chen et al., 2017b] Dongdong Chen, L. Yuan, Jing Liao, Nenghai Yu, and G. Hua. Style-
bank: An explicit representation for neural image style transfer. IEEE Computer Vision
and Pattern Recognition (CVPR), pages 2770–2779, 2017.

229



References

[Chen et al., 2018] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang Hua.
Stereoscopic neural style transfer. In IEEE Computer Vision and Pattern Recognition
(CVPR), June 2018.

[Chen et al., 2020a] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and G. Hua. Ex-
plicit filterbank learning for neural image style transfer and image processing. IEEE
transactions on pattern analysis and machine intelligence, 2020.

[Chen et al., 2020b] Renwang Chen, Xuanhong Chen, Bingbing Ni, and Yanhao Ge. Sim-
swap: An efficient framework for high fidelity face swapping. In MM ’20: The 28th
ACM International Conference on Multimedia, pages 2003–2011. ACM, 2020.

[Chen et al., 2021] Lele Chen, Chen Cao, Fernando De la Torre, Jason M. Saragih, Chen-
liang Xu, and Yaser Sheikh. High-fidelity face tracking for ar/vr via deep lighting
adaptation. In IEEE Computer Vision and Pattern Recognition (CVPR), pages 13059–
13069. Computer Vision Foundation / IEEE, 2021.

[Choi et al., 2018] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun
Kim, and Jaegul Choo. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In IEEE Computer Vision and Pattern Recognition
(CVPR), pages 8789–8797, jun 2018.

[Choi et al., 2020] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. StarGAN
v2: Diverse image synthesis for multiple domains. In IEEE Computer Vision and Pattern
Recognition (CVPR), pages 8188–8197. IEEE, jun 2020.

[Choi et al., 2022] Byungkuk Choi, Haekwang Eom, Benjamin Mouscadet, Stephen
Cullingford, Kurt Ma, Stefanie Gassel, Suzi Kim, Andrew Moffat, Millicent Maier,
Marco Revelant, Joe Letteri, and Karan Singh. Animatomy: An animator-centric,
anatomically inspired system for 3d facial modeling, animation and transfer. In ACM
Trans. Graphics (Proc. SIGGRAPH Asia), 2022.

[Chollet, 2016] François Chollet. Xception: Deep learning with depthwise separable con-
volutions. CoRR, 2016.

[Chuang and Bregler, 2002] Erika Chuang and Christoph Bregler. Performance driven fa-
cial animation using blendshape interpolation. Computer Science Technical Report, Stan-
ford University, 2, 01 2002.

[Community, 2018] Blender Online Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[Cook and Torrance, 1981] Robert Cook and Kenneth E. Torrance. A reflectance model
for computer graphics. ACM Trans. Graphics (Proc. SIGGRAPH), 15(3):301–316, 1981.

[Costigan et al., 2014] Timothy Costigan, Mukta Prasad, and Rachel McDonnell. Facial
retargeting using neural networks. page 31–38. Association for Computing Machinery,
2014.

230



References

[Debevec et al., 2000] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker,
Westley Sarokin, and Mark Sagar. Acquiring the reflectance field of a human face. In
ACM Trans. Graphics (Proc. SIGGRAPH), pages 145–156. ACM Press/Addison-Wesley
Publishing Co., ACM, 2000.
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Marangonda, Chris Umé, Mr. Dpfks, Carl Shift Facenheim, Luis RP, Jian Jiang, Sheng
Zhang, Pingyu Wu, Bo Zhou, and Weiming Zhang. Deepfacelab: Integrated, flexible
and extensible face-swapping framework, 2021.

[Petrovich et al., 2021] Mathis Petrovich, Michael J. Black, and Gül Varol. Action-
conditioned 3D human motion synthesis with transformer VAE. In IEEE International
Conference on Computer Vision (ICCV), pages 10985–10995, 2021.

[Ploumpis et al., 2020] Stylianos Ploumpis, Evangelos Ververas, Eimear O’Sullivan,
Stylianos Moschoglou, Haoyang Wang, Nick Pears, William Smith, Baris Gecer, and
Stefanos P Zafeiriou. Towards a complete 3d morphable model of the human head.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[Pons-Moll et al., 2015] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and
Michael J. Black. Dyna: A model of dynamic human shape in motion. ACM Trans.
Graphics (Proc. SIGGRAPH), 34(4):120:1–120:14, August 2015.

[Press et al., 2021] Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long:
Attention with linear biases enables input length extrapolation, 2021.

[Qi et al., 2017a] C. R. Qi, H. Su, M. Kaichun, and L. J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In IEEE Computer Vision and Pattern
Recognition (CVPR), pages 77–85, 2017.

[Qi et al., 2017b] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems, page 5105–5114, 2017.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from
natural language supervision. In Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Research, pages 8748–8763,
2021.

[Ramesh et al., 2022] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and
Mark Chen. Hierarchical text-conditional image generation with clip latents, 2022.
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