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Abstract

Correlation-based embedding of complex data relationships in a Euclidean space is studied. The proposed soft
formulation of Kendall correlation allows for gradient-based optimization of scatter point neighborhood rela-
tionships for reconstructing original data neighbors. The approach is able to handle asymmetric data relations
provided in the form of a general scoring matrix. Scale and shift invariance properties of correlation help circum-
venting typical embedding distortion artefacts in dimension reduction and data embedding scenarios.

1. Introduction

Data embedding techniques for casting complex source
data defined in a relational way into assessable Euclidean
spaces have attracted attention during the last years. Dis-
tance matrix reconstruction is a well-known goal of com-
mon multi-dimensional scaling approaches [FC11, BT12],
but they cannot handle asymmetric score relationships. If
proper conversion from scores to dissimilarity data is pro-
vided along with an effective neighborhood size for local
density estimation, then modern packages like the neigh-
bor retrieval visualizer with data density estimation al-
low for dealing with asymmetric relationships [VPN*10].
Also other prominent techniques like Isomap and stochas-
tic neighbor embedding allow for creating low-dimensional
embedding spaces for visual inspection of generic dissimi-
larity data relationships [TdSL00,HR02,vdMHO0S], but most
applications found in the literature still refer to dimension
reduction of Euclidean data. Standard methods in MATLAB
and R, mdscale and isoMDS, respectively, based on isotonic
regression, are restricted to symmetric dissimilarity matri-
ces [VRO2], and a recent method for rank-preserving em-
bedding was again only tested on dimension reduction prob-
lems [OLWV10].

A focus of the present work is the non-parametric re-
construction of general object-related similarity profiles in
the input and embedding spaces. Some years ago, Pearson
correlation was introduced as global (matrix-wide, matrix-
conditioned) linear similarity measure between source dis-
similarity matrix and target distance matrix [SSVS09].
Global matrix-conditioned comparisons may bare some
problems though. For example, if score calculations de-
pend on the size of the compared structures, large struc-
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tures might misleadingly yield larger scores than smaller,
more tightly matching structures. Here, row-conditioning
is studied which naturally induces pairwise neighborhood
order comparisons between object-specific source and tar-
get scores. The maximization of the count-based non-linear
Kendall correlation between these pairs of score profiles is a
natural optimization target for locating the variable embed-
ding points. Since Kendall correlation is a non-differentiable
measure with complex optimization structure, a soft formu-
lation of Kendall’s T is proposed and employed here for
gradient-based optimization of correlation-based MDS.

2. Correlation-based neighbor reconstruction

Let n data items be represented by a n X n—matrix contain-
ing pairwise comparison scores S. Then another matrix D¥ is
sought such that its contained pairwise similarities of points
reconstructed in a low-dimensional Euclidean space is in
best correspondence with the source score matrix. Correla-
tion is a natural measure of correspondence for which com-
mon trends show up as high values, and its maximization can
be utilized as essential neighbor embedding operation. For-
mally, each object is described by its relationship to (n — 1)
neighbors, thus, the averaged correlations r of source and
embedding neighborhoods should be maximized along all
rows i of the corresponding matrices:

r(—S;, DY) — max. 1)
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I
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The n x n-matrix DX actually contains Euclidean distances
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of d-dimensional adjustable data-representing points
X' e R?, and signs of original scores S are flipped to make
smaller values appear as smaller ’distances’. This way,
row-wise matching targets are established between ordinal
neighborhood ranks of original and embedded objects.

If the source matrix already would already contain Eu-
clidean distances and squared Euclidean distance was used
for minimization instead of r, Eq. 1 results in classical
multidimensional scaling [Gow66]. Rather than seeking a
diagonal in the Shepard diagram, i.e. least squares dis-
tance reconstructions, straight lines with any slope (dis-
tance scaling) and intercept (distance shift) are allowed in
correlation-based optimization to effectively by-pass com-
mon distance concentration problems [vdMHO8]. If source
data were dissimilarity measures and r Pearson correlation,
this would be related to high-throughput multidimensional
scaling (HiITMDS) [SSVS09]. Recently, a soft ordinal rank-
ing approach was established and combined with Pearson
correlation, leading to a soft version of Spearman rank cor-
relation [SB13]. Here, we propose a rather direct approxima-
tion of Kendall correlation that requires order relationships
only between pairs of objects in the neighborhood of source
and embedding space.

2.1. Soft Kendall correlation

The Kendall correlation coefficient r; compares two vectors
w = (wg) and u = (ug), k = 1...n, of identical dimension
n by assessing the local ordering of all pairs (i, j) of their
elements and counting the number of concordant (C;;) and
discordant (D; ;) outcomes [Ken38]:

C,‘jl (W,‘ >wi A uj >uj) V (W,‘ <w; A uj <uj)

Dij: (wi >wj Ay <uj) V (wi <wj Au;>uj)

Let #C be the number of true values for C;; and #D be the
number of true values for D;; for all i, j € {1,...,n}. Ignor-
ing attribute pairs for i = j, the maximum number of mu-
tually exclusive concordant and discordant pairs is #C + #D
= (n-n—n)/2. Thus, a normalized difference of concordant
and discordant pair counts is used to quantify trends of pos-
itive or negative correlation:

#C — #D
% ‘n-(n—1)
This common definition of Kendall T correlation does not

consider ties, and, for simplicity, we assume their absence in
the following.

ro(w,u) = e[-1;1]. 3)

The proposed formulation of a soft version of Kendall T is
based on products of differences p;j = (w; —w;) - (u; —u;)
which are negative for concordant attribute pairs, and posi-
tive for discordant pairs.

Let R be a matrix constructed from all pairs

R(p11) ... R(Pin)
R(p) = . 4
R(Pn1) --- R(pm)

Then for the step function R(x) = 1/2- (sign(z) + 1), provid-
ing zero for negative arguments, /2 for zero and else one,
Kendall correlation rt(w,u) = 1.« (w,u) is recovered for

<2;"’:1 Yo R(ﬁij)) —q

%~n~(n—l)

(&)

f'-cy)((W7Lt) =1-

with ¢ = 0. Basically, twice the relative amount of discor-
dant pairs is subtracted from the highest possible correlation
value. This approach is valid, because untied data induces
an complementary amount of concordant values. A non-zero
value of ¢q is needed for the differentiable sigmoidal approx-
imation of the step function to be plugged into Eq. 5:

R(pij) = sgdu(pij) = 1ojxp; With (6)
Dij Wi—Wj Ui —uj

R = . 7

Pij Ow - Oy Ow Ou )

The larger k, the steeper the transition from zero to one gets
in the sigmoid sgd,, that is, limk—co frxc(w,u) = re(w,u).
In Eq. 5 a value of g = 1/2 is required to compensate for the
fact that zero differences occurring for i = j get counted as
partial discordance by sgd,.(0) = 1/2, irrespective of k.

The variable substitution in Eq. 7 helps equalizing differ-
ent domains in w and u by their inverse standard deviations.
This involves the variance; for the example of u this yields:

1

5 l n 2 n 1 n 2
fon-l k;(uk ) n—1 k; T l;ul

Y N Y
_2}’1(}’1—1) k;llzz,l(uk M[) (8)

Thus, individual attribute differences in Eq. 7 are scaled by

. . . 2 2
their corresponding overall quadratic means /G, and /G,
excluding zero contributions from / = k.

Gradients of soft Kendall t

The sigmoid-based formulation allows for gradient-based
optimization of Kendall T, and the derivative of Eq. 5 gets

asgdK(w,—w, ) u,-—uj)

Ow Ou

afrﬁK(Wﬂl) _ 2 . L
n-(n—1) l;};

auk auk

)
This equation can be used as part of a gradient ascend
scheme to adapt a vector u so as to maximize its soft Kendall

correlation with a fixed vector w.

The derivative summands in Eq. 9 are transformed into

d Wi—W; Uj—u;j d
s (oL M) s ()

Ow GCu Ouy,
_0sgdy (z) 9z(ui,uj) with
B E)z auk
Ui —u; I
2(uj,uj) = Wij ’6 ! and wij = ——2. (10)
u
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The sigmoid possesses the simple derivative
sgdy(2)/dz = K-sgdy(2) - (sgd(z) — 1) . (11)
Using the derivative of the standard deviation,

86,, _ U — My
ouy, (n—1)-0,’

12)

three cases must be distinguished for the derivative of z:

9zl u) (1w —w 90w
Outy ~\ou (5% duy, kL
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z(g;kuk) _ z(gzkuz) () = 2(ugow)), (13)
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For these cases k # [, k # m and [ # m are assumed. The
standard deviation causes non-vanishing derivatives for the
frequent last case in which the derived k-th attribute does not
appear in the difference part of z.

2.2. Correlation-based embedding

For optimizing a point set X with ranks of Euclidean neigh-
borhood relationships best matching the ranks of original
data relationships, the dependence u = ng =d(X',x/) is
connected by the chain rule of differentiation with a given

correlation measure:
dr(w,u) _ dr(w,d(X',x7)) od(x',X) (14)

oxXy ad(X',X7) oXy

The first factor is taken from Eq. 9, and second one being the
derivative of the Euclidean distance in Eq. 2 is just

ad(x’, x/ X} —X]
d( ; ):_d];(ixf' (15)
ax] (X, x7)
These terms can be used for substituting back w = —S§; and
u= Df( for computing the gradient of Eq. 1 as
DY) apf
7:,2 al(=Si,Di) 9Di (16)
ox; nj oD; X,

=

In practice, the gradient used in optimization can be calcu-
lated as product of Jacobian matrices constructed from the
partial derivatives. As illustrated in the provided code im-
plementation of the derivatives, the Jacobians reveal sparsity
and symmetry structure that can be effectively exploited for
boiling down the gradient calculation to the order of (’)(nS)
that is also required for evaluating the average soft Kendall
correlation in Eq. 1. The matrix-based implementation can
be easily transferred to graphics processing units for en-
abling gradient ascend on the correlation-based embedding
using memory-limited quasi-Newton 1-BFGS gradient opti-
mization that usually provides good convergence [NW99].
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3. Experiments

Generally, the soft-rank embedding approach behaves much
like non-metric MDS based on isotonic regression, that is,
Euclidean neighborhood relationships can be reliably recov-
ered. In addition, it offers the flexibility to directly operate
on asymmetric score data. Two experiments are reported for
demonstrating these novel features. The first contains only
few data points for conveying the ideas of asymmetric re-
lationships and soft neighborhood correlation. The second
refers to a complex protein data base.

3.1. Asymmetric amino acid transition matrix

Asymmetric score data naturally occurs in the domain of
bioinformatics. For example, protein sequence alignments
depend on the properties of the amino acid transitions. While
common comparison tasks are carried out with the symmet-
ric block substitution matrix BLOSOM®62, specialized anal-
yses profit from asymmetric models. Especially, the homol-
ogy in transmembrane proteins was found to be faithfully
captured by the SLIM family of score matrices leading to
intra-membrane domains [MRRO1]. Here, the asymmetric
sub-matrix of five transitions shown in Figure 1 is consid-
ered for illustration.

Figure 1: Transition scores for the amino acids cysteine
(C), glutamic acid (E), proline (P), arginine (R), ans serine
(S) from the SLIM 161 substitution matrix [MRRO]1 ].

The embedding of the score matrix in 2D Euclidean space
leads to Figure 2 with perfect neighborhood preservation,
thatis T = 1 —e in Eq. 1 with &€ = 1077 being attributed to
optimizer convergence goals. Note that the embedded neigh-
borhood distances are symmetric, while the corresponding
ranks, computed in row-wise manner, are not. Color patches
in the top panel of Figure 2 highlight constant plateaus in the
change of crisp Kendall correlation when points are moved.
The proposed softening procedure used for embedding op-
timization leads to the bottom color field for which non-
vanishing gradients and a good correspondence to the crisp
calculation can be stated.

For comparison with a standard non-metric multidimen-
sional scaling approach (mdscale), scores require conver-
sion into symmetric dissimilarities. A common conversion
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Kendall-t invariant fields
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Figure 2: Embedded sub-matrix of SLIM161 transitions
scores and neighborhood order correlation domains. Cir-
cles denote 2D locations of amino acid coordinates from
soft Kendall correlation embedding. Blue areas indicate re-
gions with little change of Kendall correlation neighborhood
structure for varied points, assuming other points to be fixed.
Top: crisp Kendall correlation; flat color patches denote
rr-invariant regions where gradient-based point placement
methods fail. Bottom: soft Kendall for x = 5; pronounced
basins allow for optimization of the scatter point neighbor-
hood configuration.

isD;; = +/Sii+S;; — Sij — S [PDO5]. Using mdscale, near-
perfect 2D embedding results are obtained for this problem.
Not surprisingly, a comparison of this solution to the orig-
inal asymmetric problem yields an average Kendall neigh-
borhood correlation of only ¥ = 0.6 in Eq. 1. This example
emphasizes that proper tools for asymmetric score data are
needed rather than mapping a problem to a different one that
can be solved by existing methods.

3.2. SCOP protein data set

In a second example, the SCOP database of structural classi-
fication of proteins is visualized [LNO4]. It contains p-values
of asymmetric pairwise alignments of 4352 proteins. The
matrix covers a broad spectrum of protein families with 2888
hierarchically organized unique labels.

Figure 3 shows the embedding result using the new em-
bedding strategy. The average neighborhood reconstruction
quality of T = 0.201 seems to be rather low. However, the
complexity of the original data relationships is very high,
because many very different proteins are compared that can-
not be easily embedded into the limited 2D space. Still, color

Embedded SCOP data

Figure 3: Embedding of an asymmetric protein similarity
matrix. 4352 points correspond to 2888 classes. Similar col-
ors refer to nearby classes in the class hierarchy.

patches show up when similar functional protein classes map
to neighbored point coordinates.

For general performance comparison, an asymmet-
ric version of t-distributed stochastic neighbor embed-
ding [vdMHOS, Str12] was used with an effective neigh-
borhood size of 50. Since this parameter controls the bal-
ance between local and global neighborhood reproduction,
embeddings are necessarily optimized under that constraint.
Because of such focused optimization, the average overall
Kendall correlation is only T = 0.088, and the choice of ef-
fective neighborhood size has limited effect on that. Like in
the previous example, a comparison of methods designed
for the different purposes of global and focused neighbor-
hood reconstruction is problematic. After all, one might not
want to base comparisons on criteria that methods are not
designed for.

4. Conclusions

A relational score embedding scheme has been introduced
that maximizes (soft) Kendall correlation between poten-
tially asymmetric object similarities in the source and em-
bedding space. It is demonstrated that gradient-based opti-
mization can be successfully applied for reconstruction of
the neighborhood rank order. Note that unlike parametric
density estimation approaches there are no embedding dis-
tortions when source and target spaces are identical. It is an
important topic of future work on soft Kendall correlation
to allow for emphasizing local neighborhood reconstruction,
because distant source relationships should just be visually
distant, while local neighborhood ordering should be better
resolved.

A MATLAB/GNU-Octave package with GPU support is
online available as package *’cbMDS’ at https://mloss.org/.
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