
A VLSI Architecture for Anti-Aliasing

Claudia Romanova and Ulrich Wagner

1. The Aliasing Problem in Computer Graphics

Computer-synthesized images exhibit the typical artifacts of raster displays, called alias­
ing, rastering, staircasing or the "jaggies". Display of an image on a raster CRT requires
the sampling the two dimensional image signal I(x, y) to obtain a pixel-based description
of intensity. Unfortinately, this sampling process treates the pixel as a mathematical
point and the point sampling of an unfiltered object is never correct at any resolution.
Aliasing effects (spatial and temporal) are due to undersampling of the image signal.
Spatial aliasing occurs when images contain frequencies greater than one half the spa­
tial sampling frequency. Lines that should be straight appear jagged, very small objects
may not be visible, portions of long thin objects may disappear.

1.1 Methods for Minimizing Aliasing Effects

There are three basic approaches to remove the aliasing effects:

increase the sampling rate by increasing the display resolution. However, this approach
has several limitations, because it also increases the cost of the production
and object edges may fall between pixels at any resolution thus aliasing may occur
anyway.

post-filtering: the image is sampled at a higher resolution. Then a digital averaging
process is applied to the supersampled image to generate the intensity values in
the frame memory. An example is the jagged edges detection and filtering algorithm
[6]. The main disadvantage is that details which have been lost during the sampling
process cannot been recovered.

pre-filtering or area sampling: area sampling treates the image as continuous area of
scan lines, where each scan line is a contiguouos band of pixels, each pixel is a
square sample, and each sample is of unit edge length. The final pixel intensity is
determined by computing the area weighted coverage of all visible objects which
cross the pixel. This is equivalent to applying a square area integration filter at a
pixel. Visually, this means blurring the picture.

http://www.eg.org
http://diglib.eg.org

76

1.2 The Pre-filtering Method

Perfect reconstruction of the original image is still not possible. The pre-filtering algo­
rithms operate by replacing the previous pixel colour value according to the following
blending function:

C(x,y);- a· Cobj +(1- a)· C(x,y),

where Cobj is the colour of the object being drawn, C(x, y) is the previous colour of
the pixel (x, y) and a is the response of a low pass filter to the object at (x, y). There
are two properties that characterize the pre-filtering algorithm - the filter computa­
tion scheme and the filter type. The filter type determines how objects look like. The
sampling filter is typically a box, a triangle (tent) or truncated Gaussian. Assigning
brightness to each pixel proportional to the fraction of the covered pixel area, is a well
established approach. Various implementations have been reported, where the fraction
is incrementally calculated [12,21,22,23) or stored in a lookup table indexed by the dis­
tance from the object to the pixel [4]. The common property of the above mentioned
algorithms is that they are well suitable for vector generation. The other alternative
is the approximation of the covered area (a) by using a coverage mask. Each pixel
is virtually divided into subpixels, the coverage rate is determined by the number of
the subpixels crossed by the object. Section 2 gives a detailed survey of the known
anti-aliasing approaches.

1.3 Stochastic Sampling

The last anti-aliasing approach to be mentioned is the stochastic sampling. The image
signal is sampled at irregularly placed points and instead of the "jaggies" we get noise.
Many feel that this noise is less disturbing for the human observer that the aliasing.
The main application area of the stochastic sampling is ray tracing. The investigations
in this methods are concentrated on finding good sampling distributions and filtering
methods to adaptively increase the sampling rate in regions of the image with high
frequencies. A good representation of the stochastic sampling could be found in [9).

1.4 The Role of Gamma Correction

Without accurate gamma correction, anti-aliasing through pixel brightness control is
ineffective. Unfortunately, the response of typical video colour monitors is non-linear.
Thus, when a linear image is loaded into the frame buffer, a video lookup table is also
loaded to correct for the non-linearity of the monitor. The monitor correction function
is an exponential function of the form:

lookup value = intensityl.Oh

Gamma('Y) represents the non-linearity of the monitor and usually is in the range 2.0
to 3.0. Another problem is that an increment of 1 in the image intensity is mapped into
a much larger increment for the display. Thus, the available resolution of the display
system in the lower intensity range is not being used [2]. One solution of the problem is
to use a lookup table with logarithmic mapping of 12-bit input to 8-bit output values.

http:intensityl.Oh

77

The recalculating of the display-data values by compensation tables [5] is one choice for
gamma correction.

2. Review of Existing Anti-Aliasing Techniques

All algorithms mentioned in this section, except the cited subpixel coverage mask me­

thods, were implemented by the authors for a straight line drawn from a pixel centre at

a gradient 5/7. It is to point out, that only the using of a coverage mask allows several

objects per pixel (more than two). All algortihms can be modified to antialias polygon

edges, too.

The task of the anti-aliasing process is to determine the covered area as exact as possible.

Two main approaches can be distinguished.

2.1 Exact Computing of the Covered Area

The most exact algorithm for calculating the intersected area is the method by Pixel In­
tegration, described in [22]. The anti-aliased lines drawn with the Field's algorithms [12]
have a width less than one pixel and look on the raster display thinner, but the area
crossed by the vectors is determined exactly, too. These methods work incrementally
begimung with the vector start point, i.e. they are object oriented and take into consi­
deration three pixels per column. Algorithms for drawing anti-aliased objects on raster
output devices are presented in great detail in [11].

2.2 Approximate Computing of the Covered Area

All methods determining the intensity independently of the pixel location can be indi­
cated as pixel oriented.

2.2.1 Using the Distance

The following methods [16,21] use the fractional part of a coordinate value of the bo­
undary edge position as a criterion for pixel intensity determination. The algorithm of
Fujimoto and Iwata [14] calculates the distance between the vector and the pixel. In
both approaches the pixel intensity is inversely proportional to the calculated distance.
In [23] the control parameter of the Bresenham's algorithm is interpreted as a measure
of the distance from the straight line to the pixel centre. This algorithm is known as
modified Bresenham's algorithm. These algorithms involve two pixels per column.
The algorithm cited by Gupta and Sproull in [17] uses the perpendicular distance from
the pixel centre to the edge as index into a lookup table with precomputed conic filtering
function to determine intensities at the pixels, but it requires seperate treatment for the
end points of the vector. The above algorithms rely upon incrementally computations,
too. Since in our system architecture the same distance is available, this approach could
be used in the Filtering Stage, but it has several disadvantages, still to be discussed.

2.2.2 Using the Coverage Mask

The methods presented in [3,13,19] and in this paper compute an anti-aliased image
using subpixel mask. The bit mask can be interpreted as a 2D array of subpixels, each

78

subpixel being off or on depending on the intersected area of the object with the pixel.
The quantized area is computed by summing the number of bits that are on in the bit~
mask and dividing by the total number of bits in the mask. So, this fractional coverage
multiplied by the object intensity determines the final intensity of the displayed pixel.
The coverage mask can be either generated or determined by indexing a precomputed
table of bitmasks. Our algorithm is similar to the well known" A-buffer" algorithm [20].
The authors of [lJ proposed the "gz~buffer". The gz~buffer can be split into an usual
z~buffer and a g-buffer containing the geometrical information g for the pixel. Each pixel
is divided into sixteen subpixels, therefore the z-buffer needs only four bits per pixel.
The approach in the mentioned paper uses the oversampling process for anti-aliasing
and in the second one [15] the modified Bresenham's algorithm is applied.
On the Workstation PS 390 of Evans & Sutherland a real-time anti~aliasing technique
in hardware is already implemented, which uses 8 x 8 subpixel resolution and produces
anti-aliased vectors of high quality.

2.2.3 Compositing Technique

According to this technique the image is described by a quadruple (r,g,b,o:), where
a is called alpha channel and indicates the covered fraction by the object. The a value
lies in the interval [0.0,1.0], where 0.0 corresponds to no coverage and 1.0 to full cover­
age, the fractions mean partial coverage. The Duff's approach in [10] combines the 0:
compositing algebra with z-buffer to provide simple anti-aliasing.
Assuming a quadratic pixel model the z-values of the object (foreground) at the four
pixel corners are computed and compared with these of the previous object (back­
ground). Then the total area of both objects is found and the pixel colour values are
altered by this value. The (r, g, b, 0:, z) representation for more than two objects assumes
that they are either adjacent in depth or requires knowledge of their front-to-back or~
dering. The method fails by two elements sharing an edge.

2.3 Error Estimations of Quantized Area Sampling Technique

The difference between the exact and approximated area depends both on the line
slope and the chosen subpixel resolution (N). The quantized pixel area (0:) can be
expressed as:

_ I:f 1 SubpixelValuei
Do - }lf2 SubpixelValue; E [O,lJ

The worst case corresponds to horizontal and vertical lines, which cross the subpixel
centers and the maximum error is equal to z}..,.lOO%. Statements about errors of other
anti-aliasing algorithms are scarce, but when they are given, the errors lie in range
of 8 -12%.

3. The PROOF System for Computer Image Generation

The idea of the architecture of our system PROOF (~ipeline for Rendering in an
Qbject Qriented Eramework) is based on an object space subdivision approach, given
by Cohen [8J and extended by Weinberg [27] and StraBer [26]. Figure 1 shows a block
diagrarrun of the overall system. The geometric processor executes the perspective

79

and geometric transformations, the clipping and the triangulation of the objects in the
scene. Each processor is dedicated to an object primitive in the image space. The object
processors are organised in pipeline (Qbject £rocessor £ipeline). The Look-Up-Tables
between the stages are loaded with paranleters neccessary for the following Shading and
Filtering Stages. The operates in two modes: load and pixel.

[

ILLUMINATION FILTERING
AND AND

SHADING ANTI ALIASING

Figure 1: The Architecture of PROOF

3.1 Load Mode

The same pipeline is used for loading the object data. In the load mode the object pro­
cessors, the shading processors and the LUT's are preloaded by the geometric processor
with specific properties describing the objects and the scene. For example, the first
L UT contains parameters needed by the Shading Processor Pipeline such as parameters
referring to the position and colour of the light sources in the scene and surface prop­
erties of the objects. The second one is loaded with geometrical informations required
by the Filtering Stage. Identifying each object from the scene by an object number
(object identifier) and using this as address into the LUT's minimizes the bandwidth of
the dataflow in the system essentially.

3.2 Scan Conversion and Hidden Surface Removal Algorithms

Pixel computations consist of the scan conversion of the object and the interpolation
of the Z coordinates and colour values. The scene to be rendered consists of triangles
as objects primitives. A triangle edge is given by its bounding line, described by the

SCENE DESCRIPTION
AND

SCENE TRANSFORMATION

GEOMETRY PROCESSOR JJ
-

HIDDEN SURFACE REMOIJAL
AND

SCAN CONlJERSIOH

80

Hessian normal form as follows:

9 : cose.x + sine.y - p = 0

The values of cosB, sine and p are determined from the end-points of the line, traversed
in an anti clockwise direction, so that the triangle will always lie in the left halfplane of
the line.
The scan conversion algorithm applied in the OPP can be classified as inside testing
algorithm and takes advantage of the method of differences. Every object processor
calculates the distance between each edge of its own object and the centre of a pixel (x, y)
by the equation:

di(x,y) = cos8,.x+sin8i·y-Pi (1)

for i (1,2,3). Evaluating the value of d, for every pixel requires two multiplications
and two additions. Fortunately, the calculations can be made incrementally with only
one addition per step. The value of die x, y) for successive pixels is obtained by initializing
a register for each edge with the value of (-p,) and adding cos 8. for each step along the x
axis and adding sin fI, for each step along the y axis. The basic rendering operations are
as follows:

c.ommand execution

new frame d,(O,O) = -Pi
new pixel d,(x+l,y) d;(x,y) + COSBi

i new scan line d~(O,y+1) = d,(O,y) + sinei

The value of dt will be negative for all pixels that are on the left side of the triangle
edge and positive for all pixels that are on the right side of the triangle edge. If any di

is in the range [-R, +R] (R denotes the pixel radius and for a quadratic pixel with unit
length is equal to 4), the pixel is partially covered from the object. If all di are greater
than +R, the object covers the pixel totally and if at least one di is less than -R and
another d, is (are) greater than +R, then the pixel is completely outside the polygon.
In addition to the object coordinates at each vertex of the object, its depth and its
colour are stored in the object procesor. It generates point samples of these values for
each pixel within the triangle by linear interpolation between the vertex values incre­
mentally in a manner similar to the calculation of the function for the distance (1). The
hidden surface removal approach in the OPP relies upon the depth-buffer algorithm,
more exact the distributed z-buffer. For each pixel a list with objects is maintained,
which cross the pixel. The next sections explain briefly the architectures of each stage
of PROOF.

3.2 Object Processor Pipeline

All object processors have the same architecture design, shown in Figure 2, and each
object processor consists of primitive processor, comparator, FIFO and control logic.
The primitive processor scan converts its object and performs the interpolation of the
depth and normal colours vectors. The seven update units work in parallel to achieve
high performance. The comparator is responsible for the decision if the interpolated z
value of the local object lies further back than the objects' depth values stored in the
list. The FIFO receives the data sent from the last object processor and serves as a
buffer between the singles object processors. During the scan conversion, each object

81

WlCH
(

BUSY

(

F
....UI

I
F
0

IJftTA

ClOCK() I ASOATJ>P U(-­
(

PRIMI TIUE --7 I PP_VlLID U () C BUSY

(0PROCESSOR)
LASTIIOIID MDftTfI·cotma. VlLID

I P)>DATA A
R
A

() I Da.ETE_I.lST U()

TLo.. lTA.

T
DATA0

~ FIFD_VlLID U~ () IDELAY_\!IUD U (~ r=>RDELRY
CO<IADLLAS,""""

<> REGISTER .
 r=;::".= >
DATR·COHTACl.DAT *COHTRCL

Figure 2: .The Internal Design of the Object Processor

processor receives from the previous processor a depth sorted list of potentially visible
objects for the current pixel. If the object processor's own object lies within the triangle
and the z value is less than that for the triangle computed by preceding object processor
for this pixel, the local object is inserted in the list. Else if the object totally hides the
previous candidate objects and is non-transparent, the hidden objects are removed from
the list. At the end of the object processor pipeline a list of objects for the current pixel
emerges.

3.3 Shading Processor Pipeline

Afterwards, these data pass a multiple light source shading processor pipeline (SHPP)
in which a Phong-like shading is performed. The illumination model implemented in
the SHPP includes terms for ambient light, diffuse and specular relection. The calcula­
tions are implemented such, that only a single type processor is needed. The Shading
Processors are connected in a series to form a pipeline, too. The pipeline is initialized
with the ambient term. For each light source in the scene two shading processors are
calculating the other two terms. A review about the investigations in reducing the
Phong Shading method is given in [7].

3.4 Filtering and Anti-aliasing Stage

The last stage is the filter processor pipeline (FPP) which for each potentially visi­
ble object from the list re-scans it over a high resolution subpixel mask and applies a
predetermined filter function over the visible portions of the object. Finally, these sums
are multiplied by the object's colour. The end colour sums are sent to the frame buffer.

82

Subpixel position information is required by Filtering Stage to properly antialias an
object. The key elements of our system are described in detail in [24J and [25).

4. Algorithm for Filtering

In order to generate the subpixel coverage mask of an object we need geometric in­
formation about object intersection points with the pixel area. The object oriented
anti-aliasing algorithms are to be rejected, because we would need a filter processor per
object, too. That would be too expensive. The disadvantage of the method based on
the distance is that it is not applicable for more than two objects per pixel. The only
apparent way to solve this problem is subpixel coverage mask generation.
The algorithm in the Filtering Stage is performed on a per-pixel basis so as to preserve
the pixel area coherence. It makes use of the distance calculated in the OPP. Our task
is to determine for every object of the list how many subpixels from the object are
crossed. We calculate then the perpendicular distances between each subpixel centre
and the triangle edges. Since the function die x, y) is linear, we can obtain the values

.v.
.1'/

.R'

., .,.

L

X p, Yq E [-3.5, -2.5, ... , +2.5, +3.5]

Figure 3: Pixel Area with 8 x 8 Subpixel Resolution

only with adding the first forward differences of the function for n-step change in x- and
y-direction. The distance between the triangle edge and the subpixel (p, q) within the
pixel area can be expressed as:

dpq(x, y) cos 8;.(x.sp + xp) + sinB;.(y.sp + Yq) - Pi, (2)

with the following meanings:

X,Y x- and y-coordinates of the pixel

sp subpixel resolution

xp,Yq offsets in x~ , y-direction within the pixel area

cosB;, sinB;, P; edge parameters in Hessian normal form

dpq(x,y) distance from subpixel centre (p, q) to the edge

The equation (2) can be simplified to:

dpq(x,y) ~OSBi'X,SP + ~in Bj.y.sp - Pi, + cos 8;.xp + sin 8;'Yq (3)

di(X,y)

d;(x, y) + cosB;.xp + sin8i .Yq (4)

http:cosB;.xp
http:sinB;.(y.sp
http:8;.(x.sp

83

Thus, the desired distance can be obtained only by adding or substracting appropriate
coefficients to the value of di (x, y), namely multiples of cos 8i and sin 8i • Figure 3 shows
the pixel area and the corresponding coefficients. All bits in the coverage mask for these
the calculated subpixel distance dpq{x, y) :5 0 are to be set.
The object list is depth sorted with respect to the pixel centre. The assumption, that
this list is correctly sorted for each subpixels too, would cause visible errors, as the
following example illustrates. If there are two objects in a pixel, one covering the pixel
totally, another one, lying behind, but having greater z gradient and not covering the
center of the pixeL Since the z-values in the OPP are always computed at the pixel
center, it can happen that the interpolated z-value of the second object is smaller than
the z-value of the first one. This causes the second object to be visible, in spite of being
hidden by the totally covering object. For this reason we need a z-buffer within a pixel
region, too. Analogous to the determination of the subpixel distance we can calculate
the needed depth values at subpixels as follows:

(5)

For transparent objects we suppose, that they are correctly sorted in the list.
Since the PROOF-architecture supports translucency as object property, a transparency
modul in the Filtering Stage is integrated too. Generally, assuming that n transparent
objects each with colour Cobi_i and transparent factor ti cross a given pixel, the final
pixel colour is to be determined by the equation Cpixel Ci + Cbg • The bg denotes
the background in the scene with tby 0 and each term Ci is expressed as:

object colour remaining term

C1 = (1 - td . CObi-! Rl 1 tl

C2 = (1 - R1) • (1 t 2) • Cobj_2 R2 Rl + (1 - Rt} . (1 - t2)

Cn = (1- Rn-d' (1 tn)· Cobi_n Rn Rn-l + (1 - Rn-l)' (1 - tn)
Cbg = (1 - Rn) . Cbg

Fortunately, only one multiplication depending on the current transparent factor (tn)

and the remaining term (Rn-l) is needed. The same approach can be used at sub­
pixel level, as described later. By test and display of different images we found, that
8 x 8 subpixel resolution in the xy plane and 4 x 4 subpixel resolution for the depth
value seem to be reasonable. The algorithm antialiases images of wire-frames as well
as triangles. The algorithm handles adjacent and intersecting polygons thanks to the
geometric information given by the object parameters cos 8i and sin 8 •.

5. Architecture Design of the Filtering Stage

The Eiltering and Anti-Aliasing (FAAST) is divided into three distinct processing
stages: d-, z-update units (hereafter Update Units) and subpixel processor area (SPA)
(Figure 4). The internal hardware structures of the Update Units and SPA are quite
different, being designed for their dedicated tasks. Since neither feed-back of data nor
that of control from the SPA to the Update Units is required, the operations of the SPA
might be completely overlapped in a pipelining manner with that of the Update Units,
which are then processing the next object.

84

OJ

OATA

II I It"" ;:y

5.1 The d- and z-Update Units

Calculating the multiples of COS(Ji and sin(Ji (Az and Bz for the depth value) can be
done easily with a binary tree of adder. Figure 5 illustrates a binary-tree multiplier, as
used in the Pixel Planes System. Each node of the binary tree has two inputs (top and
side) and two outputs (left and right), which are bit-parallel and synchronous with the
system clock. The value of the left output is the value of the top one delayed by one
clock cycle, the right output is the sum of the top and side inputs. The value at the
side input depends on the node level in the tree and is multiple of a and a power of 2.
The last tree stage delivers the inverted value of the input, too. For a pixel grid of
size N x N subpixels (assuming N to be power of 2), the tree has n = log2(N/2) levels
and the value of each side input is 2n .a, where n-th level corresponds to the top node

mof the tree. The total number of the required additions in the tree is ,,:':._, 2n - .

CONI=l'l1 II a.~I
.J,.J,lt

LUIr tt

=:

DODD
DSUBPIXEL

PROCESSOR

DARER
OFITA II 10 DIl~

Figure 4: The Architecture of FAAST

The Update Units are similar in their architecture and the task of them is the genera­
tion of the subpixel coverage mask. The d-Update Units take advantage of the distance
calculated in the OPP, as described earlier, and using the edge parameters loaded in the
LUT calculate for each subpixel of the pixel area the distance from the subpixel centre
to the object edge. So the 2-dimensional subpixel coverage mask in xy plane can be
generated for each object in the sorted list. The task of the z-update unit is similar, but
we have to determine the z-values within the pixel area, here. Each type Update Unit,
whose block diagramm is shown in Figure 6, is built from two trees and an array of
identical Processing Elements (PEs). For a N x N subpixel resolution we need N 2 PEs
for each Update Unit. A PE itself is composed of (de)multiplexing devices, registers

85

~2a

2a -2a 3a -3a 4 .. -4 ..

Figure 5: The Binary-Tree Multiplier

~

$

$

$ ~
$ DATA~ ~

EJ~~ PE

DATA ==4l
Figure 6: The Update Unit

86

and an adder. The structures of the trees in the Update Units differ in the number
of needed adders and in the bit-width of the addition. The multiplier tree takes in an
N-bit data and outputs (N +3)-bit-long result. The following table shows the difference
between the trees in both types of Update Units, assuming that all adders in t,he tree
have the same bit Width:

tree in

d-update unit
z-update unit

The output of the d-Update Units is the 64 bit subpixel coverage mask resulting from
the logical AND of the coverage masks for each edge of the triangle. And the results of
the z-Update Unit are the depth values for 4 x 4 subpixel resolution within the pixel
area.

5.2 The Subpixel Processor Area

The SPA operates as a single instruction, multiple data (SIMD) processor, executing
each instructions on all subpixel processors at the same time. Sixteen Subpixel Pro­
cessors (Figure 7) constitute the Subpixel Processor Area and each of them consists of
registers for object colour, for the transparent factor and for the object depth value at
the subpixel and four Subpixel Processor Units (Figure 8). The outputs of the SPU
are the colour components for all objects at the current subpixel (sp..rgb_out), which
are processed through two stages of adders. Additional summations are made outside
of the SPP in a sequence of four adders stages. For each covered subpixel of the object
mask the input z-value of the object at that point is compared to the value stored in
the z-register. If the comparison is successful, the three colour component values of
the object are copied into the colour registers and the z-register is updated with the
input z-value. At the end of the procedure all colour components for the actually pixel
are summed, divided by the total number of the subpixels and sent to the frame buffer.
The algorithm in the Filtering and Anti-aliasing Stage can be described by the following
C-like functions:

/* anti-aliasing algorithm in FAAST */
/* */

for each pixel(x,y) do
{ null sp_rgb_out, final_rgb;

initilize sp_z;
for every object from object_list do

{ null obj_mask, sp_rgb;
determine obj_mask and obj_z;
spu(); }

add all sp_rgb_out to final_rgb; }
/* */
/* spu realizes the tasks of the subpixel processor unit */
/* */
spu()
{
if (obj transp) and (all prev obj transp) and (subpixel set) do

87

colour

Adder

I'D

~IL _C_O__N_T__R_O_L_--J.~ e$

Regist.ers

Adds
(I

Figure 7: The Structure of the Subpixel Processor

Figure 8: The Design of the Subpixel Processor Unit

88

{ activate transp_unit; }
if (obj non transp) and (subpixel set) and (obj_z < sp_z) do

{ move obj_rgb to sp_rgb;
move obj_z to sp_z; }

if (last obj) and (subpixel not set) do
{ move obj_rgb to sp_rgb;

determine sp_rgb_out; }
}

5.3 The Lookup Table and Control Unit

The parallel processing manner of the Update Units allows, that the LUT's can be
divided into two parts and each part is connected to the Unit by data bus with defined
bit width. All Control Units can be realized as PLAs.

6. System Performance Estimation

The pixel processing time is limited by the longest updating time of any stage in the
whole pipeline. We restrict our considerations to the processing time in the FAAST. The
Update Units process the objects from the list successively and the SPA needes data for
all objects in order to calculate the final pixel colour components. The processing time
of the Update Units is more decisive than that of the the SPA. Supposing that there
are three objects in the list for the current pixel, the Update Units have to determine
for two objects (the third one is the background and covers the pixel completely) the
subpixel coverage mask, i.e. tpixel ~ 2.tUl'dateUnit. The processing in the Update Unit
includes:

activity operation
number of needed

clock cycles
fetching

the object
parameters

access to the LUT 1

calculating
the coefficients

2 additions and
negation

3

determine
the dpq

2 additions and
evaluate the
sign of dfJO

3

-­ -

The main operation to be performed in the Update Unit is addition. The carry-skip
adder presented in [18] is well suited for addition of data with large width, e.g. the
addition of two 20-bit binary numbers is performed in lOT (T is the gate delay). The
negation operation needes no extra time, because it can be included in the following
addition by setting the input carry to one. So, assuming that the T is 2ns the total
processing time of an Update Unit is approximately 150ns and the tpixel = 300ns.

7. Conclusions

Anti-aliasing is needed to preserve high quality images. The described algorithm and
architecture to solve this problem has been dictated by the PROOF architecture. The

89

proposed solution seems to be realisable with today's technology. It demonstrates, that
anti-aliasing in real time system is feasible.

References

[1) 	 Beigbeder, M., Ghazanfarpour, D., Peroche, B.: The "GZ-Buffer" Method for
Antialiasing. International Electronic Image Week, April 1986.

[2] 	 Blinn, J.F.: Dirty Pixels. IEEE Computer Graphics and Applications, 100-105,
July 1989. Jim Blinn's Corner.

[3] 	 Carpenter, L.: The A-buffer, an Antialiased Hidden Surface Method. Computer
Graphics, 18(3):103-108, July 1984.

[4] 	 Catmull, E.: An Analytic Visible Surface Algorithm for Independent Pixel Pro­
cessing. Computer Graphics, 18(3):109-115, July 1984.

Catmull, E.: A Tutorial on Compensation Tables. Computer Graphics, 1979.

[6] 	 Chryssafis, A.: Anti-Aliasing of Computer Generated Images: A Picture Inde­
pendent Approach. Computer Graphics Forum, 5:125-129, June 1986.

[7] 	 Claussen, U.: On Reducing the Phong Shading Method. In F.R.A. Hopgood and
W. StraBer, editors, EUROGRAPHICS'89, pages 333-344, Eurographics Associa­
tion, Elsevier Science Publishers B.V. (North-Holland), 1989.

Cohen, D.: A VLSI Approach to the CIG Problem. 1980. Presentation at SIG­
GRAPH 1980.

[9] 	 Dippe, M.A.Z.: Anti-Aliasing through Stochastic Sampling. Computer Graphics,
19(3):69-78, July 1985.

[10] 	 Duff, T.: Compositing 3-D Rendered Images. Computer Graphics, 19(3):41-44,
July 1985.

[11] 	 Field, D.: Algorithms for Drawing Simple Geometric Objects on Raster Devices.
PhD thesis, Princeton University, Juni 1983.

[12] 	 Field, D.: Two Algorithms for Drawing Anti-Aliased Lines. Graphics Interface,
87-95, 1984.

[13] 	Fuime, E., Fournier, AL: A Parallel Scan Conversion Algorithm with Anti-Aliasing
for a General-Purpose Ultracomputer. Computer Graphics, 17(3):141-150, July
1983.

[14] 	 Fujimoto, A., Iwata, K.: Jag Free Images on a Raster CRT. In Computer Graphics,
Theory and Applications, pages 2-15, Springer-Verlag, Tokyo Berlin Heidelberg
New York, 1983.

[15] 	 Ghazanfarpour, D., Peroche, B.: A Fast Anti-Aliasing Method with a Z-Buffer. In
G. Marechal, editor, EUROGRAPHICS'87, pages 503-512, Eurographics Associa­
tion, Elsevier Science Publishers B.V. (North-Holland), 1987.

[16] 	 Guangnan, N., Tanner, P., Wein, P., Bechthold, Gr.: An Algorithm for Generating
Anti-Aliased Polygons for 3-D Applications. Graphics Interface'83, 23--32, 1983.

90

[17] 	 Gupta, S., Sproull, R.F.: Filtering Edges for Gray-Scale Displays. Computer
Graphics, 15(3):1-5, August 1981.

[18] 	 Guyot, A., Hochet, B., Muller, J.M.: A Way to Build Efficient Carry-Skip Adders.
IEEE Transactions on Computers, C-36(10):1144-1152, October 1987.

[19] 	 Hoffert, E.M., Bishop, G.: Exact and Efficient Area Sampling Techniques for
Spatial Antialiasing. December 1985. Technical Memorandum, AT & T Bell Lab­
oratories.

[20] 	 Kedar, At.: Enhancement and Implementation of the A-buffer Rendering Algo­
rithm. Master's thesis, University of Regina, Department of Computer Science,
Regina, Saskatchewan S4S OA4, Canada, February 1987.

[21] 	 Ketcham, R.L.: A High-Speed Algorithm For Generating Anti-Aliased Lines. Pro­
ceedings of the SID, 26(4):329-336, 1985.

[22] 	 Pitteway, M.L.V., Olive, P.M.: Filtering Edges by Pixel Integration. Computer
Graphics Forum, 4:111-116, 1985.

[23] 	 Pitteway, M.L.V., Watkinson, D.J.: Bresenham's Algorithm with Grey Scale.
Communications of the ACM, 23(11):625-626, November 1980.

[24j 	 Schneider, B.-O.: A Processor for an Object-Oriented Rendering System. Com­
puter Graphics Forum, 7:301-310, 1988.

[25] 	 Schneider, B.-O., Claussen, U.: PROOF: An Architecture for Rendering in Object
Space. In A.A.M. Kujik, editor, Advances in Graphics Hardware III, Eurographics.
Spinger, Berlin, to appear in 1989

[26] 	Strafler, W.: A VLSI-oriented Architecture for Parallel Processing Image Gen­
eration. In G.L. Rejins and M.H. Barton, editors, Highly Parallel Computers.
pages 247-258, Elsevier Science Publishers B.V. (North-Holland), 1987.

[27] 	Weinberg, R.: Parallel Processing Image Synthesis and Anti-Aliasing. Computer
Graphics, 15(3):55-61, August 1981.

