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Abstract
Increasing the core count of CPUs to increase computational performance has been a significant trend for the
better part of a decade. This has led to an unprecedented availability of large shared memory machines. Pro-
gramming paradigms and systems are shifting to take advantage of this architectural change, so that intra-node
parallelism can be fully utilized. Algorithms designed for parallel execution on distributed systems will also need
to be modified to scale in these new shared and hybrid memory systems. In this paper, we reinvestigate parallel
rendering algorithms with the goal of finding one that achieves favorable performance in this new environment. We
test and analyze various methods, including sort-first, sort-last, and a hybrid scheme, to find an optimal parallel
algorithm that maximizes shared memory performance.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing

1. Introduction

In supercomputer and cluster environments, there has tra-
ditionally been a lack of available hardware acceleration.
While graphics hardware can be found in specific supercom-
puters and visualization clusters, a large percentage of instal-
lations do not have them. In these cases, image generation
must be handled by software rendering. Mesa is the de facto
standard for software implementation of the OpenGL API.
Recently, there has been some research into exploring the
feasibility of interactive software rendering on a supercom-
puter [ALN∗08]. Rendering on the supercomputing platform
acts as a stand-in for graphics hardware or a dedicated graph-
ics cluster. As data sizes grow and data movement band-
width lags, the need to bypass transferring data to a graph-
ics cluster, and instead perform the rendering in-place on
the supercomputer, will grow. The architectural trend of in-
creasing performance by placing multiple cores on one chip
has been continuing for many years. Having chips contain-
ing tens (and eventually hundreds) of cores coupled with the
fact that one workstation can contain several such chips re-
sults in very large shared memory machines. As this cur-
rent technology trend continues, the nodes of supercomput-
ers will continue to increase their core count. Eventually, a
distributed supercomputer’s nodes will be composed of or
resemble large shared memory machines. Therefore, finding
an optimized parallel software rendering method for shared

memory machines will further aid the feasibility of perform-
ing visualization on the supercomputer.

In this paper, we explore the approach of parallel render-
ing in a shared memory environment. Various parallel ren-
dering methods originally designed for distributed memory,
including sort-first, sort-last, and a hybrid sort-first and sort-
last algorithm, are investigated. Different compositing tech-
niques, including binary swap and a shared memory direct-
send, are also investigated. These algorithms were imple-
mented for a shared memory architecture, and then tested
and analyzed for their performance.

There has been considerable past effort in developing par-
allel rendering algorithms. Most notable of these include
sort-first and sort-last rendering. These algorithms were de-
signed with distributed memory architectures in mind, in
which processors need to communicate explicitly with each
other. Much of the research pertaining to sort-last render-
ing involves trying to improve compositing time, usually
by reducing the number of pixels sent [MWP01] or com-
pressing pixel data [AP98]. For sort-first rendering, much
of the concern is with load balancing [Mue95] and han-
dling the problem of geometry being transferred over the
network [Mue97]. In this paper, we implemented these algo-
rithms on a shared memory machine, in which case many of
these communication concerns become much less relevant.
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In order to further improve performance, we also in-
clude other optimizations to enhance cache performance and
to manage non-uniform memory access (NUMA) architec-
tures. A NUMA machine is a type of shared memory com-
puter in which separate memory is provided for each proces-
sor, called local memory. Processors can still access any part
of main memory, but accesses to local memory are much
faster versus reading from other parts of memory. Because
of these differences in access times, extra care must be taken
to ensure consistent, reliable performance on a NUMA ma-
chine.

As a result of our testing, we found that sort-last render-
ing was not scalable because rendering became a bottleneck
for a high number of threads. We also discovered that sort-
first rendering did not have good overall performance due
to the algorithm’s tendency to require some geometry to be
rendered multiple times. From our benchmarking tests, we
have found that a hybrid sort-first and sort-last approach,
first introduced by Samanta et al. [SFLS00], saw the best
overall performance on a shared memory machine (see Fig-
ure 9). Rendering times alone were close to linear speedup
(see Figure 7). We combined this rendering phase with a
shared memory compositing scheme first espoused by Rein-
hard and Hansen [RH00], which got upwards of up to seven
times speedup over binary swap (see Figure 3).

Our contributions in this paper include:

• Using software rendering on a shared memory machine to
emulate a many-core supercomputer node

• An evaluation of how current parallel rendering algo-
rithms perform on a shared memory machine

• A description of a scalable parallel rendering algorithm,
which is a combination of hybrid sort-first and sort-last
rendering, coupled with a shared memory specific com-
positing scheme

• A compositing method that ensures load-balanced com-
positing work over all threads

• NUMA-aware modifications to ensure optimal perfor-
mance on NUMA architecture

2. Previous Work

Molnar [MCEF94] introduced the concept of classifying
parallel methods based on where in the rendering pipeline
the sorting occurred. His classification includes sort-first,
sort-middle, and sort-last. Sort-first involves splitting the
screen space into several non-overlapping partitions, then
sorting the geometry by which partition the geometry
projects to. Sort-middle involves splitting the screen in the
same manner, then randomly dispersing geometry evenly to
all nodes. The geometry’s vertices are transformed, then sent
to the node that has the partition which the vertices are pro-
jected on, for scan conversion. Sort-last rendering involves
sending equal amounts of geometry to each node. Then the
nodes will render their geometry, each producing a full size

partial image. The final image is created by compositing all
partial images through depth test comparisons. In this pa-
per, we implement and test the performance of sort-first and
sort-last on a shared memory machine.

There have been some previous efforts of developing par-
allel software rendering systems on massive parallel archi-
tectures. These architectures include the CM-5 [OHA93],
the BBN Butterfly TC2000 [Whi94], and the SGI Origin
2000 [ISH98] [PSGL94]. Tightly coupled parallel system
became unpopular in favor of multi-node supercomputers
and commodity clusters. We revisit parallel software render-
ing on large shared memory computers in this paper.

An earlier effort to parallelize the Mesa library was done
by Mitra and Chiueh [McC98]. They focused on adding
functions to the Mesa API in order to facilitate a serial pro-
gram being converted to a parallel program with few modi-
fications. Their parallel version of Mesa performed sort-last
rendering, and was primarily deployed in tandem with a sim-
ulation program on a distributed memory environment. In
our work, we compare various parallel algorithms on a dif-
ferent hardware platform.

A hybrid sort-first and sort-last parallel rendering method
was introduced by Samanta [SFLS00]. It involves assigning
geometry evenly over all nodes while simultaneously try-
ing to keep all geometry assigned to a node close together
in screen space. Thus each node produces an image tile. In
the best case, image tiles will only overlap slightly in screen
space, reducing compositing work. This method was tested
on a cluster of PCs, and was able to get good performance
on 64 nodes. We implement the hybrid method and find that
it was the best performing of all the algorithms tested.

Reinhard and Hansen [RH00] compared different com-
positing techniques and how they performed on a shared
memory machine. They tested three different methods: par-
allel pipeline, binary swap, and a shared memory analogue to
direct-send. Timings tests were performed on the three dif-
ferent algorithms, which showed that each method had the
same general performance. Our results using different com-
positing methods yielded different times, though. We base
our final compositing algorithm on their direct-send scheme.

Recently, there has been some successful work on increas-
ing performance by modifying existing algorithms to take
specific advantage of shared memory, multi-core architec-
tures. In 2009, Nonaka and Ono [NO09] increased composit-
ing performance on a cluster with multi-core nodes by us-
ing shared memory compositing among intra-node images,
which reduced the number of images to one per node. Then
binary swap was performed between the nodes to obtain
the final image. They found this two-phase method faster
than simply doing binary swap among all cores. Similarly,
Howison et al. [HBC10] compared parallel volume ray cast-
ing using an MPI-only implementation and an MPI-hybrid
method that used shared memory techniques, and got faster
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frame rates with the MPI-hybrid method. The increased per-
formance was mainly the result of a decrease in compositing
time. A hybrid shared memory, multi-core scheme for par-
allel rendering on a cluster composed of multi-core nodes
is a possible future direction. For this paper, we are focused
on getting the best rendering performance on one node com-
posed of a large shared memory machine.

3. Distributed Memory vs Shared Memory
Architectures

In computer hardware, distributed memory and shared mem-
ory are the two most prevalent multiple-processor computer
architectures employed today. In distributed memory, each
processor has its own private memory. Explicit communi-
cation must occur in order for processors to exchange and
share data. Since communication is a possible bottleneck,
many parallel algorithms for distributed memory try to min-
imize the amount of communication needed. A shared mem-
ory architecture can be characterized by the property that all
processors have access to main memory. No direct commu-
nication between processors is needed, but synchronization
may be required when multiple processors operate on the
same data in order to avoid race conditions. Shared mem-
ory algorithms must consider cache performance, bus con-
tention, and memory management in order to fully optimize
performance.

Shared memory architectures can be further categorized
into two groups: non-uniform memory access (NUMA) and
uniform memory access (UMA) architectures. In a NUMA
architecture, the system is separated into multiple nodes, or
numa nodes. Each numa node contains one or more proces-
sors and a subset of main memory. Latency times for pro-
cessors accessing memory that is located on the same numa
node, i.e. local memory, is much faster than requesting mem-
ory that is on another numa node, i.e. remote memory, in
which case memory needs to be sent over a transport (such
as AMD’s HyperTransport), increasing latency. Thus in a
NUMA machine, retrieving different parts of memory will
take different amounts of time. In a UMA architecture, all
processors have equal access to the memory, and a read from
any part of the memory will have equal latency.

4. Timing Tests Setup

For testing, we used two machines. One is called Oceans12,
a 24-core machine that consists of 4 CPUs, each of which
are 6-core Intel Xeons, and is a UMA machine. The other
machine, called Kratos, is a 32-core machine consisting of 8
CPUs which are each 4-core Opterons. Kratos is a NUMA
machine.

For each of our shared memory implementations, we used
Mesa for the software rendering. All of our implementations
were written in C++ and used the POSIX pthreads library to
enable parallel computation. Let N be the number of threads

used. For sort-first and hybrid sort-first and sort-last, we di-
vided the geometry into a kd-tree. In the sort-first case, this
was used for view frustum culling. In the hybrid method, the
kd-tree was used to quickly obtain screen partitions during
each frame. The kd-tree used was optimized such that geom-
etry was packed contiguously in memory.

We consider the construction time of the kd-tree as a pre-
processing step. Since we are mainly concerned about the
rendering speed and resulting level of interactivity, we ig-
nore any preprocessing times in our timing results.

We performed timing tests for each of our algorithm im-
plementations. Unless otherwise stated, the dataset used is
an isosurface that has roughly one million triangles, with an
image resolution of 10242. We rendered 60 frames while ro-
tating the camera, and then took the average and maximum
time for frame time, rendering time, and compositing time.
More specifically, rendering time is the time spent in Mesa.
The frame time is defined as the time required from the mo-
ment one frame is done to the time the next frame is done. In
other words, frame time is the sum of rendering time, com-
positing time, synchronization time, and other overhead.

5. Sort-Last Rendering on Shared Memory

Sort-last rendering is one of the most popular parallel ren-
dering algorithms in use today because of its robustness
and scalability [CMF05] [CM06]. In sort-last, load balanc-
ing the rendering phase is trivial, thus the rendering times
easily scale to the number of processes used. The main bot-
tleneck of sort-last is the composite step. When composit-
ing full image buffers, the number of pixels that need to
be composited per processor approaches a constant num-
ber, or more specifically twice the number of pixels in
one full image [YWM08]. Several methods have been de-
vised to try to improve compositing times, including bi-
nary swap [MPH94], direct-send [EP08], and more recently
radix-k [PGR∗09].

When migrating sort-last to a shared memory environ-
ment, the main advantage gained is that network transfers
are no longer required, since all threads share memory. For
the rendering step, this means little other than avoiding the
initial send of geometry to each thread. During the render-
ing phase, we randomly gave an equal number of triangles
to each thread. Each thread created its own Mesa OpenGL
context, and then rendered a full sized partial image to an
offscreen buffer. The partial images must be full sized be-
cause of the random assignment of geometry, which mean
triangles could be anywhere in screen space.

The elimination of any need for network transfers is a sig-
nificant change for the compositing step, though. Because
a thread can read any image buffer easily, we expect com-
positing to be very fast in general. For our benchmarks,
we chose to compare two different compositing strategies,
binary swap and Reinhard and Hansen’s shared memory
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Figure 1: Shared memory direct-send compositing. Three
images, I0, I1, I2, are split into three subregions. Threads t0,
t1, t2 are responsible for compositing one subregion. Here,
pixels in I1 are composited with pixels in I0, and pixels in I2
are also composited with pixels in I0.

direct-send algorithm [RH00], which we refer to as sim-
ply direct-send. Binary swap is chosen because it is one of
the most popular compositing techniques, and is optimal in
terms of parallelism utilization. Direct-send is selected be-
cause it is explicitly designed for a shared memory architec-
ture. Figure 1 illustrates how direct-send operates. In direct-
send, each N partial image is split into N equal sized subre-
gions. Each thread is then assigned a subregion. Every thread
is responsible for compositing together corresponding sub-
regions over every partial image to get the final pixel values
of that subregion. Composited pixels can be stored in one of
the image buffers, or a separate final image buffer.
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Figure 2: Sort-last rendering times on Oceans12. Perfor-
mance peaks at 16 threads and then begins to dip.

Figure 2 shows the rendering times obtained from sort-last
rendering on a shared memory machine. Rendering times
improve until it reaches a certain point, in this case 16
threads, at which time it levels off and then begins to de-
crease. We believe this hump occurs because of cache per-
formance and memory bus contention. One factor for poor
scaling is that each thread will each generate a full sized par-
tial image. This means that at a certain point, cache perfor-
mance will suffer because the cache will not be sufficiently
large enough to hold all partial images in the cache. For ex-
ample, rendering an image of resolution 10242 requires 4MB

of memory. Oceans12 has an L3 cache of size 12MB, shared
over six cores. Theoretically, a maximum of three full size
images can fit in the cache, ignoring memory requirements
for geometry and the program itself. Once more than three
cores are being used in a CPU, parts of the partial images
will begin to be constantly moved to and from cache when
cache misses occur. As the number of threads continue to in-
crease, the amount of stress on the memory bus from these
cache operations will rise and lead to contention, in which
case performance suffers. This is exacerbated by the fact
that in sort-last, a thread’s geometry can lie anywhere on the
screen, so having cache hits when writing to the framebuffer
is even more unlikely.
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Figure 3: Sort-last compositing times on Oceans12. Two dif-
ferent compositing methods are tested. Direct-send outper-
forms binary swap over all number of threads.

From their testing, Reinhard and Hansen came to the con-
clusion that the choice of compositing algorithm did not mat-
ter when running on a shared memory machine as long as
the algorithm did not read any pixels more than once. Our
results differed from that conclusion, though. In Figure 3,
we benchmarked and compared binary swap and direct-send.
As can be seen, direct-send significantly outperforms binary
swap over all number of threads. At 16 threads, direct-send
exhibits a speedup factor of about seven over binary swap.

The main reason for this discrepancy is that binary
swap requires frequent synchronizations. A global barrier is
needed after rendering is complete, and additionally a thread
is required to synchronize with its partner during each step
of binary swap. This synchronization greatly hampers per-
formance. On the other hand, direct-send requires very little
synchronization. Once a thread has finished rendering, it can
immediately begin to composite. There will be wait times,
though, as a compositing thread may have to wait until a par-
ticular image is done rendering until it can start compositing
that image.

Overall, we found that sort-last does not scale well on
a shared memory machine. Even though compositing is
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generally fast, the bottleneck becomes the rendering phase,
which eventually plateaus and then declines as the number
of threads increase.

6. Sort-First Rendering on Shared Memory

At first glance, sort-first rendering would seem to be a more
scalable option than sort-last. The main reason that sort-last
does not scale well, as mentioned in Section 5, is because
each thread will produce a full sized image. Dealing with N
full sized image buffers hurts cache performance and creates
memory bus contention. In sort-first, the screen is partitioned
into N non-overlapping sections, so each thread will on av-
erage only have an image buffer size of W ·H/N, where W
and H are the width and the height of the image, respectively.
The sum of all buffers will never exceed the original image
size, so there should be little trouble keeping all the partial
image buffers in the cache.

Another advantage that sort-first has in a shared memory
environment is that there is no longer any need to send geom-
etry over the network. This has been a traditional disadvan-
tage of sort-first. Normally, using sort-first requires sending
geometry to the node that is going to render it, if the node
does not already have the geometry in memory. In the case
of geometry spanning multiple screen partitions, the geome-
try must be transmitted to every node that needs to render
it. Temporal coherence between frames can help mitigate
the amount of data transferred between frames, but some
geometry will still need to be sent over the network. On a
shared memory machine, this constraint is eliminated. Once
the data is loaded into memory, any thread can access any
portion of the geometry without having to worry about net-
work delays.

For our sort-first implementation, we used the MAHD al-
gorithm [Mue95] to dynamically repartition the image every
frame. In MAHD, the screen is first divided into a 2D mesh.
Then geometry (or in our case, kd-tree node bounding boxes)
are projected into screen space. Each mesh cell is associ-
ated with a cost. Every time a triangle is found to lie within
a mesh cell, the cost for that cell is increased. A summed
area table is then used to quickly determine the cut that will
generate the most balanced partitions. The MAHD algorithm
is generally very fast, in our experience about 5ms depend-
ing on the number of partitions made. The data is loaded
into a kd-tree structure as described in Section 4. Then each
thread, knowing their partition, generates a Mesa OpenGL
context, and renders the geometry for its partition. View frus-
tum culling is used to quickly discard triangles outside the
partition and speed up rendering. When each thread is done
rendering, the partition is copied to a final image buffer.

Figure 4 shows the results of our sort-first timings. The
average frame time as well as the maximum time any thread
took is shown. Overall, the performance continues to rise as
the number of threads increase, unlike sort-last which lev-
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Figure 4: Sort-first frame time on Oceans12.

eled off and then declined. Despite that, the absolute render-
ing times are slower than sort-last, and the speedup is far
short of an optimum linear speedup. The reason we believe
sort-first does not perform well is because of the number
of triangles being rendered multiple times. A triangle may
be rendered multiple times for two reasons. First, triangles
that span over more than one kd-tree node may be rendered
multiple times, since it is unknown whether those triangles
have already been rendered or not. Second, triangles that
span multiple image partitions must be rendered for every
image partition it is in. Redundant triangles become more
of a problem as the number of partitions increase, since im-
age partitions become smaller and the number of triangles
spanning more than one partition will increase. Our tests in-
dicate that for 24 threads, rendering redundant geometry ac-
counts for about 40% of the rendering time. This unneces-
sary work greatly impairs the performance of sort-first. The
speedup factor will also suffer from image partitioning and
view frustum culling, whose costs remain constant through-
out all number of threads.

Although some of the drawbacks of sort-first become mit-
igated when moving to a shared memory environment, from
our tests we conclude that sort-first is not a viable option.
It simply does not scale well. At even higher number of
threads, we expect sort-first performance to level off as the
amount of time spent on redundant triangles begin to domi-
nate the rendering time.

7. Hybrid Sort-First and Sort-Last Rendering

First proposed by Samanta et al. [SFLS00], hybrid sort-first
and sort-last rendering is an approach that combines aspects
from both algorithms. Essentially, an attempt is made to split
the image in screen space into several non-overlapping par-
titions that require roughly the same amount of rendering,
similar to sort-first. What makes this algorithm different is
that the non-overlapping restriction is relaxed, such that par-
titions can overlap as needed.
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The first step in our implementation is to place all geome-
try in a kd-tree. Then all the nodes of the kd-tree at a certain
depth are chosen, and their bounding boxes are projected to
screen space. When choosing which kd-tree depth to use,
trade offs must be weighted between partition creation time
and partition granularity. If the depth is too small and the
kd-tree nodes are large, then the resulting partitions over-
lap more than necessary in screen space. On the other hand,
choosing a depth that is too large will result in an excessive
number of nodes and lengthen the partition calculation time.
In our case, we empirically found that a depth of 9 was opti-
mal. The partitions are obtained in a recursive fashion, with
the current partition split either vertically or horizontally at
each step. When creating a vertical split, two lists of kd-tree
nodes are maintained, one for the left partition and one for
the right partition. The leftmost available kd-tree node, in
terms of position in screen space, is marked for the left par-
tition, then the rightmost available kd-tree node, based on
position in screen space, is marked for the right partition.
This continues until all kd-tree nodes have been selected.
Horizontal splits are created in an analogous way. The re-
sulting partitions will be split recursively, with the direction
of the split alternating between vertical and horizontal, until
the desired number of partitions is obtained.

Figure 5 illustrates two partitions. Notice that both parti-
tions only overlap slightly in the middle. It can also be seen
that each piece of geometry is assigned to only one partition,
thus there is no wasted effort to render redundant triangles.
The isosurface that was used in our timing tests, split into
four partitions, is shown in Figure 6.

Figure 5: An example of two partitions in hybrid rendering.
The partitions only overlap slightly in the middle.

Once partitions are calculated and geometry is assigned,
each thread renders all geometry allocated to it, and creates
an image tile. Then each image tile will be composited onto
a common image buffer to create the final image.

For the compositing step, we chose to use direct-send,
since we found it the best performing compositing algorithm
(see Figure 3). To adapt it to the hybrid rendering framework,
we first split the full sized final image into equal-sized hor-
izontal strips, and assigned each thread a strip. Each thread
is responsible for compositing all image tiles that overlap

Figure 6: An isosurface divided into four rendering parti-
tions in the hybrid method.

its composite region. Note that horizontal strips are used be-
cause they are contiguous in memory, which increases cache
performance. Once a thread finishes rendering, it does not
need to wait and can immediately begin compositing. To
composite, first a thread checks the screen coordinates of ev-
ery image tile to see if it overlaps with the thread’s assigned
composite region. If there is an overlap and that tile is done
rendering, then the overlapping portion is composited. If that
image tile is not done rendering, then it is skipped and an-
other image tile is tested. This continues until all necessary
images tiles have been composited.

Figure 7 details rendering time using the hybrid method.
Rendering performs very well with the hybrid method. The
speedup remains close to linear even up to the full number
of cores available.

Rendering using the hybrid method works well on a
shared memory environment for several reasons. First, the
image tiles generated by each thread are smaller than the full
image. This helps keep each image tile framebuffer in cache,
thus making it more likely that each write to the image tile
framebuffer is a cache hit. This is especially important when
multiple cores of the same CPU are each rendering an image
tile. If these cores are sharing one or more caches, then they
are all competing for shared cache space. Having smaller
partitions makes it more likely that all or most of the image
tile buffers can fit together in cache.

Another reason that rendering scales well with this
method is because, on average, there will be less writes to
the framebuffer. This is because more pixels will fail the
depth test when rendering. To understand why this is so,
think of the worst case sort-last rendering scenario, where
each thread is assigned geometry that is spread throughout
the entire image. Thus for many triangles that will not be
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visible in the final image, they will be rasterized and written
to the framebuffer. This will result in numerous memory read
and write operations. Because triangles can be anywhere on
the screen and processed in any order, these writes are spread
out through the entire image, and have little spatial local-
ity, possibly increasing cache misses. In the hybrid method,
all geometry assigned to a partition is in a localized area of
screen space, thus the increased likelihood that a triangle is
partially or fully occluded. This results in more pixels failing
the depth test and less writes to image tile framebuffers.

As Figure 8 shows, compositing time for the hybrid
scheme performs very well, with the maximum composite
times ranging from about 300 to 700 frames per second. This
is due to the fact that partitions are generally much smaller
than the full image size and they only overlap each other in
certain regions, thus the number of pixels to composite is
much less than in sort-last rendering.
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Figure 7: Average rendering time using the hybrid method
on Oceans12. Sort-first and sort-last are included for com-
parison. Hybrid rendering times scale almost linearly.

7.1. Performance Comparison

Figure 9 graphs the frame time of all methods we imple-
mented and tested. Note that the hybrid timings used further
optimizations that will be discussed in Sections 7.2 and 7.3.
As an additional test, parallel rendering using Paraview is
also included. Paraview uses sort-last rendering, but only
through MPI processes. Software rendering is still used, and
compositing employs the IceT library [MWP01], which is
optimized for sort-last compositing. The Paraview times are
included as an example of how an algorithm designed for
distributed memory will perform when run unmodified on a
shared memory machine.

Even though modern MPI distributions do detect and at-
tempt to optimize for a shared memory environment, all
algorithms specifically designed for shared memory ended
up performing better than Paraview. When the number of
threads are low, sort-last outperforms sort-first, but as the
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Figure 8: Average composite times using the hybrid algo-
rithm and direct-send on Oceans12. Compositing times from
sort-last rendering using direct send is also shown for com-
parison.

number of threads increase, sort-last performance declines
and sort-first becomes faster. The slightly erratic timings of
sort-last on Kratos is probably due to NUMA effects. Over-
all, the hybrid sort-first and sort-last method showed the best
scaling of all methods we tested. As the number of threads
increase, the hybrid method clearly outperforms all other
schemes on both of our test machines, and is the only al-
gorithm that shows good scalability.

Other datasets of varying sizes were tested using the hy-
brid method, the results of which are graphed in Figure 10.
The datasets cosmo1 and cosmo2 are isosurfaces derived
from a cosmology simulation, and contain 4.5 million and
8 million triangles, respectively. The salt dataset is an iso-
surface obtained from salinity data that contains 15 million
triangles. Figure 10 graphs parallel efficiency, which is com-
puted using

εn =
tserial
n · t̄n

, (1)

where n is the number of threads, tserial is the frame time
achieved with one thread, and t̄n is the average frame time
using n threads. For all datasets, the hybrid method scales
well, with the parallel efficiency never dipping below 0.85.

7.2. Load-balanced compositing

One problem with using direct-send as it was originally de-
signed is that it is not necessarily load-balanced when used
in conjunction with hybrid rendering. In certain cases some
threads composited very few pixels, while other threads
composited the majority of pixels. In order to achieve a more
load-balanced compositing, we modified direct-send by par-
titioning the image into regions with equal amounts of work.

To do this, we first find the amount of compositing work
that is needed for each row of the final image. Since we know
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Figure 9: The frame time for all parallel rendering methods, including Paraview. The hybrid method clearly outperforms all
others. (a) Results from Oceans12. (b) Results from Kratos.
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Figure 10: Parallel efficiency of the hybrid method tested with various datasets. Datasets include cosmo1 (4.5 million triangles),
cosmo2 (8 million triangles), and salt (15 million triangles). (a) Results from Oceans12. (b) Results from Kratos.

the size and location of each partial image tile, we can sim-
ply count the number of pixels that each partition will con-
tribute to each row. Once we do this for every image tile and
every row, we have an exact number of composite opera-
tions that each row requires. Then the final image is split into
horizontal strips such that each strip requires approximately
the same number of composite operations. This results in a
more load-balanced compositing step, with each thread com-
positing about the same number of pixels. An example of
compositing regions before and after being load-balanced is
shown in Figure 11.

7.3. Optimizations for NUMA Architectures

While testing our hybrid rendering implementation, one of
the issues that we came across was NUMA effects. This
happened on our test machine Kratos, which is a NUMA
machine. We observed that timings on Kratos had erratic

dips which were not present in our other test machine,
Oceans12, which uses a UMA architecture. Differences also
arose when using an interactive program to rotate and zoom
in on geometry. When the user rotated the mesh, the program
would have noticeable drops in frame rate, resulting in un-
smooth animations. Again, this was evident on Kratos, but
not Oceans12.

We came to the conclusion that the cause of this behav-
ior was due to NUMA effects. The details and consequences
of a NUMA architecture are described in Section 3. In or-
der to alleviate these issues stemming from NUMA, we ex-
plicitly managed memory using the libnuma library [Kle04].
The libnuma library gives the ability to allocate a block of
memory on a specific numa node, or interleave memory over
all or a subset of numa nodes. With the libnuma library, we
implemented several optimizations to minimize NUMA ef-
fects.
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(a) (b)

Figure 11: An example of four composite regions. Compos-
ite regions are outlined in black, and rendering partitions are
outlined in white. (a) Dividing the image into equal sized re-
gions. Note that the top and bottom strip will composite less
pixels than the other two. (b) Load balanced composite par-
titions. Each strip will composite roughly the same number
of pixels.

First, each thread was pinned to a specific core. Though
this is generally the default case, this ensures that multiple
threads are not being run on the same core, and this also pre-
vents threads from moving from one core to another during
execution. The next change was to ensure that each image
tile framebuffer was allocated in the same numa node that
the rendering thread will be running on. This is usually the
default behavior as long as the thread allocates the frame-
buffer, but may not be the case if there is not enough memory
available on that numa node. Allocating framebuffers such
that they are in the local memory of the rendering thread
helps performance because most of the access requests of
those buffers occur during rendering.

For other data that can be used by any thread at any time,
it is best to interleave them over all numa nodes. This in-
cludes the framebuffer that will hold the final image, since
the majority of memory accesses to this buffer will be during
compositing, and compositing assignments will change dy-
namically between frames. The geometry being rendered is
also interleaved over all numa nodes, since different threads
will render different triangles depending on the viewing an-
gle.

Overall, implementing these NUMA optimizations re-
sulted in more stable timings. Figure 12 shows maximum
render time and maximum composite time with and without
any NUMA optimizations. Maximum times are shown be-
cause they more accurately reflect frame rate smoothness for
an interactive program. The speedups are more stable when
using these NUMA-aware modifications, although the max
performance does not increase. The changes resulted in no-
ticeably more fluid animations during user interaction.

8. Conclusion

In this paper we investigated and analyzed how established
parallel rendering algorithms performed on large shared
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Figure 12: Results of using NUMA-aware modifications on
Kratos. (a) Maximum render times. (b) Maximum composite
times.

memory machines. This was done in order to emulate a
many-core supercomputer node and test the scalability of
software rendering in that environment. We implemented
several methods originally designed for distributed mem-
ory, including sort-first, sort-last, and a hybrid sort-first and
sort-last scheme. Two compositing algorithms, binary swap
and direct-send, were also examined. Through benchmark-
ing, we found that sort-first and sort-last had bottlenecks
that resulted in poor performance and inadequate scaling.
The other method tested, a hybrid combination of sort-first
and sort-last rendering, coupled with load-balanced direct-
send compositing, resulted in the best performance of paral-
lel software rendering. In order to obtain optimal efficiency,
we had to ensure good cache performance, as well as take
into account NUMA effects and mitigate them. The result, a
scalable software rendering pipeline on shared memory, rep-
resents another step toward interactive visualization on the
supercomputer. For future work, we plan to investigate soft-
ware rendering on a multi-node, multi-core supercomputer
using a combination of MPI processes and threads.
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