
An Efficient Massively Parallel Rasterization
Scheme For a High Perforlnance Graphics SysteIll

S. Karpf, C. Chaillou

ABSTRACT We present in this paper the IMOGENE II system, a massively parallel
Multi-SIMD graphics system. This architecture uses a new rasterization scheme combining
Object Parallelism and Parallel Virtual Buffers. This scheme leads to a better efficiency
than other massively parallel SHvlD systems, and allows a cost-effective, powerful and
easily expandabJe system to be designed. The syst.em consists of several SIMD Scan
Conversion Pipelines each connected to a Multi-Level Virtual Buffer, a Shading Unit
computing t.rue Phong Shading, a Virtual Accumulation Frame Buffer for anti-aliasing,
and a. classical Frame Buffer.

1.1 Introduction

The most popular way for rendering interactive synthesis images is st.ill t.o use Gouraud
interpolated [17], Z- buffered triangles. This method requires a huge amount of interpola
tions to compute the RGB and Z values of every object at every pixel, and a very high
Z-buffer bandwidth (one read/modify cycle for each pixel of each object of the scene).

In order to dispJay images at (near) interactive rates, all current graphics vvorksta
tions use several concurrent specific hardware units making interpolations and hidden-pari
elimination. The architectures of these systems are tightly coupled to available VRAM
components, and the level of parallelism is generally low. The Silicon Graphics Iris Work
station [1][2] uses .5 interpolators (Span Processors) and 20 hidden-part elimimltion units
(Image Engines). The HP 835 SRX [23] benefits from the parallelism of the PHC cllip
[29], and uses a cache-memory in order to speed up hidden-part elimination. The AllianL
visualization system [30] and the Titan graphics supercomputer [11] use the IM1J (Image
l'vlemory Unit) designed by Raster Technologies [10]. When displaying true colors, this'
unit uses 16 SLP chips (Scan Line Processor) in charge of the interpolations, a.nd a .5-
pixel parallel access per clock cycle.The Stellar GS 1000 [3] uses 16 chips processing 4x4
pixels in SlI'vlD mode. The ATT Pixel Machine [2.5] is composed of an array (up to 8x8)
of DSP:32, ea.ch one handling part of the frame buffer. The Apollo DN 10000 [21] uses 5
quadratic interpolators and a 6-pixel access t.o the frame buffer.

In addition to these commercial workstations, fundamental research works have been
carried out in order to define massively parallel graphics system following two main axis:
The pixel approach (Pixel-Planes 4 [12], Pixel-Planes.5 [14], SAGE [15]) and the object ap
proach (a system proposed by Weinberg [:31], GSP-NVS [9], PROOF [26][27], IMOGENE
[.5][6]). The H.ay-Casting Machine [20] is also an Object-Oriented system, specifically de
signed for rendering CSC-defined objects. However nOlle of these projects has led to a
commercia] syst.em yet, contrary to massively parallel general purpose computers (Con-

158

http://www.eg.org
http://diglib.eg.org

nection Machine, MasPar. ..). In the next section we will try to analyse the efficiency of
the scan-conversion process. This analysis highlights the very low efficiency of massively
pa.rallel SIMD systems. Then we present a new architecture for a. massively parallel, high
efficiency system combining Object parallelism and parallel virtual buffers in a way never
investigated before. This novel rasterization scheme allows to design an expandable, cost
effective and dynamically reconfigurable system. Several configurations are presented and
their performance analyzed.

1.2 Analysis

VVe will now briefly analyse the efficiency of massively para.llel systems, with regards to
scan-conversion and Z-buffer (a more complete analysis of rasterization techniques can be
found in [13J and [16}).

We define the efficiency as the ratio of the number of useful pixels to the number
of generated pixels. A useful pixel is a pixel belonging to an object. For instance, the
graphics unit of the Stellar GS 1000 processes 4x4-pixel blocks in SIMD mode. When
drawing lines, an avera.ge of 6 pixels belongs to the 4 x 4 block, thus the efficiency of the
system (when drawing lines) is 6/16.

Before analyzing massively parallel systems, let us describe more precisely the Silicon
Graphics IRIS, which will be our reference. This machine has a tree structure: a processor
(Edge Processor) determines the ends of the various vertical spans of the triangle (or
trapezoid), and broadcasts them to .5 Span Processors making interpolations. The Span
Processors broadcast their results to 20 Image Engines making hidden-part elimination (Z
buffer algorithm). This system makes a very smart use of 1MBytes VRAM components"
It is a MIMD machine with a 100% efficiency (only useful pixels are generated), thus
allovl'ing very high performances (the new VGX is rated at 1,000,000 small triangles (100
pixels) per second [28])" Here follows an analysis of the efficiency of recently pTOposed
massively parallel graphics systems.

4 SAGE chips are used to build a. pipeline of 1024 Pixel-Processors. This pipeline is
a SlMD machine, and the objects pass from left to right in order to process a complete
scan-line. The efficiency is the average number of pixels belonging to an object on an
active scan-line divided by 1024. When displaying small facets, the average width of an
ohject is taken as 10 pixels. The efficiency is thus ahout 1/100. Of course, the efficiency
increases when the average size of objects increases.

GSP-NVS can be considered a.s the symmetrical object-oriented architecture of SAGE.
It is composed of a pipeline of Object Processors (up to 1000), each one handling one
triangle on the active scan-line. A system with 1000 Object Processors has a.n efficiency
of 1/100 when displaying small triangles (assuming that all the processors are active).

Pixel-Planes 4 is an array of 512x512 pixel-processors. The efficiency is the average
number of pixels belonging to an object (on the entire screen) divided by the number of
pixels in the screen. \Vhen displaying 100-pixel triangles, Pixel-Planes 4 has thus a very
low efficiency (about 1/3000). A 1024xl024 system (i.e. 1024x1024 pixel-processors)
would have an even lower efficiency (1/10000). As the primitives are broadcasted to the
Pixel-Processors through a tree structure, the performances of the s~ystem do not depend
on the size of the objects.

Pixel-Planes .5 is the successor of Pixel-Planes 4, and tries to a.ddress t.he low efficiency
issue. The basic unit of the system is an array of 128x128 pixel-processors called Ren
derer. \Vhen displaying small t.riangles, the efficiency of each Renderer is about 1/150.

159

Moreover several Renderers can operate concurrently on non-overlapping virtual patches,
thus increasing the performance of the system.

We have been studying for two years the IMOGENE machine, which can be considered
as the symmetrical object-oriented architecture of Pixel-Planes 4. The system is composed
of a very large number of Object Processors, each one rasterizing one primitive in raster
scan order on the entire screen. The efficiency of such a system is very low when displaying
small triangles (the same as Pixel-Planes 4).

This a.nalysis lea.ds us to the following statements:

• Massively parallel SIMD systems have a (very) low efficiency. The ma.in consequence
is that these systems must use a considerable amount of hardware to balance the
low efficiency (typical examples are Pixel-Planes 4, PROOF and IMOGENE).

• Systems using virtual techniques (virtual processors like GSP-NVS, or parallel vir
tua.l buffers like Pixel-Planes 5) have a better efficiency, and thus are more cost
effective.

• Using a MIMD parallelism (Silicon Graphics Iris, Pixel-Planes 5) allows the perfor
mance to be increased without decreasing the overall efficiency.

• The efficiency of a SIMD system increases when the average size of the objects
(mainly triangles) increases. This means that the performances of massively parallel
systems are quite insensit.ive to large triangles, contrary to "classical systems" like
the Silicon Graphics Iris.

This analysis has led us to modify the IMOGENE architecture in order to increase the
efficiency of the system by at least an order of magnitude. As we did not want to modify
the Object Processors designed for Il'vl0GENE, we adopted a multi-SIMD architecture
with parallel rectangular virtual buffers (like Pixel-Planes 5). Contrary to pixel-oriented
systems, the object approach allows the system to operate on any rectangular patch
enclosed by the hardware virtual buffer, and thus to dynamically increase the efficiency
of the system.

1.3 The IMOGENE II concept

The key idea of the IMOGENE II system is to increase the efficiency of massively parallel
systems by generating as few useless pixels as possible. Moreover a dynamic allocation of
the processors allows the system· to be quite insensitive to "bad" databases (many large
facets hiding each other, most of the primitives falling into a single region of the screen ...).
A t last, the system is easily expandable.

The screen is subdivided into several non-overlapping rectangular patches. Scan
conversion is achieved in parallel by several Scan-Conversion Pipelines (SCP) operating
on the patches. Each SCP is composed of a large number of Object Processors, each one
scan-converting one graphics primitive in raster-scan order. Hidden part elimination is
achieved through the pipeline which outputs the visible object at the current pixel and
stores its characteristics (depth, surface normal vector, basic color) in the Virtual Buffer.
An external Zbuffer operator is available if multiple scan conversion passes have to be
made. The pool of Scan-Conversion Pipelines is a MIMD system. When a SCP has scan
converted all its primitives, the Shading Unit extracts the pixels from the Virtual Buffer
(via a high speed bus), shades them (Phong method) and stores them (He B val ues) ill

160

rs;;a~=~Pip;;ii~.··-······

: •••••• > •••••••••••••••• _.~ ••••••••••••• _ ••••••••••••••••••• _ •••••••••••••• __ 0# •••••••••• _ ••••••••••••••••••• __ •••••• • ••••••••••

,---___ ----11
~m. __

O.P = Object Processor

Fig. 1.1. The IMOGENE II Back-End Architecture

the Frame Buffer.The Shading Unit becomes available for the next SCP, and so on until
the entire scene is completed. The pixels are then displayed on the screen. An opera
tional system can be expanded without any dedicated ~lardware either by adding Object
Processors to the SCPs (i.e. adding chips on a PCB), or by adding SCPs (i.e adding
PCBs on a backplane). Here follows a description of the functional architecture of the
Scan-Conversion Pipelines and the Shading processor.

1.3.1 The Scan-Conversion Pipeline (SCP)

The SCP is an object-parallel SIMD machine that rasterizes multiple primitives in raster
scan order into a virtual rectangular area representing a part o[the screen. Each Object
Processor (OP) in the pipeline handles one graphics primitive and outputs at least. its
depth, its surface normal vector and its basic color in raster~scan order (extra values
like texture or anti-aliasing information can be output if high-quality images are to be
generated). In order not to need any external Zbuffer chip to connect two processors, the
Object Processor is also fitted with a Zbuffer operator: each OP receives the depth and
the surface normal vector of its predecessor, compares the depth with its own one, and
transmits the visible object to its successor. This requires that the Object Processors be
not truly synchronous (they do not process the same pixel). Any geometric primitive can
be used provided that its depth and surface normal vector can be computed at each pixel.

The Internal Object Generator receives the description of the objects from the host
and stores them in its memory. This memory should be double-buffered, so that an Object
Processor can receive and store new objects while scan-converting the previous ones, thus
adding a coarse-grain pipeline effect during the generation of a frame. This requires that
a separate datapath be available [or the loading of the objects. GSP-NVS [9] had a single
pipeline for loading and rasterizing. Although this reduces the chip pin-outs, it does not
allow the system to benefit from the pipeline effect. We have designed an Object Processor
that. generat.es triangles. A complete description o[this processor can be found in [22].
The chip operates at 16 Mhz and has been designed in semi-custom technology (ES2
SOLO 1400). It, uses about 45,000 transistors and is housed in a 120-pin PGA pad~age.
An optimized design in full custom should greatly reduce the complexity of the Triangle

161

Object Loading

II
... N ... e ... xt""",,,':.-:'-:'-:'-:'-{.,~j::I~'~::_ .. :':::::;~-I1--'1

Int~r~'~1 Nin ~I-""''''''''''''''
Nout

Object ----+
Generator i

~~_z ou

Zext

Fig. 1.2. An Object Processor

Processor and allow the clock rate to be increased (33 Mhz). Chips including ten Triangle
Processors could then be designed without modifying the chip pin-out. A 100 OP SC3oil

conversion pipeline will then require only ten chips.
The pipeline described above is similar to other Object Oriented Rendering Pipelines

[:31][9][27]. Two novel concepts makes the SCP more efficient than these systems by using
a dynamic alloca.t.ion of the resources.

The Multi-Level Virtual Buffer Concept

The output of the pipeline is connected to a Multi-Level Virtual Buffer via an external
Zbuffer operator allowing multiple passes if the number of objects is greater than the
number of Object Processors, and thus solving the overflovv issue. The Virtual Buffer can
be buill. with stalldard fast SRA1'vl components, and represents a rectangular patch on the
screen. The shape of this patch is not fixed, and can be dynamically configurated (either
square or rectangular). For example, a 128 x 128 buffer must be considered as a 16K-pixel
buffer, and can represent (assuming a 1280x1024 display) a 128x128 region, a 512x32
region, a 1280x12 region (i.e 12 scan-lines), and so on. This high flexibility is due to
the scan-line processing of the object approach. Indeed pixel-oriented systems, like Pixel
Pla.nes 5, have fixed virtual buffers whose size and shape depend on the number of pixel
processors. Moreover the rasterization area (square or rectangular) can be smaller than
the actual size of the hardware buffer. For example a 128 x 128 patch can be dynamically
subdivided into four 64 x64 pat.ches: the SCP scan-converts all the primitives falling into
the first sub-patch, then all the primitives falling into the second sub-patch, and so on
until the entire virtual buffer is completed. These subdivisions increase the efficiency of
the SCP, but of course require more front-end computation power (examples are given in
section 4).

Our rasteriza.tion scheme allows the system to operate on any rectangular region of
the screen, and thus is very well suited for window syst.ems (several SCPs can operate
concurrently on several windows).

162

....... _

···5· . Patch (e.g. 16K pixels)
-----I--o-·····scan-converslon

area

I·······

::~:::::·::.::::::::::I:::::·:::::::::::::~:
.-.1··· .i ·

SCREEN

Fig. 1.3. The IVlulti-Level Virtual Buffer Concept

Dynantic allocation of the Object PTocessoTs

The first Object Processor of the pipeline can be dynamically connected to the last
Object Processor of another pipeline if necessary (in that case, the virtual buffer of the
first pipeline becomes unused). This allows the system to remain balanced even when most
of the primitives fall into a single region by increasing the number of Object Processors
allocated to it. For example, a system with 10 pipelines of 100 Object Processors each
can be configurated as one pipeline of :300 O.Ps and 7 pipelines of 100 O.Ps each, or even
as one pipeline of 1000 O.Ps.

L3.2 The Shading Unit

This unit extracts the pixels (defined by their depth, surface normal vector and basic
color) from the first available virtua.l buffer, shades them and stores the resulting RGB
values in the frame buffer (see Figure 1).

The Shading Unit is composed of one Normalization Unit, and several Shading Proces
sors. The surface normal vectors computed by the Object Processors are not normalized,
which leads to illaccura.te visual results when using Phong's method. Although the inac
curacy is acceptable for tessellated objects [27], it leads to low quality images when high
level primitives (like quadrics) are used. The normalization stage is then compulsory.

The shading processors receives the normalized vectors, and computes the shading for
their own light source (each shading processor handles one light source). The RGB values
output by the shading processors are then added to produce the final RGB value to be
stored in the frame buffer. The whole Shading Unit is pipelined, and thus can deliver one
shaded pixel at each clock c.rele. A description of the shading unit ca.n be found in [22J

Let us note that a low cost system with no shading unit can be designed for triangle
based Goura,ud-shaded images. The front-end makes shading computations at the vertices
of t.he triangles (Coura.ud or Phong lighting model), and the Triangle Processors directly
interpolates these val ues (Coura.ud interpolation) instead of interpolating the surface nor
ma.l vector.

163

Normal ization
Unit

Light sources

I
~

I RGB

u
Fig. 1.4. Principle of The Shading Unit

1.3.3 Anti-aliasing

VVe are currently investigating several anti-aliasing methods for the IMOGENE II system.
A possible solution is to add a virtual accumulation buffer between the shading unit and
the frame buffer ([9] and [18] also use an accumulation buffer allowing multiple samples to
be accumulated when displaying anti-aliased images). The virtual accumulation buffer is
composed of a smal ALU for combining multiple samples, and a virtual buffer built with
fast SRAM components. A classical true color frame buffer provides 8 bits per component
(at least R, G and B values, and possibly an Alpha value). The accumulation buffer must
provide extra memory in order to avoid overflows when combining several samples. As
the accumulation buffer is a small virtual buffer (16E pixels for instance), adding ext.ra
memory is very cheap (much cheaper than a complete 1M-pixels accumulation buffer). For
instance, 16 bits per component allow 256 samples to be accumulated without overflow.

From

the -----lIl®s2EEE2±~~i shading P4-_
unit

Number of sub-samples

Virtual
Accumulation
Buffer

Fig. 1.5. Principle of The Virt.ual AcclImulat.ion Buffer

To
the
frame
butler

The ALU consists of one adder and one divider. The adder is used when accumulating
two sub-samples. The divider is used to compute the final nGn value wheIl the last sub
sample is taken. Ii.. can be replaced by a (low cost.) variable shifter if t.he number of

164

sub-samples is always a power of two.

1.3.4 Front-End

The host computer computes all geometric transforma.tions. T\1any projects [9], [14] have
shown that systems capable of rendering more than 1M triangles/second must have very
powerful floa.ting-point front-end systems (at least 8 RISC or DSP). The specific archi
tecture of our back-end system makes some computations easier than for 'other systems,
but also requires complex sorting procedures. The host is in charge of the following com
puta.tions:

., Classical geometric transformations .

., Shading computations: the host is not in charge of the shading computations. This is
a. substantial saving, for shading computations require a lot of computing power. F~r
example, computing the Phong lighting model with two light sources at the vertices
of a. triangle require as many operations as all the other geometric transformations.

• Bucket sorting: the host must sort the primitives according to their position on the
screen, and dispatch them to the corresponding SCPs. A primitive belonging to
several patches must be rendered several times.

• Dynamic allocation of the resources: The host must choose the optimum division of
the screen according to the application. The goal of this subdivision is to increase
the efficiency of the system. A good subdivision should also optimize the load of the
scan-conversion pipelines.

\Ve are still working on the architecture of the front-end computer. A high-speed ring
network like that developed for Pixel-Planes 5 [14J could be a good solution. Our SCPs
could replace Pixel-Planes 5's renderers without modifying the host architecture. 'vVe are
a.lso investigating a Transputer-based solut.ion with the new T9000.

1.4 Exalnples of configurations and expected perforn1ances

''''Ie try in this section to evaluate the performances of the ba.ck-end architecture. Of course
we a.ssume that the system has sufficient front-end computation power. \Ve also assume
that the whole systern operates at :3:3 MHz and that the shading unit has enough shading
processors.

Display rate depends on the number of pixels which must be transferred from t.he
virtual buffers to the frame buffer. Assuming that at least one virtual buffer is always
rea.dy, the animation rate on a 1280x 1024, 60Hz screen is about 20Hz. Of course this rate
increases jf a lower screen resolution is used (i.e. when fewer pixels have to be transferred).

• First configuration: one Scan-Conversion Pipeline with 100 Triangle Processors alld
a 16K-pixel Virtual Buffer.

(1) The 16H-pi:z:el hl/.tJer represent.s (J 128x 128 ngion

The SCP can scan-convert 100 triangles in about 128*128*:30ns = 0.5 ms. As the
Oject Processors are double-buffered, the host. can send new coefficients during scan
conversion. The SCP is always active if all t.he new coefficients C<U1 be loaded dnring

165

the previous scan-conversion, i.e in 0.5 ms. A triangle is defined by 64 bytes. Thus the
necessary bandwidth of the loading bus is 13 MBytes/second. If the host can sustain
this rate, then the system will be able to rasterize 100/0.0005 = 200,000 Phong-shaded
triangles/second (Pixel-Planes 5's renderer is rated at 150,000 triangles/second). Let us
note that the triangles can be up to 16K-pixel large, thus allowing the system to keep
high performances even when displaying many large triangles.

These performances can be increased without modifying the architecture by using the
multi-level virtual buffer concept. For instance, jf more than 100 triangles fall into the
l2Sx128 patch, the patch can be virtually subdivided into four 64x64 patches:

(2) The 16K-pixel buffer Tepresenis fouT 64x 64 regions

The SCP can then scan-convert 100 triangles in about 64*64*30ns = 0.13ms, but
he necessary bandwidth of the loading bus becomes 52 MBytes/second. Again, if the
host can sustain that rate, the peak perform.ance of the system is 800,000 Phong-shaded
triangles / second.

Of course, these are theoretical peak performances, and actuaJ performances will be
reduced in part because of the triangles that fall into several patches. If we assume that
25% of the triangles fall into two patches, the SCP has an actua.l performance of 600,000
triangles/second. We believe that an optimized screen partitioning (made by the host)
according to the application should allow the system to keep a very high efficiency, and
thus high performance, even in a low-cost configuration.

In a sing]e-SCP configuration, display rate depends on the load of the patches. When
many primitives (far more than 100) fall into a patch, the shading unit must wait until
all the primitives are processed.

,. Second configuration: ten Scan-Conversion Pipeline with 100 Triangle Processors
and a 16K-pixel Virtual Buffer each.

Each SCP has a. peak performance of 600,000 triangles/second (assuming 64x64
patches). Ten SCPs operating concurrently have a theoretical peak performance of 6
millions triangles/second. Of course t.he system must have sufficient fronL-end compu
tation power and a sufficiellt communication bandwidth between the front-end and the
back-end.

Using several SCPs lea.ds to an efficient load balancing. For instance, in a 10-SCP
confjguration, each SCP can make on an average 10 passes without reducing the display
rate (heavy-loaded patches are balanced by the ones enclosing few primitives). Several
SCPs can even be connected in order to increase the length of the SCP when a patch
is overloaded. Such a system could thus update scenes containing 300,000 triangles (up
t.o 4E-pixcl) at 20 Hz on a 1280 x 1024 screen, and is thus very well suited for real-time
applications (flight simulations, virtual rea.lity ...).

1.5 Conclusion

\Ve have presented in this paper an efficient multi-SIMD massively parallel rasteriza.tion
scheme. YVe believe t.hat the main issue of massively parallel system is the poor utiliza
tion of the processors. Our proposal is a possible solution to this problem for object
orient.ed graphics syst.ems. The main innovation is the combilJation of SIMD object ren
dering pipelines wit.h rcconfjgurable rectangular virtual buffers. The system is capable

WG

of rendering high quality Phong-shaded, anti-aliased images. Other sophisticated effects
(texture mapping and shadowing) are presently being studied. Of course much work is still
to be done, especia.lly for defining the matching front-end. Our scheme tries to increase
the efficiency of an object-parallel graphics system, a.nd t.hus leads to the following (yet
unsolved) problems:

" the host must be a very powerful ll1uti-processor syst.em with a very efficient com
munication tool. Efficient sorting algorithms have to be developped for supporting
the dynamic virtual rasterization scheme.

• Simulations must be made in order to choose the appropriate number of scan
conversion pipelines and the appropriate number of Object Processors per pipeline.

However, the main advantages of the back-end system are:

• easily expanda.ble: the system can be upgraded either by adding Object Processors
to each Scan-Conversion Pipeline, or by adding Scan-Conversion Pipelines.

• high performance: a lOOO-processor system will be capable of rendering up to 6
millions triangles j second.

1.6 Acknowledglnents

This work is supported by French Research Program on New Architectures (PRCjGDR
ANIVI-CNRS). We 'wish to tha.nk Professor IVlichel Meriaux for supervising this project.
We also thank the LMOGENE team, especially Eric Nyiri for his work on the high level
simula.tor, Vincent Lefevere for the design of the shading processor and Samuel Degrande
for his technical support.

1.7 References

[1] Akeley, K. The Silicon Graphics '1D/240GTX Supenvorkst.atioll. IEEE Computer Graphics a.nd
Applications, vol. D IlUll1. 4, july 89, jlP ,1-83

[2] Akeley, K. and Jermoluk, T. High-Performance Polygon Rendering. ACAf Computer Graphics, vol.
22 Hum. 4, august. ID88, pp 239-2 /4G

[3J Apgar, B. Bersack, B. and Mamlllell, A. A Display Syst.em for t.he St.ellar Graphics Supercomput.er
J'vlodd GSlOOO. ACM C0111puter' G1"!lJlhics, vol. 22 Dum. 4, august. 1988, pp 255-262

[4J I3linn, ,J. F. Comput.er Display of Curved Surfaces. Ph.D. thesis, University of Ut.ah, Depart.ment,
of Comput,er Science. December El,8

[5J Chaillotl, C. El.ude d'tlll Processeur de Vi;;lIillisation d'lrnages de Synt,hese en Temps Reel Exploitant
un Paralldisllle IVlassif Objet.: Ie Projet. I.M.O.G.E.N.E. Ph.D. Thesis, Universit.e de Lille, .Janvier
1£l91

[6] Chaillou, C. Karpf, S. and IVlcrialIx, I'd. I.IvI.O.G.E.N .E: A Solution t.o t.he Real Time Animat.ion
Problem A d'/1allces in Co 111 111l Ic r' Crllph its II Ilnlu:ll1"f 1/, Springer Verlag, 19D2

[7] Claussen, U. Rea.! Ti me Phong Shad illg. Ad I'll 11 Cf.s in C01llpllleT" GmJlhics J1 anhFarc \I, Springer
Verlag, HlD2

[8J Crow, F. Shado\\' Algorit.hms for ('OIiIPII(,1" C:raphics. ACM COIHllllle7" Cmpliics, vol. II 1111l11. :~,
july IHI7, pp 2'12-2,18

167

[9] Deering, M. Winner, S. Schediwy, B. and al. The Triangle Processor and Normal Vector Shader:
A VLSI System for High Performance Graphics. ACM C01n1)uter Graphics, vol. 22 l1um. 4, august
1988, pp 21-30

[10] Denault, D. Ryherd, E. Torborg, J. and a1. VLSI Drawing Processor Utilizing Multiple Parallel
Scan-Line Processors. Advances in Comput.er Graphics Hardware II, Springer Verlag, 1988, pp 167-

182

[11] Diede, T. Hagenmaier, C.F. rvliranker, G.S. and al. The Titan Graphics Supercomputer Architecture.
IEEE Computer, September 1988, pp. 13-30.

[12] Eyles, J. Austin, J. Fuchs, H. and a!. Pixel-Planes 4: A Summary. Advances in C01ll.p1der Graphics
Hardware II, Springer Verlag, 1988, pp 183-208

[13] Foley, J. Van Dam, A. Feiner, S. and Hughes .J. Computer Graphics: Principles and Practice (second
edition) The systems Programming Series, Addison Wesley 12110, 1990

[14] Fuchs, H. Poulton, .J. Eyles, .J. and al. Pixel-Planes 5: A Het.erogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories. ACM Computer Graphics, vol. 23 num. 3, july 89, pp
79-88

[15J Gharachorloo, N. Gupta, S. Hokenek, E. and a!. Subnanosecond Pixel Rendering wit.h l\1illion Tran
sistor Chips. ACM Computer Graph£cs, vol. 22 numA, august. 1988, pp41-49

[16] Gharachorloo, N. Gupta, S. Sproull, R. anel al. A Characterization of Ten Rasterization Techniques.
ACM Computer Graphics, vol. 23 num. 3, july 89, pp 355-:368

[17J Gouraud, H. Continuous Shading of Curved Surfaces. IEEE Transaction on Computers, vol. C-20
num. 6, june 1971, pp 623-629

[18J Haeberli, P. and Akeley, K. The Accumulation Buffer: Hardware Support for High-Quality Render
ing. ACM Computer Gr'aphics, vol. 24, llum. 4, august 90, pp. 309-:318

[19J Karpf, S. Chaillou, C. Nyiri, E. and Meriaux, M. Rea.\-Tirne Display of Quadric Objects in
the I.M .O.G .E.N.E Machine. Proceedings A CM Symposium on Solid !If odcling Foundations and
CAD/CAM Applications, june 1991, pp 269-277

[20J Kedem, G. and Ellis, .J.L. The Ray Casting 1\1achine. Parallel Processing fOl' Computer Vision and
Display, Addison Wesley, pp 378-401

[21] Kirk, D. and Voorhies, D. The Rendering Architect.ure of t.he DNIOOOOVS. ACM Computer Gmph
irs, vol. 24 nun1. 4, august 90, pp 299-307

[22] Lefevere, V. Karpf, S. Chaillou, C. and Meriaux, M. The l.M.O.G.E.N.E Machine: Some Hardware
Element.s. Sil:th Eurographics VVor!.:shop on Graphics Han/ware. To be published in Advances in
Comput.er Graphics Hardware VI, Springer Verlag.

[23J McLeod,.J. liP deJivers phot.o realism 011 an interactive syst.em. Electronics, March, 17, 1988, pp.
95-97.

[24] Phong, B. T. Illuminat.ion for Comput.er Generat.ed Pictures. Communications ACM, vol. 18 num.
18, june 1975, pp 311-317

[25J Pot.mesil, M. and Hoffert, E. The Pixel Machine: A Parallel Image Computer. A CM Computer
Graphics, vol. 23 num. 3, july 89, pp 69-78

[26] Schneider, B.O. A Processor for an Object.-Orient.ed Rendering System. Compltier Gl'aphics Fo 1'"lI1H ,

num. 7, 1988, pp301-310

[27] Schneider, 13.0. and Claussen, U. PROOF: All Architecture for n.endering in Object Space. Adl)anCCS
in ComputeT Graphics lfardware III, Springer Verlag, pp 121-ltIO.

[28J Silicon Graphics. Power Series Technical Report. 1990.

168

[29] Swanson, R. and Thayer, 1. A Fast Shaded-Polygon Renderer. ACM Computer Graphics, vol. 20
num. 4, august 1986, pp 95-101

[30] Torborg, J. A Parallel Processor for Graphics Arithmetic Operations. A CM Computer .Graphics,
vol. 2111lu11. 4,july 87, pp 197-204

[31J Weinberg, R. Parallel Processing Image Synt.hesis and Anti-Aliasing. ACM Computer Graphics, vol.
15, num. 3, august 1981, pp. 55-62

169

