
The Wavelet Stream:
Interactive Multi Resolution

Light Field Rendering
Ingmar Peter and Wolfgang Straßer

WSI/GRIS, University of T¨ubingen, Germany
[peter|strasser]@gris.uni-tuebingen.de

Abstract. One of the most general image based object representations is the
Light Field. Unfortunately, a large amount of data is required to reconstruct high
quality views from a Light Field. In this paper, we present thewavelet stream
which employs non-standard four-dimensionalwavelet decomposition for Light
Field compression. It allows for progressive transmission, storage, and render-
ing of compressed Light Field data. Our results show that 0.8% of the origi-
nal coefficients or 0.3 bits per pixel, respectively are sufficient to obtain visu-
ally pleasing new views. Additionally, thewavelet stream allows for an adaptive
multi-resolution representation of the Light Field data. Furthermore, a silhouette-
encoding scheme helps to reduce the number of coefficients required. Our data
structure allows to store arbitrary vector-valued data like RGB- or YUV-data. The
Light Field data stored in thewavelet stream can be decompressed in real time for
interactive rendering. For this, the reconstruction algorithm uses supplementary
caching schemes.

1 Introduction

Although the capabilities of computer graphics hardware have dramatically increased
in the past years, the handling of scene complexity is still one of the most fundamental
problems in computer graphics. One proposed solution for this isimage based render-
ing (IBR). Instead of constructing an exact geometry model, image based rendering uses
pictorial information to describe an object. This has several advantages: The rendering
time of the object is independent from its actual properties and depends only on the
resolution of the data. Additionally, image based objects can be easily obtained from
synthetic or real world objects, utilizing only pictures of them.

In the recent years a large number of image based approaches have been proposed.
They differ from each other in generality, utilization of geometrical information, and
memory requirements. One of the most general image based object representations is
theLight Field respectively theLumigraph, which were simultaneously introduced by
Levoy and Hanrahan [7] and Gortler et al. [2], respectively. Although the Light Field
and the Lumigraph differ in detail, in the following we will refer to both data structures
uniformly asLight Field.

Assuming that a static object is located inside non-participating media, a four-di-
mensional, RGB-valued sample of the plenoptic function [1] is sufficient to describe
the object’s visual appearance. According to this a Light Field represents an arbitrary
object by a two-dimensional array of images where all images share the same image
plane. It is independent from the geometry as well the material properties of the object
it represents. Furthermore a Light Field allows for reconstruction of almost arbitrary

http://www.eg.org
http://diglib.eg.org

views of an object and can be used to represent synthetic as well as real world ob-
jects. Unfortunately, a large amount of data has to be stored in a Light Field to obtain
new views of good quality. Therefore, various approaches were proposed for efficient
compression of Light Field data.

In this paper, we present a new data structure for progressive transmission, stor-
age, and rendering of compressed Light Field data. Thewavelet stream employs non-
standard four-dimensional wavelet decomposition to make use of the coherence in all
of the four dimensions of the Light Field data. Only a small fraction of the original
coefficients are sufficient to obtain visually pleasing reconstruction results. An addi-
tional silhouette-encoding scheme helps to reduce the number of coefficients required
for encoding the Light Field. Furthermore the wavelet stream enables storing of ar-
bitrary vector-valued data like RGB- or YUV-data. The data can be decompressed in
real time and thus allows for use in interactive graphic applications. The reconstruction
algorithm used during rendering is completed by supplementary caching schemes.

The remaining part of this paper is structured as follows: In the next section related
work is briefly reviewed. The approach used for wavelet decomposition of Light Field
data is introduced in Section 3. The wavelet stream data structure is described in detail
in Section 4. Section 5 presents the results obtained. We conclude with some ideas for
future research.

2 Related Work

Various approaches for Light Field data compression were proposed. Although the size
of the data grows withO(n4) with respect to the resolution, the chance of obtaining high
compression ratios without significant loss of quality is very good, since the sample
values are highly correlated in every single dimension.

Levoy and Hanrahan [7] use vector quantization (VQ) and in a second step Lempel-
Ziv encoding to compress the data. The drawback of this approach is, that the whole
Light Field has to be uncompressed before it can be used, because Lempel-Ziv coding
does not allow for random access. In [10] the use of Discrete Cosine Transform in
combination with block coding techniques is suggested. Spherical harmonics were used
by Wong et al. [18] to solve the compression problem.

Ihm et al. [4] proposed an alternative parameterization of the Light Field on the
surface of a positional sphere enclosing the object. On its surface smaller directional
spheres are placed which encode the directions of the samples. The directional spheres
are then adaptively triangulated and the associated values are compressed using wavelet
compression. Due to the fact, that only two-dimensional wavelet compression is used,
the coherence in two dimensions of the data remains unused. In [5, 9] coding schemes
similar to the techniques used in video compression are proposed. Prediction images
are selected in two dimensions from the light field data and subdivided into blocks.
The remaining data is then reconstructed applying simple operations on these blocks.
Schirmacher et al. [13] uses an initial sparse Lumigraph which is interactively refined
through the use of a specialized warping algorithm.

In [6, 11, 8] four-dimensional wavelet decomposition is used for compression of
Light Field data. Up till now only wavelet-based compression provides a real multi res-
olution representation of Light Field data. Despite the use of elaborate caching schemes
during data decompression, the approach of Lalonde et al. [6] reconstructs Light Fields
with a resolution of324 samples only in real time. In [8] high compression ratios using
wavelet compression are reported. However, this approach by Magnor et al. too is not
able to reconstruct the Light Field data fast enough for use in interactive applications.

These two examples [6, 8] show that two prerequisites have to be taken into account
when developing a wavelet-based compression scheme for Light Field data:

� Since the generation of a specific view of an Light Field is equivalent to project-
ing the four-dimensional Light Field onto a plane, particular values only of the
compressed data have to be accessed and decompressed [3]. Thus random access
of arbitrary values of the data has to be supported by the compression scheme.

� To enable the utilization of Light Fields in interactive applications, the data has
to be uncompressed in real time.

The wavelet stream data structure as described in Section 4 archives high compres-
sion ratios, while preserving a good image quality. Supplementary caching schemes
allow for interactive rendering of a wavelet-compressed Light Field.

3 Wavelet Decomposition for Light Fields

Wavelets are a well-established tool for computer graphics and used in many appli-
cations including image editing and compression, automatic level-of-detail control for
editing, and rendering curves and surfaces or global illumination. For a comprehensive
introduction into wavelets we refer to [17].

A wavelet decomposition transforms a signal into a collection of ascaling coefficient
c00 anddetail coefficients dji . Beside the capability of providing different level of details
(LOD), while having the same storage requirements as the original signal, the wavelet
decomposition of a signal allows for (lossy) compression of the signal by leaving out
coefficients with low or zero value.

0

d... ...d
2 2

d... ...d
2 2

d... ...d
2 2

d... ...d
2 2

0,0 2

0

d

d

d

d

d

d

d

1

8...11

4...70...3

0...15 16...31

32...47

2

22

1 1

1

0 0

0

c
1

0

d
d

d1

2

0

level

(b)(a)

(0,0)

(0,1)

(1,1)

(1,0)

0d
0

d
0

2

d 4d d
1

8

1

0

1

d 5d d
1

9

1

1

1

d 6d d
1

10

1

2

1

d 7d d
1

11

1

3

1

coefficient tree

Fig. 1. Connection between structure of decomposed data (b) and corresponding tree ofwavelet
coefficients (a).

To meet the requirements for a fast and effective wavelet compression of Light Field
data, the employed wavelet basis have to be chosen carefully. As stated in Section 2,
particular values only of the Light Field data are accessed and reconstructed during ren-
dering. To allow the use of wavelet compressed Light Fields in interactive applications
the number of coefficients required for reconstructing a specific value should be small.
Furthermore the mandatory arithmetic operations should be as simple as possible.

Both requirements are fulfilled by the Haar wavelet basis. The Haar wavelets are
tree wavelets. This means that the wavelet functions j

i of each levelj have disjunct
support. Because of this, the coefficients can be organized in acoefficient tree as shown

in Figure 1(a). In contrast to approaches from the field of image compression e.g.
[12, 14] each node in the coefficient tree holds a set of coefficients which describe a
contiguous subset of the Light Field data at a particular resolution. Thus for recon-
struction of a particular Light Field value the coefficients stored in the nodes of the
coefficient tree which relate to the respective Light Field value are sufficient only. Ad-
ditionally, a value can be reconstructed from Haar wavelet coefficients using subtraction
and addition only.

Thenonstandard construction approach [17] is used to create the four-dimensional
Haar wavelets and scaling functions from the one-dimensional ones. In practice, the
wavelet decomposition of a data set using nonstandard Haar wavelets means to perform
one step of pair wise averaging and differencing sample values in each row of the data.
After doing so in each of the at most 4 dimensions of the data, the calculated coefficients
are reordered separating the scaling and the detail coefficients. Then the process is
repeated recursively on the scaling coefficients. At the end of the recursion, the data
consists of detail coefficientsdji for each resolution levelj and one scaling coefficient
c00 representing the mean value of the Light Field as shown in Figure 1 (b).

Given a threshold� > 0 the decomposed Light Field data is compressed discarding
all coefficientsjdji j < � . TheL2 error introduced by this equals

�rms =
X

jdij<�

d2i

for an orthonormal wavelet basis.

4 The Wavelet Stream Data Structure

Without loss of generality, we will use in the following for simplicity and comprehen-
sibility two-dimensional notation and data which consists of single values in figures.
All described algorithms and data structures are capable of handling four-dimensional
vector-valued data sets.

4.1 Coefficient Storage

As stated in the preceding section, the Haar wavelets are tree wavelets. Therefore,
the wavelet coefficients can be organized in a coefficient tree as shown in Figure 1
(a). In this tree the coefficients can be grouped disjunctly for each levelj. To support
progressive transmission, storage, and refinement of Light Field data, the entries of the
coefficient tree are ordered in decreasing importance in thecoefficient stream. This
means to write the coefficients into the stream in the order as found in the tree when it
is traversed in breadth-first order (Figure 2).

Usually the input data for wavelet compression of Light Fields consists of entries of
3� 8 bit for RGB or4� 8 bit size for RGB� valued Light Fields [7]. During wavelet
decomposition non-integer coefficientsdji are created1. To keep the coefficients byte-
aligned for easy access only 8 bit are used to store a coefficientd

j
i . In this way some

additional error is introduced due to the necessary quantization of the values.
A simple and powerful approach to reduce the quantization error significantly is

to analyze all coefficients of each levelj in the coefficient tree and find their absolute
1The decomposition is carried out using floating-point precision.

coefficient stream

2 2
d... ...d

2 2
d... ...d

2 2
d... ...d

2 2
d... ...d

1d
0

dd0

0

2

0

4d
1

dd
1

8

1

0 5d
1

dd
1

9

1

1 6d
1

dd
1

10

1

7d
1

dd
1

11

1

32

2 2
d... ...d

2 2
d... ...d

2 2
d... ...d

2 2
d... ...d

1d
0

dd0

0

2

0

4d
1

dd
1

8

1

0 5d
1

dd
1

9

1

1 6d
1

dd
1

10

1

7d
1

dd
1

11

1

32

(0,0)

(0,1)

(1,1)

(1,0)

Fig. 2. Order of coefficients in the coefficient stream: The coefficients are ordered in decreasing
importance by traversing the coefficient tree in breadth-first order.

minimum and maximum valuesminj andmaxj . These are stored in a table with float-
ing point precision. The table is later added to the wavelet stream. For each level all
coefficients are then scaled so that the maximum value range[�128; 127], which can
be represented using a signed byte, is exploited by the coefficients. The minimum and
maximum values obtained earlier are used to correct the coefficient values during de-
compression. We found that this technique reduces the error introduced by quantization
by a factor of approximately 3.

4.2 The Node Description Data Structure

The data stored in the wavelet stream can consist of several independentchannels e.g.
red, green, and blue or YUV. These can have different compression properties. Because
of this the number of channels encoded in a node can decrease with increase of the level
in the wavelet stream. We say a channel to beactive if a node or one of its children stores
information regarding to this channel. During wavelet stream traversal an array of flags
is used to keep track of the channels currently active.

d

any child flags

coeff maps

0 0 I 0 I I II

succ map

dgdrd

I I 0 0 I I 0 I

ddd bdgdrd ddd bgdrd dd bdgdrd dddcoefficient stream

node description

channel channel channel210

Fig. 3. Node description with the respective part of the coefficient stream. For three entries in
the node description their meaning for the entries in the coefficient stream is depicted. Discarded
coefficients are marked with a cross.

The coefficient tree as shown in Figure 2 can become incomplete due to the removal
of coefficients during compression. Subtrees can be discarded completely if all of their
coefficients are discarded. Therefore, additional meta information has to be added to the
coefficient stream to encode the position of existing coefficients, active channels, and
existing children of each node. As stated in Section 2, during rendering only parts of
the Light Field data has to be accessed and decompressed. Unfortunately, approaches
like [12, 14] do not support random access of arbitrary wavelet compressed values.
Therefore, we had to develop our own approach to store the coefficients and the meta

information necessary for correct value reconstruction.
For each existing nodeN in the coefficient stream anode description is used, as

depicted in Figure 3. For each active channel inN a singlecoeff map significance map
[14] is used to encode the position of the existing coefficients.

A nodeN in the coefficient tree can be father of up to2dim(N) children, which them-
selves are the root nodes of up to2dim(N) subtrees, wheredim(N) is the dimension of
N . If N has any children, an additional significance map, thesucc map, is attached to
the coeff maps ofN ’s node description to encode the position of the existing children
(Figure 3).

The any child flag (Figure 3) encodes which ofN ’s channels are active in any of
N ’s subtrees. If the any child flag of a channelC is set, the succ map significance map
exists and in all subtrees ofN information relating toC is stored. When the succ map
exists, at least one of the any child flags of a node description has to be set. An unset
any child flag indicates that no information which relates to the respective channelC is
stored in any successors of the node.C is then said to bedeactivated in all of the node’s
children.

4.3 Node Description Packing

subtree description block (SDB)

wavelet stream

2 2
d... ...d

2 2
d... ...d

2 2
d... ...d

2 2
d... ...d

1d
0

dd0

0

2

0

4d
1

dd
1

8

1

0 5d
1

dd
1

9

1

1 6d
1

dd
1

10

1

7d
1

dd
1

11

1

32

c0

0

SDB

SDBSDBSDB SDBSDBSDB

Fig. 4. Wavelet stream with subtree description blocks (SDB) in front of each group of nodes
with a mutual father.

One can think of inserting a node description into the coefficient stream directly
in front of the coefficients it describes. But this would waste a significant amount of
memory since the wavelet coefficients are stored byte aligned for efficient access. The
dimensionality of the nodes usually decreases towards the leafs of the coefficient tree.
Therefore, the size of the significance maps stored in a node description can shrink to
3 bits or only 1 bit for a two-dimensional or one-dimensional node, respectively. If
none of the any child flags in a node description are set which is the case for all leaf
nodes, the size of a node description is2dim � c bits in total, wheredim denotes the
dimension of the node andc the number of active channels. Since at least one byte has
to be used for each node description, 4 respectively 6 bits are left unused (c = 1) for
two- respectively one-dimensional nodes. For example, in the worst case in a wavelet
stream encoding a Light Field with a resolution of256 � 256 � 8 � 8 samples, 512
Kbytes or 8 percent of the total size of the wavelet stream would be wasted.

Instead, the node descriptions of all nodes which have the same father, are stored
in a mutualsubtree description block (SDB) in front off all coefficients they describe
(Figure 4). They are packed behind each other in a single block of meta information
leaving a gap of unused bits at most in the last byte of the SDB. This saves not only
memory it also reduces the number of bytes necessary for efficient navigation inside
the wavelet stream (Section 4.4). Behind the subtree description block all coefficients
belonging to the nodes described in the SDB are stored.

After adding the subtree description blocks, the wavelet stream contains all infor-
mation necessary to store, transmit, and reconstruct an incomplete coefficient tree. The
scaling coefficientc00 is stored at the beginning of the wavelet stream.

4.4 Value Reconstruction and Navigation

The reconstruction of a particular value from the wavelet stream is a recursive process
starting at the root of the tree. It is equivalent to traverse the coefficient tree on a path
which is determined by the coordinate of the requested value. During traversal the
coefficients of all visited tree nodes contribute to the result.

For traversal of the tree at each node of the path a particular child has to be accessed.
This means to go forward a number of bytes. Since single coefficients or complete
subtrees might have been removed from the coefficient tree during compression, it is
not possible to compute an offset from an arbitrary node to any of its children using a
simple rule.

d

SDB

wavelet stream

2 2
d... ...d

2 2
d... ...d

2 2
d... ...d

2 2
d... ...d

1d
0

dd0

0

2

0

4d
1

dd
1

8

1

0 5 dd
1

9

1

1 6d
1

dd
1

10

1

7d
1

dd
1

11
1

32

c0

0

SDB

SDBSDBSDB SDBSDBSDB

offset block (OB)

#offsets

OB

offset

OB OB OB

#offsets offset...offset
1

Fig. 5. Wavelet stream with offsets inserted in front of the subtree description blocks (SDB).
The offsets point to the first child of each subtree described in a SDB. Discarded coefficients are
marked with a cross.

To allow fast traversal along arbitrary paths, additional navigation information is
added to the wavelet stream, when it is loaded into memory for rendering. For each
node that has at least one child (Figure 5), an offset is inserted into the wavelet stream.
This offset points to the first child of the respective node. Since all nodes with a mutual
father are packed into a single block as described in Section 4.3, this means that the
offset simply marks the beginning of the respective subtreesoffset block (Figure 5). To
save memory, the size of the offset representation itself is reduced to the actual needs.
For each level the maximum offset and the number of bytes sufficient to encode its
value are determined and stored in an additional table.

During value reconstruction a particular child of a node has to be found so that
its coefficients can be used for reconstruction. Since the size of the offset block and
the subtree description block (SDB) can not be known in advance, for each block an
additional byte is inserted into the wavelet stream giving the number of offsets and the
size of the SDB (Figure 5).

The coefficients of a particular nodeN can be found by parsing its SDB until the
node description ofN is reached. During value reconstruction thecoeff map signifi-
cance maps ofN indicates which of the coefficients exist. The traversal of the wavelet
stream continues if at least oneany child flag and the corresponding bit in thesucc map
significance map is set.

4.5 Silhouette Encoding

Usually a solitary object is encoded in a Light Field. Unfortunately, due to the high
frequency of the object’s border, it causes the generation of a large number of detail
coefficients during wavelet decomposition. If for each Light Field value its affiliation
to the object is known, a number of wavelet coefficients, which is not larger than the
number of pixels belonging to the object, must be sufficient to encode the object’s visual
appearance.

To utilize this fact the silhouette of the object is encoded. The silhouette information
is stored in asilhouette tree as depicted in 6(a). It is fully embedded into the wavelet
stream. Since the silhouette tree’s subdivision scheme is identical to that used by the
wavelet decomposition, we can exploit coherence in the wavelet stream and encode the
silhouette tree using binary information only. In Figure 6(b) the extension of the node
description data structure for silhouette encoding is depicted. Only for nodes whose
Light Field values partly belong to the object and partly not, an additionalsilhouette
map significance map is stored.

coeff maps

0 0 I 0 I I II

succ map

I I 0 0 I I 0 I

channel

I 0 I I

silhouette map

succ map silhouette map object?

I I

I 0

0 0

0 I

mixed

yes

no

yes

(a)

(b)

(c)

channel channel0 1 2

Fig. 6. Extension of thewavelet stream for encoding of silhouette information. (a) subdivision
scheme used by silhouette tree (b) extended node description data structure (c) interpretation of
silhouette map and succ map entries to determine the affiliation of a particular pixel to the object.

During uncompressing the affiliation of pixels to the object is determined by inter-
preting the entries of the succ map and the silhouette map according to Table (c) in
Figure 6.

When calculating the wavelet coefficients during decomposition using silhouette
information a special approach has to be used. Since all four-dimensional Haar wavelets
of a particular level have disjunct support, the entire process of reconstructing a value
from the wavelet coefficients stored in a node can be described by a matrixM . The
Light Field values~v := [v0; :::; vn�1] can be reconstructed by multiplying wavelet
coefficients~d := [c; d0; :::; dn�2] with M

~v =M~dT

with n = 2dim wheredim is the dimension of the respective node. Since we know from
the silhouette encoding thatn0 � n coefficients belong to the object,n0 � 1 wavelet
coefficients are sufficient to encode the objects visual appearance. Therefore, wavelet
coefficientsc0; d00; :::; d

0
n0�2 have to be calculated accomplishing

~v =M~d0
T

where~d0 = [c0; d00; :::; d
0
n0�2; 0; :::; 0]. LetM 0 be the matrixM whose last2dim � n0

columns and the rows relating to the non-object values in~v were removed. Then the
new wavelet coefficients~d00 can be obtained with

~d00 =M 0�1~v0
T

where~v0 is the vector formed of then0 Light Field values which belong to the object and
~d00 = [c0; d00; :::; d

0
n0�2]. Using the wavelet coefficients~d0 for reconstruction the Light

Field values which do not belong to the object, are assigned arbitrary values. Since the
usage of silhouette information allows excluding of those values this is not a problem.

For typical data sets about 10 percent of the entire data have to be spend to encode
the silhouette information. On the other hand the utilization of silhouette information
reduces the number of coefficients up to20�30 percent while obtaining the same com-
pression error compared to data sets compressed without using silhouette information.

4.6 Rendering and Caching Scheme

The Light Field is rendered in a fashion similar to [16]. The retrieved Light Field values
are plotted into a texture whose resolution is identical to the image plane resolution of
the Light Field. This has the advantage that the coordinates for the requested Light
Field values can be calculated by simple increments. The texture is then mapped onto
a rectangle positioned on the image plane of the Light Field and displayed using the
OpenGL.

To improve rendering speed, three different caching levels are used during Light
Field rendering. Thetexture cache utilizes texture memory of the graphics hardware
to store already calculated Light Field views. According to a last recently used policy
a fixed number of Light Field views are stored together with the respective observer’s
positions. Before generating a new Light Field view the texture cache is searched for
the Light Field view whose observer’s position is next to that of the current observer.
If the distance between current and cached observer does not exceed a user-specified
limit, the Light Field view from the texture cache is used. In a background process the
correct Light Field view is rendered and cross-faded onto the cached view.

If the texture cache misses, theimage based cache is queried next. It stores for
each pixel of the most recent generated Light Field view all pixel values along with
their camera plane coordinates. As the image plane coordinate of each pixel is given
implicitly a simple comparison of the camera coordinate is sufficient to decide whether
a cached pixel value can be reused or not. This technique is only applicable if no
interpolation is applied to the Light Field values as it is done during interactive Light
Field rendering.

If a particular Light Field value has to be reconstructed the third-leveltree cache is
employed. Usually the coordinates of consecutive requested Light Field values differ
only slightly. Therefore during traversal of the coefficient tree at every node the result
calculated so far is stored together with some navigation information. When the next
value is requested from the Light Field the current path is compared to the cached path
and cached values are reused as long as possible.

5 Results

The wavelet stream data format as described in the previous section was implemented
in C++ using a flexible framework of classes. It is possible to exchange, modify, and

compare the various parts of our method. Furthermore, the class framework provides
an environment for developing high-performance interactive applications.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.5 1 1.5 2

bpp

rm
s

er
ro

r

dragon

buddha

(a)

70

75

80

85

90

95

100

0 0.5 1 1.5 2

bpp

P
S

N
R

dragon

buddha

(b)

Fig. 7. Root-mean-square (rms) error (a) and peak-signal-to-noise-ratio (PSNR) (b) for Buddha
and Dragon Light Field.

To measure the error introduced by compression and subsequent Light Field data
reconstruction, we used the root-mean-square (rms) error� rms and the peak-signal-to-
noise-ratio (PSNR) for relative measure. To test our approach we used the well known
“Dragon” and “Buddha” Light Fields which are freely available from the Stanford Light
Fields Archive [15]. Both Light Fields have a resolution of256� 256� 32� 32 24 bit
RGB values, which results in a total size of 192 Mbytes. For further improvement all
Light Fields were transformed prior to compression from RGB to YUV and vice versa
during Light Field rendering.

0

5

10

15

20

25

30

0 0.002 0.004 0.006 0.008 0.01

threshold (tau)

fr
am

es
p
er

se
co

n
d

(f
p
s)

no cache

tree cache

tree cache + image based

Fig. 8. Rendered frames-per-second (fps) for different caching schemes as function of compres-
sion threshold� .

Figure 7(a) shows�rms for both Light Fields and different compression ratios. The
results obtained from the Buddha Light Field are better because of its smooth surface.
The curve showing the rms error does not intersect the x-axis, due to the fact that zero
coefficients can be removed from the wavelet stream without loss of information and
some error is introduced by the quantization of the non-zero coefficients. In this way an
initial compression is always given when using wavelet compression. All compression
ratios were measured with respect to the file size of the compressed Light Field data.
The PSNR depicted in Figure 7(b) shows the good performance of wavelet-based Light
Field compression as well. Again the error measurements obtained from the Buddha
Light Field are better compared to the Dragon Light Field.

Figure 8 depicts the frames per second (fps) measured while rendering the Dragon
light field with a resolution of400 � 400 pixels on a Athlon 1200 MHz PC with

GeForce2 GTS graphics board. The frame rate increases when the threshold� , used
to discard the wavelet coefficients during compressing, is raised. This is due to the fact
that the average length of the paths, on which the coefficient tree has to be traversed
during reconstruction, is reduced as more of the coefficients are discarded. The accel-
eration caused by the texture cache (Section 4.6) is not depicted in chart 8, since on a
cache hit the texture cache works as fast as the employed graphics hardware can load
and display a texture. Since the speedup is archived only when a Light Field next to a
previously used viewpoint in requested, this might lead to glitches in the archived frame
rate.

0

500000

1000000

1500000

2000000

2500000

3000000

0 1 2 3 4
bpp

fi
le

si
ze

no silhouette info

silhouette info

(a)

0

500000

1000000

1500000

2000000

2500000

3000000

0.0025 0.0075 0.0125 0.0175
rms-error

#
co

ef
fi

ci
en

ts

with silhouette info

no silhouette info

(b)
Fig. 9. Comparison of (a) the total file size and the (b) the number of coefficients of awavelet-
compressed Light Field using silhouette information and no silhouette information.

In Figure 9(a) the total file size is plotted as function of the bits per pixel (bpp) used
for encoding the Light Field data when using silhouette information and not using sil-
houette information. Figure 9(b) shows the number of coefficients sufficient to encode
a wavelet-compressed Light Field for obtaining a particular rms-error. The silhouette-
encoding scheme as described in Section 4.5 works best for Light Fields with a small
compression error. This is due to the fact that Light Fields compressed preserving a
high image quality has to store a higher number of coefficients and thus the number of
redundant coefficients due to object’s border is larger.

Finally, Figure 10 (see Appendix) shows Light Fields which were compressed with
different ratios. The image quality is only slightly decreased when the compression
ratio increases.

6 Discussion and Future Directions

We presented a new approach for storage, transmission, and rendering of compressed
Light Field data. The wavelet stream is especially well suited for progressive trans-
mission of Light Fields over networks, because the most important parts of the data
are transferred first. To decorrelate the data, 4D wavelet compression with nonstandard
orthonormal Haar wavelets was used. For encoding the positions of the coefficients
not discarded during compression, the new wavelet stream data format was introduced.
Our approach is capable of storing arbitrary vector-valued data. The compression ratios
obtained proved that only a small fraction of the original data is sufficient to obtain
visually pleasing views from highly compressed Light Fields.

Since the wavelet stream can store arbitrary values, we will use this in future to
investigate the visualization of Light Fields decorated with additional values, e.g. ma-
terial properties or multi-dimensional pixel values. Future work will also include the
implementation of the wavelet stream in Java to provide easy and fast access to Light

Field data over the Internet.

Acknowledgements

The authors wish to thank Stanislav Stoev and Michael Wand for valuable discussions and care-
ful proof reading of the manuscript. We also wish to thank the anonymous reviewers who im-
proved this work with their comments and suggestions. This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) and is part of the V3D2-project “Distributed Processing and Ex-
change of Digital Documents”.

References

1. E. H. Adelson and J. R. Bergen. The plenoptic function and the elements of early vision. In
Computational Models of Visual Processing, 1991.

2. Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumi-
graph. InSIGGRAPH 96 Conference Proceedings, pages 43–54. August 1996.

3. Xianfeng Gu, Steven J. Gortler, and Michael F. Cohen. Polyhedral geometry and the two-
plane parameterization. InEurographics Rendering Workshop 1997, pages 1–12, June 1997.
Springer Wien.

4. Insung Ihm, Rae Kyoung Lee, and Sanghoon Park. Rendering of Spherical Light Fields. In
5th Pacific Conference on Computer Graphics and Applications, pages 59–68, 1997.

5. Ming-Hoe Kiu, Xiao-Song Du, Robert J. Moorhead, David C. Banks, and Raghu Machiraju.
Two Dimensional Sequence Compression Using MPEG. InSPIE Vol. 3309, SPIE/IS&T
Electronic Imaging ’97, San Jose, CA, January 1998.

6. Paul Lalonde and Alain Fournier. Interactive rendering ofwavelet projected light fields. In
Graphics Interface, pages 170–114, June 1999.

7. Marc Levoy and Pat Hanrahan. Light field rendering. InSIGGRAPH 96 Conference Pro-
ceedings, pages 31–42. August 1996.

8. M. Magnor, A. Endmann, and B. Girod. Progressive compression and rendering of light
fields. InVMV 2000, pages 199–204, Saarbr¨ucken, Germany.

9. Marcus Magnor and Bernd Girod. Data Compression in Image-Based Rendering.IEEE
Transactions on Circuits and Systems for Video Technology, April 2000.

10. Gavin Miller, Steve Rubin, and Dulce Ponceleon. Lazy decompression of surface light fields
for precomputer global illumination. InRendering Techniques ’98, pages 281–292. 1998
Springer Wien.

11. Ingmar Peter and Wolfgang Straßer. Thewavelet stream: Progressive transmission of com-
pressed light field data. InIEEE Visualization 1999 Late Breaking Hot Topics, pages 69–72.
IEEE Computer Society, October 1999.

12. Amir Said and William A. Pearlman. A new fast and efficient image codec based on set
partitioning in hierarchical trees.IEEE Transactions on Circuits and Systems for Video Tech-
nology, 6:243–250, June 1996.

13. Hartmut Schirmacher, Wolfgang Heidrich, and Hans-Peter Seidel. High-quality interactive
lumigraph rendering through warping. InGraphics Interface, pages 87–94, May 2000.

14. J. M. Shapiro. Embedded image coding using zerotrees ofwavelet coefficients.IEEE Trans-
actions on Acoustics, Speech and Signal Processing, 41(12):3445–3462, 1993.

15. The Stanford Light Fields Archive. http://www-graphics.stanford
.edu/software/lightpack/lifs.html.

16. Peter-Pike Sloan and Charles Hansen. Parallel Lumigraph Reconstruction. InProc. of PVG
99, San Francisco, October 1999.

17. Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin.Wavelets for Computer Graphics:
Theory and Applications. Morgan Kaufmann, San Francisco, 1996.

18. T.-T. Wong, P.-A. Heng, S.-H. Or, and W.-Y. Ng. Illumination of image-based objects.The
Journal of Visualization and Computer Animation, 9(3), 1998.

4.05 bpp, 16% coeffs 1.27 bpp, 5% coeffs

1.8 bpp, 5% coeffs 0.6 bpp, 1.7% coeffs

1.02 bpp, 2.4% coeffs 0.3 bpp, 0.8% coeffs

Fig. 10. Dragon and Buddha Light Field with magnified detail for different compression
ratios: With increasing compression ratio, the obtained image quality decreases only
slightly.

