
UNIVERSITY OF CAGLIARI

PHD SCHOOL OF MATHEMATICS

AND COMPUTER SCIENCE

XXVII CYCLE

COURSE IN COMPUTER SCIENCE

Scalable Exploration of

Highly Detailed and Annotated 3D Models

INF / 01

 Author : Marcos BALSA RODRIGUEZ

 Supervisors : Prof. Riccardo SCATENI

Dr. Enrico GOBBETTI

2013 - 2014

http://www.eg.org
http://diglib.eg.org

Dedicado a mi familia y amigos
Dedicated to my family and friends

Abstract
With the widespread availability of mobile graphics terminals and WebGL-enabled browsers, 3D
graphics over the Internet is thriving. Thanks to recent advances in 3D acquisition and modeling
systems, high-quality 3D models are becoming increasingly common, and are now potentially
available for ubiquitous exploration.

In current 3D repositories, such as Blend Swap, 3D Café or Archive3D, 3D models available for
download are mostly presented through a few user-selected static images. Online exploration is
limited to simple orbiting and/or low-fidelity explorations of simplified models, since photo-
realistic rendering quality of complex synthetic environments is still hardly achievable within the
real-time constraints of interactive applications, especially on on low-powered mobile devices or
script-based Internet browsers.

Moreover, navigating inside 3D environments, especially on the now pervasive touch devices,
is a non-trivial task, and usability is consistently improved by employing assisted navigation
controls. In addition, 3D annotations are often used in order to integrate and enhance the visual
information by providing spatially coherent contextual information, typically at the expense of
introducing visual cluttering.

In this thesis, we focus on e�cient representations for interactive exploration and understand-
ing of highly detailed 3D meshes on common 3D platforms. For this purpose, we present several
approaches exploiting constraints on the data representation for improving the streaming and
rendering performance, and camera movement constraints in order to provide scalable navigation
methods for interactive exploration of complex 3D environments.

Furthermore, we study visualization and interaction techniques to improve the exploration
and understanding of complex 3D models by exploiting guided motion control techniques to aid
the user in discovering contextual information while avoiding cluttering the visualization.

We demonstrate the e�ectiveness and scalability of our approaches both in large screen museum
installations and in mobile devices, by performing interactive exploration of models ranging
from 9Mtriangles to 940Mtriangles.

Keywords: Computer Graphics, Real-time Rendering, Massive Model Rendering, Level-of-
detail, Interaction Techniques.

“Simplicity, carried to an extreme, becomes elegance.”

Jon Franklin

Contents

List of Figures xiii

List of Tables xv

Acknowledgments xvii

Preface xvii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objectives . 3
1.3 Achievements . 3
1.4 Organization . 4

I Background and Motivation 7

2 Application Domain 11
2.1 Introduction . 11
2.2 Requirements . 13
2.3 Discussion . 19
2.4 Bibliographical Notes . 20

3 Previous Work 21
3.1 Introduction . 21
3.2 Scalable Visualization of Complex 3D Models . 22
3.3 Interactive Exploration of Complex 3D Models . 25
3.4 Information Discovery on Complex 3D Models . 28
3.5 Discussion . 29
3.6 Bibliographical Notes . 30

4 Work Plan 33
4.1 Research Goals . 33
4.2 Our approach . 35

II Compact Representations for Complex 3D Models 41

5 Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes on
Mobile Devices 45
5.1 Introduction . 45

ix

Contents x

5.2 Method Overview . 48
5.3 Building the multiresolution structure . 49
5.4 Server . 55
5.5 Client architecture description . 55
5.6 Implementation and Results . 60
5.7 Discussion . 63
5.8 Bibliographical Notes . 65

6 Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 67
6.1 Introduction . 67
6.2 Method Overview . 68
6.3 Surface Reconstruction, Parametrization and Quad Re-meshing 69
6.4 Quad-based Multiresolution Structure . 70
6.5 Implementation and Results . 77
6.6 Discussion . 81
6.7 Bibliographical Notes . 82

7 ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D Envi-
ronments 83
7.1 Introduction . 83
7.2 Creating the ExploreMaps graph . 84
7.3 E�cient GPU Implementation . 89
7.4 Implementation and Results . 96
7.5 Discussion . 98
7.6 Bibliographical Notes . 100

III Assisted Exploration of Complex 3D Models 101

8 HuMoRS: Huge models Mobile Rendering System 105
8.1 Introduction . 105
8.2 System overview . 107
8.3 User interaction . 109
8.4 Implementation and Results . 113
8.5 Discussion . 119
8.6 Bibliographical Notes . 119

9 IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on Large
Projection Setups 121
9.1 Introduction . 122
9.2 Overview . 123
9.3 Camera control . 126
9.4 Image-based navigation and points of interest . 130
9.5 Device mapping . 131
9.6 Extending support to light field displays . 133
9.7 Scalability . 138
9.8 Implementation and Results . 141
9.9 Discussion . 148
9.10 Bibliographical Notes . 149

10 ExploreMaps: Ubiquitous Exploration of Panoramic View Graphs of Complex 3D En-
vironments 151
10.1 Introduction . 151

Contents xi

10.2 Browsing Explore Maps . 152
10.3 Implementation and Results . 155
10.4 Discussion . 156
10.5 Bibliographical Notes . 157

IV Beyond Visual Replication 159

11 Adaptive Recommendations for Enhanced non-linear Exploration of Annotated 3D
Objects 163
11.1 Introduction . 163
11.2 Overview . 165
11.3 The recommendation engine . 168
11.4 User interface . 172
11.5 Scalability . 175
11.6 Implementation and User Study . 176
11.7 Discussion . 180
11.8 Bibliographical Notes . 181

V Conclusions 183

12 Summary and Conclusions 187
12.1 Conclusions . 187
12.2 Future Work . 189
12.3 Bibliographical Notes . 190

Bibliography 193

Curriculum Vitae 211

List of Figures

Background and Motivation 9

2.1 Dragon statue . 14
2.2 Imposing scale of the David statue . 14
2.3 Highly detailed 3D models . 15
2.4 Photo-realistic rendering of a hotel room . 15
2.5 David statue by Michelangelo . 16
2.6 Museums and exhibitions . 16
2.7 Cluttered presentation . 17
2.8 Various display setups . 18
2.9 Annotated 3D models . 18
2.10 Various annotation links . 19

Compact Representations 43

5.1 CATP overview . 47
5.2 Sequence of diamond configurations . 50
5.3 Tetrahedra merging . 52
5.4 Geometry quantization . 52
5.5 Vertex snapping . 53
5.6 Detail of David’s eye interactively rendered on a iPad 59
5.7 St. Matthew and David on a 3rd generation iPad and a iPhone 4 61

6.1 The AQP pipeline . 69
6.2 Reconstruction steps . 71
6.3 Rampant model . 71
6.4 Multiresolution structure . 73
6.5 Seamless point dequantization . 74
6.6 LOD seamless tessellation . 75
6.7 Models rendered with the adaptive quad patches method 78
6.8 WebGL implementation running in Chrome . 79

7.1 ExploreMaps pipeline . 84
7.2 Finding probe positions . 85
7.3 Optimizing probe positions . 86
7.4 Resulting probes . 87
7.5 Connecting probes . 90
7.6 GPU algorithm . 90
7.7 Discontinuity detection . 91
7.8 Exploring the geometry . 93
7.9 Path optimization . 95
7.10 Connecting probes . 96

xiii

List of Figures xiv

Assisted Exploration 103

8.1 Remote inspection . 106
8.2 Client-server architecture . 107
8.3 Detail of a model interactively rendered on a Nexus 4 smartphone 108
8.4 Auto-centering and Interaction . 109
8.5 Interaction states . 110
8.6 Views selection process . 112
8.7 Various levels of detail of a statue . 114
8.8 User study performed on a Nexus 7 tablet . 116
8.9 Performance comparison: Timings . 118

9.1 Museum exhibition . 122
9.2 Method overview . 124
9.3 IsoCam . 128
9.4 Temporal smoothing . 129
9.5 Radial view selector . 131
9.6 Context-based selection . 131
9.7 Multi-Touch gestures . 132
9.8 Natural immersive exploration of the David 0.25mm model (1GTriangle) on a

35MPixel light field display . 134
9.9 Light field display concept . 135
9.10 Light field display spatial resolution . 136
9.11 Automatic hot-spot placement . 137
9.12 Application setup . 141
9.13 User interface evaluation . 142
9.14 Performance evaluation . 145
9.15 Qualitative evaluation . 146

10.1 Mobile web-based exploration . 152
10.2 Graph optimization . 153
10.3 WebGL viewer . 154
10.4 Browsing results . 155

Beyond Visual Replication 161

11.1 System overview . 165
11.2 Overlaid information . 169
11.3 State Machine . 170
11.4 Large projection setup . 173
11.5 Suggestions and overlays . 174

List of Tables

Background and Motivation 9

4.1 Method classification . 36

Compact Representations 43
4.2 Scalable rendering approaches . 43

5.1 CATP encoding bit rates . 62

6.1 Adaptive Quad Patches processing results . 79

7.1 Explore Maps pre-processing results . 97

Assisted Exploration 103
7.2 Interactive exploration methods . 103

8.1 Test device characteristics . 113
8.2 Test devices performance . 115

Beyond Visual Replication 161
10.1 Annotated 3D model exploration methods . 161

11.1 Results of NASA task load index questionnaire 179
11.2 Method classification . 185

xv

Preface

T��� thesis represents a summary of the work done from 2012 to 2014 at the Visual Com-
puting group of CRS4 (Center for Advanced Studies, Research and Development in
Sardinia) under the supervision of Enrico Gobbetti, whom I really want to thank for

trusting me and o�ering me the opportunity to be part of his research group and work with all
the people there, which has been a great experience both professionally and personally.

The work in this thesis has been performed within the framework of the DIVA project (Data
Intensive Visualization and Analysis), which is an Initial Training Network (ITN) funded by the
EU within the 7th Framework Programme. It brings together six full partner institutions, namely,
the University of Zurich (UZH), the CRS4, the University of Rostock, the Chalmers University of
Technology, Diginext, and Holografika, and eight associate partners. Associate partners include
Eyescale Software GmbH (EYE), Geomatics & Excellence (GEXCEL), Compagnia Generale di
Riprese aeree (BLOM CGR), Centre d’Essais et de Recherche de l’ENTENTE (CEREN), Fraunhofer
IGD, AIRBUS, NVIDIA GmhB, AMD. Both research centers and universities, as well as industry
partners, are represented in this network aiming to exploit synergies.

During this time I also attended the PhD Program in Computer Science at the School of
Mathematics and Computer Science of the University of Cagliari under the kind tutoring of
Riccardo Scateni, who I would like to thank as well.

In particular I would like to thank all my colleagues at the CRS4 for their support and col-
laboration during the past years. Special thanks go to Fabio Bettio, Fabio Marton, Marco Agus,
Gianni Pintore, Alex Tinti, Katia Brigaglia, Cinzia Sardu, Luca Pireddu, Alberto Jaspe, Roberto
Combet, Ruggero Pintus, Antonio Zorcolo and all my other colleagues in the CRS4 which made
my stay so joyful even on hard times. I would also like to express my appreciation for people
with whom I had the pleasure of collaborating these years: Fabio Ganovelli, Marco Di Benedetto,
Renato Pajarola, Claudio Mura, and all the people in the DIVA project.

Finally, I would like to express my most special thanks to my closest family and friends, with
special mention to my parents and girlfriend, which have always shown their unconditional
support even on the distance while tolerating my long absences.

List of TABLES xviii

The work presented in this thesis has been partially supported by the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/
under REA grant agreement num. 290227.

Pula, Italy, February 2015 Marcos Balsa Rodríguez

C������

1 .

Introduction

The availability of highly detailed 3D content is growing at fast pace thanks to the
rapid evolution of 3D acquisition techniques and 3D model creation techniques. At
the same time, the proliferation of powerful portable devices (i.e., smartphones
and tablets) and the high connection speeds available nowadays, provide new
ways for exploring this information even in remote contexts. This imposes the
challenges of efficiently handling and transmitting all this information, and being
able to explore and analyze the information in meaningful ways. In this thesis, we
study compact representations for the distribution and rendering of highly detailed
3D models on commonly available modern GPU architectures. Furthermore, we
present methods to interactively explore this complex models by providing the
user with tools for easy manipulation of the 3D objects and information exploration.
This chapter outlines the motivation behind this research, summarizes research
achievements, and describes the organization of the thesis.

1.1 Background and Motivation

T�� widespread availability of mobile graphics terminals and WebGL-enabled browsers,
has promoted the adoption of 3D graphics over the Internet as common multimedia
content. Thanks to the rapid evolution of both 3D acquisition techniques and 3D

model creation techniques, the availability of highly detailed 3D models is growing at fast
pace. In addition, the ever-increasing 3D capabilities of mobile devices, together with pervasive
high-speed connections being commonly available, open the door to a whole new world of
opportunities to explore all this rich multimedia content even on the move.

In many domains, highly detailed 3D models are an important ingredient of the information
flow that needs to be made available to the public, such as gaming, prototyping (e.g., remote
inspection, marketing or analysis), quality control, or virtual shopping.

Current 3D repositories, such as Blend Swap, 3D Café or Archive3D, present the available 3D
models through a few user-selected static images. Online exploration is limited to simple orbiting
and/or low-fidelity exploration of simplified models, since photo-realistic rendering quality
of complex synthetic environments is still hardly achievable within the real-time constraints
of interactive applications, especially on low-powered mobile devices or script-based Internet
browsers.

The visualization, in the context of complex 3D models, should be able to retain the high detail
available in the 3D representation for the user to be able to appreciate the fine details (e.g., real
3d scanned object). Additionally, when exploring highly detailed 3D models, information can be
found at multiple scales (e.g., from global shape to very fine details or even surface roughness

1

Chapter 1. Introduction 2

or damages). Thus, navigation techniques must provide seamless navigation between multiple
scales without the user losing the spatial context. Annotated 3D models are commonly used for
improving the user understanding of the 3D object being visualized. This additional information
provides contextual information when the camera is moving around the model, amplifying the
visual information. At the same time, annotations may also be used to help the user to retain
spatial context (e.g., showing part-whole relations) during the exploration.

Current state-of-the-art methods have several limitations when coping with complex 3D
models:

• Limited complexity. Many generic solutions have been presented for interactive visual-
ization of massive 3D models on general “desktop” platforms [Yoon 08]. However, when
targeting mobile platforms or scripted environments (e.g., Web browsers using Javascript)
those techniques doesn’t scale well due to the limited resources available. In the case of
web browsers, the use of a virtual machine imposes heavy constraints on CPU intensive
processes, while on mobile devices the limited amount of memory resources and network
bandwidth are the more restricting constraints, together with power consumption and
limited computing performance.

• Di�cult interaction. Exploring complex 3D models, with multi-scale information, requires
the user to continuously move between global shape exploration and proximal navigation,
when very close to the surface, in order to explore fine details. This kind of exploration
requires either a good set of navigation tools providing enough free movement to cover all
the interesting views of the model [Hach 13], or constraining camera movements allowing
the user to easily move around the object while enforcing good viewpoints [Khan 05]. The
approaches relying on camera movement decomposition (Rotation-Translation-Scaling) can
be di�cult for novice users. On the other hand, constrained camera movement solutions
typically rely on a surface-sliding metaphor, presenting di�culties when handling discon-
nected surfaces, not uncommon in cultural heritage models, for instance. Thus, there is no
solution providing a simple interface which is easy-to-use and provides enough freedom
for the user to be able to explore the whole 3D model.

• Limited understanding of information. Current approaches for annotated 3D models
have studied the integration of textual information in a 3D environment by presenting
spatially coherent textual information attached to the models [Sonn 05, Jank 10], and
more recently, bidirectional navigation between textual and 3D information [Gotz 07,
Jank 12, Call 13]. All these methods typically show some indications or highlight the areas
containing information, often introducing cluttering in the 3D view. In addition, precise
clicking is commonly required to select and activate the information, forcing the user to
change the interaction mode from navigation to selection. Both cluttering and interaction
mode changes di�cult the user to focus on the 3D virtual object itself.

When dealing with ubiquitous access to 3D and multimedia information, the challenge is
to create new methods enabling the remote visualization of this large amount of data, while
providing the means to examine and understand the objects being represented in its complexity
(i.e., extracting information at various levels, not only visually). In order to achieve this goal, the
visual performance of current visualization systems has to be improved, and paired with new
interaction methods that allow the exploration of complex models that may contain associated
information at di�erent levels (i.e., multi-scale, context-based or location based).

Chapter 1. Introduction 3

1.2 Objectives

The main research objective of this thesis is to enable the interactive exploration and better
understanding of complex 3D models using commonly available 3D platforms. Advancing the
state-of-the-art in this area requires solving the following problems:

• Improving Scalability of Visualization Methods for Complex 3D Models Nowadays,
large amounts of highly detailed 3D models are becoming increasingly available, so there is
a clear need for specialized and e�cient methods for visualizing these data-sets. Therefore,
we need to study compact data structures that exploit the characteristics of current 3D
platforms (i.e., Web browsers, mobile devices and desktop) for improving scalability both
in the visualization and the streaming of the data.

• Improving Navigation Techniques for Complex 3D Models The exploration of complex
3D models with multi-scale information requires a simple and e�ective navigation interface
that enables the user to explore and study both global shape and very fine details. Our
plan is to study interactive methods which are easy to use and provide enough freedom,
enabling the exploration of the whole virtual object, while, at the same time, helping the
user to retain the spatial context.

• Improving Understanding of Complex 3D Models Providing e�ective 3D content presen-
tation is particularly relevant when the goal is to allow people to appreciate, understand,
and interact with intrinsically 3D virtual objects. In this context, it is important to go beyond
visual replication, providing contextual information that integrates and enhances the 3D
model view. We need, thus, to study new methods for presenting the user with additional
spatially coherent information, while avoiding cluttering the 3D view or requiring the user
to focus on the interaction or the contextual information instead of the 3D virtual object.

While some partial solutions for some of these problems have been proposed in the recent
years, there is currently no existing single approach able to fulfill all these requirements.

1.3 Achievements

The research work carried out during this thesis has led to the following achievements:

• The development of a compact representation for general dense 3D mesh models [Bals 13c].
This method exploits the properties of conformal hierarchies of tetrahedra to produce
a data structure which is adaptive, compact, and GPU friendly. Clipping the original
triangulation at tetrahedra level allows us to create a local barycentric parametrization of
the geometry, providing a compact representation which can be directly decoded in GPU.
Further compression for network streaming is obtained on top of the compact GPU-friendly
representation by exploiting local data coherence.

• The introduction of a compact image-based encoding for complex 3D models which are
quad-parametrizable [Gobb 12]. This method exploits the constraint of quad-parametrizable
meshes for producing a fully regular compact multiresolution image-based representation
suitable for storage, distribution, and real-time rendering of highly detailed 3D models on
modern commodity and web platforms.

Chapter 1. Introduction 4

• The introduction of a compact image-based representation for supporting complex envi-
ronments [Di B 14]. We constrain the possible camera positions to an optimized set of
precomputed views providing full coverage of the scene. Thanks to constraining camera
positions to a fixed set, we can overcome real-time rendering limitations by precomputing
a set of panoramic views for all possible camera positions using o�-line photo-realistic
renderers.

• The development of a scalable method for natural exploration of extremely detailed surface
models [Bals 14a]. We extended the classical Trackball method with automatic pivoting
and added context-based point-of-interest selection to obtain a user interface for inspecting
complex objects which is general, predictable, robust and intuitive. Furthermore, this user
interface can be implemented in a wide range of configurations ranging from small screen
mobile devices to non co-located large screen setups [Bals 15].

• The introduction of an interactive camera controller which provides collision-free and
automatic smooth transition from orbital to proximal navigation [Mart 14]. The method
exploits a distance-field representation of the 3D object to support the exploration of
disconnected surfaces. Furthermore, by decoupling view position and view direction
computation we provide a smooth navigation while maintaining good view directions.

• The introduction of a graph-based method for exploring complex 3D environments [Di B 14].
In order to support interactive exploration of complex 3D environments, we rely on a graph-
based representation of the scene composed of a set of panoramic view positions and a set
of arcs between neighboring view positions.

• The development of a new framework for enhanced exploration of annotated 3D models
[Bals 15]. The method integrates an stochastic adaptive recommendation system based on a
structured spatial information representation, centered around annotated viewpoints, with
a walk-up-and-use user interface that provides unobtrusive guidance towards interesting
view points.

1.4 Organization

This thesis is organized to show in a natural and coherent order all the results obtained. For that
purpose, we have defined three parts, each one covering our approaches in order to cope with
current limitations.

Part I: Background and Motivation. In this first part, we describe and analyze the problem
domain, and present the requirements arisen from this analysis. Also in this first part, we
provide a brief overview of previous related work and identify current limitations. Finally,
we detail our research goals for dealing with current limitations in order to satisfy the
requirements.

Part II: Compact Representations for Complex 3D Models. Introduces our approaches for
improving scalable visualization of complex 3D models on common 3D platforms. We
exploit scene characteristics to design compact data structures and e�cient algorithms for
distribution and rendering tailored for supporting platforms with constrained resources.

Chapter 1. Introduction 5

Part III: Assisted Exploration of Complex 3D Models. Addresses the problem of exploring
complex 3D models containing information at multiple scales. For that purpose, we study
camera motion constraints and image-assisted navigation aiming to help the user during
the exploration.

Part IV: Beyond Visual Replication. In most application domains visual replication of real
objects is not enough when the goal is for the user to appreciate, understand, and analyze
the 3D model. This part describes our approach for integrating additional information
in complex 3D models and helping the user both during exploration and information
discovering.

Part V: Conclusions. This last part summarizes the work presented in this thesis and presents
some avenues for future work.

Part I

Background and Motivation

7

With the increasingly widespread introduction of mobile terminals and WebGL
enabled browsers, 3D graphics is becoming common multimedia content. Fur-
thermore, the rapid evolution of 3D acquisition and modeling techniques is
promoting high resolution 3D models to become increasingly common, and
potentially available for ubiquitous exploration.

Many application domains can benefit from this flow of highly detailed 3D
models both for public access, or for collaborative inspection and analysis (e.g.,
virtual shopping, collaborative design, automatic and remote quality control).

For that purpose, new e�cient methods for distributing and rendering complex
3D models are required. Moreover, the intrinsic complexity of those models
requires new interaction methods that help the user during the exploration.
At the same time, in order to exploit the possibilities of this complexity, new
methods for integrating contextual information should be proposed, aiming for
better comprehension of the visual information.

In this first part, we will present a detailed study of the application domain,
and a brief overview of the state-of-the-art on closely related topics. Also in
this part, we will present and discuss our approach for dealing with current
limitations.

C������

2 .

Application Domain

In this chapter we analyze the needs of interactive exploration
and understanding of complex 3D models in common 3D plat-
forms. Taking as a representative example the domain of cultural
heritage, we present a detailed study of requirements arisen from
analysis of related work and discussions with domain experts.

2.1 Introduction

A� it already happened with photography and audio/video, the creation
of 3D content is becoming more and more a�ordable in terms of time,
user skills and, consequently, economic investment. In the last few

years, 3D scanning systems have become commodity components. At the same
time, the rapid evolution and proliferation of low-cost graphics hardware has
made advanced 3D modeling available to a variety of user. As content becomes
easier to create and cheaper to host, more companies and individuals are building
virtual worlds (e.g., Second Life hosts 270 terabytes of user-generated content in
2009 [Lab 09], and this is growing by approximately 100% every year).

With the increasingly widespread introduction of mobile terminals and WebGL
enabled browsers, 3D graphics over the Internet is expected to attract a lot of
additional attention. Still, unlike what has happened for standard media, which
have converged high quality compressed formats specifically designed for storage
and streaming, essentially based on the same small set of concepts, distributing
and rendering non-trivial 3D models, especially on low-cost or mobile platforms,
is still challenging. Detailed 3D models are heavy, non-trivial to render, and are
experienced in a highly non-linear interactive way. These characteristics impose
fast incremental loading and reasonable compression, GPU accelerated rendering
methods, and adaptive view-dependent culling techniques. While a lot of generic
solutions have been presented for general “desktop” platforms [Yoon 08], there
is now an increasing interest for techniques tuned for lightweight, interpreted,
and scripted environments (e.g., Web browsers).

11

Chapter 2. Application Domain 12

Many application domains can benefit from this flow of highly detailed 3D
models both for public access, or for collaborative inspection and analysis (e.g.,
virtual shopping, collaborative design, automatic and remote quality control).
In particular, cultural heritage valorization and cultural tourism are some of the
sectors which are benefiting from this evolution, as new technologies provide
means to cover the pre-visit (documentation), visit (immersion) and post-visit
(emotional possession) phases [Econ 11, Rodr 12]. Nowadays, it is possible to
explore new ways of accessing massive sources of information which were pre-
viously only accessible at Museums, or not even accessible but stored in some
warehouse because of the lack of space for exhibition. Through 3D digitiza-
tion, large amounts of high resolution 3D objects are becoming available, thus
requiring new methods to provide public access to these databases.

In cultural heritage, specially, an accurate visualization of the 3D model allows
the user to be able to appreciate the fine details present in the real artifact. Multi-
scale information is specially relevant in cultural heritage, where the macro-
scale provides global shape and function information, while micro-scale gives
information on the nature of the object (e.g., material), its manufacturing process
(e.g., carvings), or even details on the degradation process (e.g., burned parts).
When navigating through multiple scales, specially when getting very close to
the model surface in order to appreciate fine details, it is very common for the
inexperienced user to lose spatial context. Therefore, navigation techniques
providing seamless transition between macro-scale and micro-scale exploration
are required, while guided navigation is desirable in order to aid the user in
keeping visual context during the exploration.

Moreover, understanding complex 3D models typically requires the support
of 3D annotations to amplify and enhance the visual information. Additional
information, in the form of textual annotations, overlaid images, or any other
multimedia content, is generally used to provide contextual information to the
user aiming to explain or extend the visual information. Depending on the con-
text, this information can be of many types, including historic or manufacturing
details (i.e., cultural heritage), material description (i.e., prototype design), or
descriptive annotations (i.e., virtual training applications). There is so a need for
e�ective 3D annotation techniques which help the user to explore and understand
the knowledge enclosed in complex 3D models.

In the next section we present and discuss the requirements arisen from our
study of the application domain, which involved experts from the cultural her-
itage domain. Next Chapter 3 provides a brief overview of previous work related
to our problem domain, and Chapter 4 will describe our approach for coping
with current limitations.

Chapter 2. Application Domain 13

2.2 Requirements

In order to define our goals, we have started with a detailed analysis of the
application domain. While our approach is of general use, our work has been
motivated by the Mont’e Prama project, a collaborative e�ort between our center
and the Soprintendenza per i Beni Archeologici per le Province di Cagliari ed Oristano
(ArcheoCAOR, the government department responsible for the archaeological heritage
in South Sardinia), which aims to digitally document, archive, and present to the
public the large and unique collection of pre-historic statues from the Mont’e
Prama complex, including larger-than-life human figures and small models of
prehistoric buildings. The project covers aspects ranging from 3D digitization to
visual exploration.

During the analysis, we involved a group of domain experts in a participatory
design process with the goal of collecting the detailed requirements of the appli-
cation domain; the expert’s group included two archaeologists from ArcheoCAOR,
two restoration experts from CRCBC, and one museum curator from Museo Arch-
elogico Nazionale di Cagliari. Thus, we have been able to involve domain experts
in the definition of the requirements, including particular requirements for the
cultural heritage domain.

We have grouped the requirements derived from our analysis of the problem,
and meetings with domain experts, in three blocks: visualization, exploration,
and information presentation.

2.2.1 Visualization Requirements

R1. High-resolution details (magnified micro-structure). Thanks to recent 3D
acquisition techniques, highly detailed 3D representations of real objects can
be produced. This means that these complex 3D models present information
at multiple scales (i.e., global shape and fine surface details). Even the finest
material micro-structure carries valuable information (e.g., on the carving
process, or giving hints on the deterioration process, see Fig. 2.1). For
instance, the Mont’e Prama statues have millimeter-sized carvings, and
thus require sub-millimetric model precision. This carving information
should be clearly perceivable at all scales, and should be magnified for close
inspection.

R2. Large-scale visualization (real-world-sized macro-structure). There is a
wide range of models to cover for the various application domains, ranging
from small pieces (e.g., screws in the case of quality control applications),
to big objects (e.g., a car or a ship in the case of collaborative design). In

Chapter 2. Application Domain 14

Figure 2.1: Dragon statue. Left: Notice the amount of micro-details that are present on the
surface of this model. Center: Geometry of the 3D scanned reconstruction; Right: Colored 3D
rendering of the reconstructed 3D model. Courtesy of Augmented Vision department at DFKI.

cultural heritage, in particular, there are larger-than-life human statues (see
Fig. 2.2), for instance, which were constructed at imposing scale on purpose,
and this macro-structure information should be immediately conveyed to
the visitor through a real-scale (or larger-than-real) presentation. In order
to cover those use cases we need to support large (wall-sized) displays.

Figure 2.2: Imposing scale of the David statue. In this photograph of the David statue by
Michelangelo can be observed the imposing scale of the statue in contrast with human size.
Courtesy of Wikipedia.

R3. E�cient storage and distribution. Our focus is on ubiquitous exploration
of complex 3D models, so due to the inherently high resolution of this kind
of models, there is typically a large amount of data to be stored, streamed
through network, and rendered on a variety of 3D platforms. Thus the 3D
representations used for distribution and rendering must be compact and
support e�cient streaming of the data, in order to permit remote exploration
(see Fig. 2.3). At the same time, compact representations should minimize

Chapter 2. Application Domain 15

the space required for the storage of large amounts of highly detailed 3D
models, which would otherwise require vast amounts of storage.

Figure 2.3: Highly detailed 3D models. Left: Browsing a 3D model of the Ruthwell Cross in
a Web browser (Courtesy of Marco Callieri); Right: Browsing a 3D model of St. Matthew by
Michelangelo on an iPhone. A considerable amount of data need to be transmitted in order to
display the high resolution of these 3D models.

R4. Complex environment support. Some use cases does have the need for
complex environments, both including scenes composed of many di�erent
complex 3D objects (e.g., a virtual museum), or scenes requiring complex
lighting simulation (e.g., building prototyping, see Fig. 2.4).

Figure 2.4: Photo-realistic rendering of a hotel room. Several hours are required to generate
images with this quality. Courtesy of CGRendering.com.

2.2.2 Exploration Requirements

R5. Seamless interactive exploration and zooming (macro and micro-structure).
Comprehension of complex 3D models impose the capability to seamlessly
move from macro-structure analysis, providing information on function
and context, and micro-structure analysis, providing information on na-
ture, shape and signification of decorations. Camera navigation should
thus support both global object motion and proximal navigation (panning

Chapter 2. Application Domain 16

over a surface to inspect details). The control modes should be active with
real-time feedback, in order to provide the sense of control, and support
smooth and seamless object inspection, going back and forth from shape
inspection to detail inspection in natural way (see Fig. 2.5).

Figure 2.5: David statue by Michelangelo. Left: Face detail of the statue; Right: Closer detail of
an eye. When navigating such complex models it is easy to lose the spatial context.

R6. Fast learning curve and assisted navigation. A good number of use cases in
this application domain target non-technical users. Thus, the user interface
must be simple and fast to learn, while providing unobtrusive guidance
in complex interaction operations. In the case of a museum installation,
for instance, where walk-up-and-use interfaces are expected, the visitors’
experience could be easily frustrated if the proposed interaction paradigm
does not allow them to immediately explore the content, through a natural
user interface with an extremely short learning curve. Moreover, since
museums must manage large amounts of visitors, long training times and/or
guided training are not a�ordable (see Fig. 2.6 left).

Figure 2.6: Museums and exhibitions. Museums and exhibitions are typically crowded with
visitors aiming to explore its contents. Left: Photo from the New Acropolis Museum of Athens.
Courtesy of Wikipedia; Right: Photograph of the International Trade Fair of Sardinia showing an
installation where there is one controlling interface, but multiple users can share the visualization
experience.

Chapter 2. Application Domain 17

R7. Single user control, multi-user fruition. In collaborative inspections, such
as guided museum visits or prototype presentations, it is important to
maximize the reach of the visual information to the public. In the case of
museums, visitor experience tends to be personal, self-motivated, self-paced,
and exploratory. At the same time, the support of multi-user viewing en-
ables visitors to benefit from other people’s experiences in terms of user
interaction behavior and object exploration, also encouraging collaboration
and discussions (see Fig. 2.6 right). While a single-user interface is consid-
ered appropriate, the physical setup should comfortably support at least
small groups of observers.

R8. Focus on the 3D virtual object (avoid occlusion from people and/or inter-
action widgets). The 3D object being visualized is the important information
as a general rule (e.g., collaborative design of a car). Thus, it should not be
obstructed by other people or general clutter (e.g., interaction widgets), see
Fig. 2.7. Specially in the case of a Museum, the visitor focus should thus
be guided to the presentation medium, instead of concentrating in the user
interface or in searching for information points (i.e., hot spots, textual labels).

Figure 2.7: Cluttered presentation. The display is heavily occluded by people in front of it, thus
di�culting the user to focus on the information. Courtesy of GestureTek technology.

R9. User interface and display flexibility. There is a wide range of possible
setups that can be of use in this application domain. In the context of col-
laborative design, or museum exhibitions (i.e., visit phase(immersion)), for
instance, large displays should be supported in order to provide a better
coverage of large objects, or for supporting multiple observers. On the other
side, mobile devices and web browsers provide an interesting platform for
promoting virtual shop products, or for covering the pre-visit (documenta-
tion) and post-visit (emotional possession) stages of a museum visit. Thus,
we are facing a very wide range of display sizes (i.e., mobile devices, display
walls) and a variety of user interface setups (i.e., co-located user interfaces

Chapter 2. Application Domain 18

for mobile applications, or non co-located touch interfaces paired with large
projection displays for museum exhibitions), see Fig. 2.8.

Figure 2.8: Various display setups. Left: A mobile device; Center: A web browser (Courtesy of
Google Body Browser); Right: A 3D Wall at Northwestern University (Courtesy of Luc Renambot).

2.2.3 Information Presentation Requirements

R10. Annotation system. When displaying complex 3D models, additional infor-
mation is needed to explain or describe visual information (i.e., integrated
in the global context). A 3D annotation system is thus required in order to
provide means for integrating additional information that will be presented
to the user (see 2.9). In the context of cultural heritage, it is of particular
interest to integrate additional information, both for giving interesting in-
formation to casual visitors, and for archaeologists and museum curators to
document and analyze the artifacts (i.e., degradation status, historical notes,
restoration details).

Figure 2.9: Annotated 3D models. Left: Browsing the Portal of the Ripoll Monastery. Courtesy of
Marco Callieri; Right: Browsing the 3D representation of a heart (Courtesy of Timo Götzelmann).

R11. Spatially coherent information. The additional information must integrate
and enhance the visual information being presented to the user. Thus, it is
relevant to provide spatial correspondences between visual and additional
information in order to emphasize the contextual relations. This spatial links
may be tightly linked to the visual information (i.e., overlaid reconstructions,
see 2.10 right), or just correlate high level information with respect to parts

Chapter 2. Application Domain 19

or details in this region (see 2.10 left). We need to provide means to define
and present these links.

R12. Information semantics. Many use cases arise for exploiting complex 3D
models in common application domains, where additional information can
be subject to di�erent semantics. For that purpose, we need to define a
flexible annotation system which enables the authoring system to define a
wide range of semantic dependencies both on spatial relations (e.g., tightly
coupled to view positions or not, see Fig. 2.10), and between related anno-
tations (i.e., defining a hierarchy of annotations describing a presentation
order going from global information to particular details, thus providing a
coherent flow of information).

Figure 2.10: Various annotation links. Left: Additional information with little spatial constraints;
Right: Overlaid information showing a tight spatial link between 3D information and additional
information.

R13. Information authoring. In order to provide a rich annotation system, at
least textual and visual information (drawings, images) should be supported.
The authoring should be simple enough for non-technical users such as
museum curators or archaeologists without particular training.

2.3 Discussion

In this chapter we have described the application domain, and provided a de-
tailed analysis of the requirements arisen from our study of the problem domain,
and discussions with domain experts. These requirements can be broadly cat-
egorized into Visualization requirements of 3D data, which dictate the need of
seamless rendering at multiple scales and interactive rates of very detailed mod-
els on a variety of platforms, Exploration requirements, which impose easy to learn
navigation methods that scale from large display installations to mobile settings,
and Information presentation requirements, that impose the need of going beyond
pure visual replication to incorporate both 3D models and annotations. Even

Chapter 2. Application Domain 20

though these requirements arise from the analysis of a particular application
domain (presentation of cultural heritage objects), most of them are applicable in
a variety of domains where there is a need of exploring intrinsically 3D objects
in an interactive way.

The requirements presented in this chapter impose severe constraints on the
technical solutions. In particular, there is a need for scalable rendering solutions
of 3D objects capable to meet real-time constraints in both local and remote
settings, controlling bandwidth use at all levels of the distribution and rendering
pipeline. Moreover, such a rendering solution should be driven by camera control
interfaces that are flexible and usable with minimal training in a variety of settings.
Finally, in most applications, both the rendering system and the user interface
system should be capable to present not only real-looking 3D objects, but also
associated information.

The state-of-the-art solutions proposed so far are discussed in the next chapter.

2.4 Bibliographical Notes

Most of the contents of this chapter were taken from papers [Mart 14] and
[Bals 15], in which we discuss two novel systems for the interactive exploration
and understanding of complex 3D models.

C������

3 .

Previous Work

This chapter provides a brief overview of the previous work on
technological areas which are closely related to our problem
domain, including visualization, interaction and information pre-
sentation approaches.

3.1 Introduction

I� order to satisfy the various requirements (R1-R13) discussed in Sec. 2.2,
we need to address a number of technological limitations. In this chapter,
we will present and briefly discuss current approaches which are closely

related to our problem domain.
In particular, we will study techniques related to scalable visualization of

complex 3D models, for supporting rendering highly detailed 3D models on
common 3D platforms, including low-profile platforms (i.e., mobile/web plat-
forms). Moreover, we will analyze current approaches for interactive exploration
of complex 3D models in order to help the user keep the spatial context even
when navigating from global shape to close surface inspection.

Our goals include not only visual exploration, but also better understanding of
complex 3D models. Thus, we will also study current techniques for integrating
additional information and presenting it to the user in order to amplify visual
information.

We have distributed the related work in three main topics, which provides a
loose mapping to the requirement classification proposed in the previous chapter:
scalable visualization (Sec. 3.2), interactive exploration (Sec. 3.3), and information
discovery (Sec. 3.4).

21

Chapter 3. Previous Work 22

3.2 Scalable Visualization of Complex 3D Models

In order to improve the scalability of complex 3D model rendering (R1, R3) we
have to deal with a number of computer graphics topics which have been long
studied. Here we’ll discuss the approaches most closely related to the work
presented in this thesis. For further details, the reader may refer to well estab-
lished surveys on massive model rendering [Yoon 08], image-based rendering
[Shum 07], and mobile graphics [Capi 08].

3.2.1 Compact Mesh Models for Distribution and Rendering.

Although existing solutions have been demonstrated to be e�cient on “desktop”
platforms, only a few examples exist for rendering light 3D models on portable
platforms (e.g., MeshPad [ISTI 12] for meshes or PCL [Mari 12] for points).
Much of the work in model distribution has focused so far on compression of
mesh structures rather than adaptive view-dependent streaming. MPEG-4 is
a reference work in the field [Jova 08]. Classic methods for view-dependent
LOD and progressive streaming of arbitrary meshes were built on top of fine-
grained updates based on edge collapses or vertex clustering [Xia 96, Hopp 97,
Lueb 97]. Many compression and streaming formats for the web have been built
upon them [Magl 10, Blum 11, Nieb 10]. These methods, however, are CPU-
bound and spend a great deal of rendering time computing a view-dependent
triangulation prior to rendering, making their implementation in a mobile setting
particularly challenging. With the increasing raw power of GPUs, currently
higher-performance methods typically reduce the per-primitive workload by
pre-assembling optimized surface patches [Cign 04, Yoon 04, Cign 05, Borg 05,
Gobb 04a, Gobb 04b, Gosw 13], or introduce techniques for performing view-
dependent refinement within geometry shaders [Hu 10].

These methods are proved very e�ective in terms of rendering speed, but still
require coding of non-trivial data structures and techniques for decompression,
leading to potential problems in script-based web implementations, or doesn’t
scale well on platforms with limited memory and computation resources (i.e.,
mobile platforms).

3.2.2 Quad-Parametrization and Re-meshing.

One approach commonly used for exploiting mesh characteristics for designing
new rendering methods consists on reparametrizing the input mesh into a more
suitable format. Representing complex two-manifold models as a collection of
quads requires a parametrization of input models (refer to [Shef 06] for a survey).

Chapter 3. Previous Work 23

The simplest approach is single-disk parametrization [Floa 05], which, however,
can be applied only to genus-0 meshes and leads to high distortions unless the
mesh has almost zero Gaussian curvature everywhere. These approaches [Lee 98,
Prau 03, Khod 03, Schr 04, Krae 04] rely on a base mesh for the parametrization,
using a triangle-based domain.

3.2.3 Details and Adaptive Mesh Refinement on GPU.

Many solutions have been proposed for dealing with highly detailed 3D models
which rely on a coarse base representation on top of which details are added
later in the rendering pipeline. An approach to the problem of rendering gen-
eralized displacement mapped surfaces by GPU ray-casting was proposed in
[Oliv 00, Wang 03, Wang 04]. Other generalizations involve replacing the orthog-
onal displacement with inverse perspective [Babo 06], replacing the texture
plane with a quadric [Manu 05], and handling self shadowing in general meshes
[Poli 05]. The evolution of graphics hardware has allowed many surface tessella-
tion approaches to migrate to the GPU, including subdivision surfaces [Shiu 05],
NURBS patches [Guth 05], constrained urban models [Cign 07], and procedural
detail [Boub 05, Boub 08]. This makes it possible to generate geometric details
directly in the vertex shader.

3.2.4 Mesh Compression.

Compressed graphics data potentially enable platforms with very constrained
resources, i.e., mobile devices, to better utilize the limited storage space and band-
width at all levels of the pipeline. Many mesh compression algorithms o�er good
performance in compression ratio for both topology and vertex attributes. MPEG-
4 [Jova 09] is a reference work in the field, and includes 3D mesh coding (3DMC)
algorithms based on topological surgery algorithm [Taub 98b] and progressive
forest split [Taub 98a]. State-of-the-art topology coders [Ross 01] are capable to
achieve the theoretical minimum of 1.62 bpt (bits/triangle), approximately 3.24
bpv (bits/vertex). The decoding processes are however rather complicated and
do not construct structures suitable for fast direct rendering. We focus, instead,
in computing a representation for geometry that reduces the bandwidth required
to transmit it to the graphics subsystem. This is achieved by constructing, for
each mesh fragment, compressed primitive-topology representations that en-
sure high vertex coherence, as well as reducing vertex data size. For topology,
Chhugani et al. [Chhu 07] presented an algorithm tailored for hardware decom-
pression with 8 bpt (16bpv) by maintaining a cache coherent triangle sequence,
and Meyer et al. [Meye 12] proposed a coding technique reaching 5 bpt (10

Chapter 3. Previous Work 24

bpv), which, however, requires CUDA for decompression. Similarly to Chhugani
et al. [Chhu 07], we sort topology and vertex data after computing a cache-
coherent rendering sequence, using, however, a generalized strip optimized for
the post-transform vertex cache rather than a triangle list. Hardware-compatible
vertex data compression is typically achieved in this context by attribute quantiza-
tion. Since global position quantization [Calv 02, Purn 05, Lee 09] provides poor
rate-distortion performance for large meshes, recent e�orts have concentrated
on local quantization techniques [Lee 10], which, however, lead to cracks for
multiresolution meshes.

3.2.5 Image-Based Rendering.

While in recent years, research e�orts have produced systems capable of ren-
dering moderately complex environments on the web and/or mobile devices
[Magl 10, Nieb 10], real-time constraints limit achievable quality to moderate
geometric complexity, simple shading models and/or baked illumination.

In order to cope with real-time limitations on common 3D platforms, we focus
on supporting photo-realistic views of complex scenes through pre-computation
(R4). Using image-based techniques to remove limitations on scene complexity
and rendering quality for interactive applications, as well as to improve appli-
cation usability is an old idea, that dates back at least to the branching movies
of the 80s [Lipp 80] and the navigable videos and environment maps of the 90s
(e.g., [Chen 95, Kimb 01]). More recently, these approaches have flourished
in the context of applications that exploit camera pose (location, orientation,
and field of view) and sparse 3D scene information to create new interfaces for
exploring physical places by browsing large collections of photographs or videos
[Snav 06, Vinc 07, Kopf 10, Tomp 12, Sank 12]. While much of earlier research
has focused either on authored paths or on pre-acquired large photo/video col-
lections, with an emphasis on view interpolation, image-based rendering from
captured samples, or interfaces for navigation among large sets of precomputed
images, we focus instead on how to e�ciently and automatically create a set of
representative views and connections starting from a given 3D environment, and
on how to increase the sense of presence during constrained navigation.

In our approach in Chapter 7, we restrict the possible camera positions (but
not orientations and fields of view), so we can side-step the complex problem of
computing pixel-accurate viewpoint interpolations in general shading environ-
ments [Sinh 12]. Our method is therefore applicable to scenes including e�ects
such as participating media, reflections, and refractions.

Chapter 3. Previous Work 25

3.2.6 View Selection

When aiming to generate an image-based representation of a 3D model (see pre-
vious Sec. 3.2.5) arises the question of what are the good views of a 3D object. This
question has been addressed by many researchers in perception, computer vision
and computer graphics. Placing viewpoints to guarantee a complete and accurate
sampling is an extensively studied computer vision problem [Scot 03]. Recon-
structing a “virtual” object is a di�erent problem, since there are no physical
constraints on the field-of-view, position, orientation, and motion of the virtual
sensors, and acquisition errors are limited to the discretization done by rasteri-
zation. View selection in this context has mostly been studied in image-based
rendering literature. Most techniques use a fixed set of views [Rapp 98, Andu 07],
leading to gaps or holes for non-trivial objects. Fleishman et al. [Flei 00] and
Vazquez et al. [Vazq 02] introduced adaptive techniques for covering polygonal
models, but require the prior definition of a “walking zone” for bounding camera
positions.

3.3 Interactive Exploration of Complex 3D Models

When exploring complex, i.e., highly detailed, 3D models, with information
that is to be found at multiple scales, it is easy for the inexperienced user to lose
spatial context (R5, R6). For that reason, interaction methods which allow natural
exploration of the whole 3D model from a wide range of distances (i.e., global
shape, close surface inspection) are required. In addition, in order to support
ubiquitous exploration of 3D models we need to consider a wide range of display
and user interface configurations, including mobile devices and Web browsers,
but also large display installations (R2, R7, R9). In this section we will discuss
the most relevant approaches that deal with these problems.

3.3.1 Motion Control for Virtual Exploration

In the context of visualization of massive complicated scenes, users require inter-
active control to e�ectively explore the data (R5). Most of the work in this area is
connected to camera/object motion control [Chri 09, Jank 13]. Variations of the
virtual trackball [Chen 88, Shoe 92, Henr 04], which decompose motion into pan,
zoom, and orbit, are the most commonly employed approaches. In order to solve
the lost-in-space problem and avoid collisions with the environment, Fitzmaurice
et al. [Fitz 08] have proposed the Safe Navigation Technique, which, however,
requires explicit positioning of rotation pivot, and thus needs precise pointing.
Moreover, motion decomposition and pivot positioning can be di�cult for novice

Chapter 3. Previous Work 26

users. For this reason, a number of authors have proposed techniques for e�ec-
tive object inspection that constrain viewpoint by using precomputed/authored
camera properties [Hans 97, Burt 02, Burt 06], increasing authoring time and
limiting e�ective view selection. Proximal surface navigation methods constrain
the camera to stay in a region around the object and with a specific orientation
with respect to the visible surface [Khan 05, McCr 09, Moer 12, Mart 12b]. These
methods, following a hovercraft metaphor, slide a target point on the surface and
compute camera positions so as to look at this point from a constant distance
and at a good orientation. Surface/depth smoothing and algorithmic solutions
are used to reduce jerkiness and deal with singularities and out-of-view-field
collisions. Moreover, disconnected surfaces are di�cult to handle with this
approaches.

3.3.2 Image-assisted Exploration

Using views to help navigate within a 3D data-set is often implemented with
thumbnail-bars. At any given time, one image of the data-set can be selected by
the user as current focus. For a 3D navigation application [Lipp 80, Snav 06],
where images are linked to viewpoints, selecting the focus image drives the
setup of the virtual camera. Often, these images are also linked to additional
information, which is displayed when the user reaches selects them, as an al-
ternative to the usage of hot-spots [Andu 12, Beso 08]. The organization of the
images in this kind of tools can be considered a challenging problem in many CH
scenarios, since simple grid layout approaches do not scale up well enough with
the number of images. A trend consists in clustering images hierarchically, ac-
cording to some kind of image semantic, like combining time and space [Ryu 10],
spatial image-distances [Epsh 07, Jang 09], or a mixture of them [Mota 08] to
automatically, or interactively [Girg 09, Cram 09] compute image-clusters. Most
of these works strive to identify good clustering for images, rather than good way
to dynamically present and explore the clustered data-set. Goetzelmann et al.
[Gotz 07], presented a system to link textual information and 3D models, where
links on the text are associated to predefined points of view, and the definition
of a point of view activates a mechanism proposing contextual information.

3.3.3 Small Screen Interfaces for 3D Model Exploration

Most of the systems described in the previous Sec. 3.3.1 require that the user has
direct control over the visualization space, but this solution can be ine�ective
when the visualization area is very small (R9), like it happens in smartphones
or when explore model-details (i.e., very close views). To solve this problem,

Chapter 3. Previous Work 27

Decle and Hachet [Decl 09] proposed an indirect method based on strokes for
moving 3D objects in a touch screen mobile phone, while Kratz et al. [Krat 10]
introduced an extension of the virtual trackball metaphor, which is typically
restricted to a half sphere and single-sided interaction, to actually use a full
sphere, by employing the “iPhone Sandwich” hardware extension which allows
for simultaneous front-and-back touch input. However, latter solutions are suited
for small scale models and they employ fixed center of rotation in the barycenter.
An automatic pivoting method has been recently presented by Trindade and
Raboso [Trin 11], but the method requires access to depth bu�er, and it is not
easily customizable to all mobile systems. Furthermore, their method computes
the rotation center as intersection of the viewing vector with the object surface,
and it su�ers from discontinuities when complex models with sharp features are
considered.

3.3.4 Multi-touch Interfaces for 3D Model Exploration

In recent years, researchers started to combine multi-point input technology
with interactive 3D graphics. Hancock et al. [Hanc 09, Hanc 07] proposed
di�erent approaches using direct and indirect multi-touch interaction techniques
for tabletop surfaces to manipulate 2D and 3D content. Martinet et al. [Mart 12a]
have studied the e�ect of DOF separation in a 3D manipulation task on a direct
multi-touch display. In their work, Reisman et al. [Reis 09] proposed co-location
constraints for direct-touch object manipulation. The Cubtile has been designed
by de la Riviere et al. [Rivi 08], where users interact with 3D content from an
indirect multi-touch box-shaped device. Recently, direct touch interfaces have
been created for interacting with visualizations in application domains ranging
from astrophysics [Fu 10] to oceanography [Butk 11], fluid mechanics [Klei 12],
and medicine [Lund 11]. In particular, Yu et al. [Yu 10] proposed a general
direct-touch technique allowing users to explore 3D data representations and
visualization spaces. Recent work on multi-touch surfaces has also focused on
indirect interaction, which is not guided by co-location concerns, and seems
particularly interesting for interactive 3D visualization [Mosc 08]. In particular,
Knoedel and Hachet [Knoe 11] showed that direct-touch shortens completion
times, but indirect interaction improves e�ciency and precision, and this is
particularly true for 3D visualizations. All these systems are targeted to scientific
visualization of complex data, where non-trivial interaction may be required,
thus not being suitable for use cases like a museum setting with mostly naive
users.

Chapter 3. Previous Work 28

3.3.5 Large Displays and Dual Display Setups

In order to support interactive large display installations (R2) dual display se-
tups are typically used. Recently, a number of visualization systems have been
presented exploiting two display surfaces. In general, these systems employ an
horizontal interactive touch table, and a large display wall visualizing the data,
sometimes combining them in a continuous curved display [Weis 10b, Wimm 10].
A two-display volumetric exploration system was proposed by Co�ey et al.
[Co� 12], which however employs a World-In-Miniature metaphor, simultane-
ously displaying a large-scale detailed data visualization and an interactive
miniature.

3.3.6 3D Stereoscopic Rendering with Light Field Displays

Recent advances in 3D displays provide an interesting platform for exhibi-
tion installations where highly detailed 3D models can be presented exploit-
ing stereoscopic viewing, thus providing a much more immersive experience
(R2, R7). Light field displays provide unrestricted stereoscopic viewing and
parallax e�ects without special glasses or head tracking. They are intrinsically
multi-user and can be built by using high-resolution displays or, alternatively,
multi-projector systems with parallax barriers or lenticular screens. The light
field display hardware employed for this work is manufactured by Holografika
(see www.holografika.com) and is commercially available. It uses a specially
arranged projector array, driven by a cluster of PCs, and a holographic screen.
Large, multi-view light field displays require generating multiple images, one
for each available perspective. In state-of-the art rendering methods for such dis-
plays, multiple center of projection (MCOP) geometries [Jone 07] and adaptive
sampling [Agus 08] are exploited to fit with the display geometry and the finite
angular resolution of light beams. One particular characteristic of these displays
is the varying resolution depending on the projection depth , which is typically
optimal on the screen plane.

3.4 Information Discovery on Complex 3D Models

In the context of complex 3D models there is typically a large amount of informa-
tion to be found all around the object (R10, R11). Even with guided navigation
methods, that help the user to retain the spatial context while providing smooth
natural navigation at multiple scales, there arises the problem of information
presentation (R8, R12, R13).

Chapter 3. Previous Work 29

3.4.1 Contextual Information Representation and Presentation

Visual displays can be categorized into di�erent types based on the relation be-
tween the representation and its referent and the complexity of the information
represented [Hega 11]. Our work falls in the category of visual-spatial displays
that dynamically mix 3D representation with associated overlays. We do not
focus on designing navigation aids or displays for specific tasks (e.g., location
awareness), but, rather, simply on providing flexible means to unobtrusively
guide the user towards “interesting” nearby locations and to present contextual
information. The majority of data representations for context-aware systems
focus on general representations for data interconnections, rather than on inter-
connections between structured information and associated objects [Bolc 07].

Most works on information visualization [Liu 14] concentrate on data analy-
sis, extrapolating results and presenting them using graphical representations
tailored for better human comprehension, while we focus on techniques for
enhancing 3D object exploration. Riedl et al. [Ried 06] propose narrative media-
tion as alternative to branching stories in order to provide non-linear narrative
generation, but there is no mention to handling spatial relations.

Using linked multimedia information to enhance the presentation of complex
data has been long studied, mostly focusing on guided tours [Fara 97], text dis-
position and readability [Sonn 05, Jank 10], usability of interaction paradigms
[Bowm 03, Poly 11], and the integration of interconnected text and 3D model
information with bidirectional navigation [Gotz 07, Jank 12, Call 13]. All these
methods require precise picking to navigate through the information, thus pre-
senting problems when targeting non co-located interaction setups (e.g., large
projection displays), and often introduce clutter in the 3D view to display the
pickable regions. An alternative to picking are methods that use postures or
gestures to trigger visualization of contextual information, e.g., in the form of
contextual menus [Isen 12].

3.5 Discussion

Interactive exploration of massive models has been well-studied during past
years, but current methods doesn’t scale well under very constrained resources,
such as happens in mobile platforms where memory and processing resources
are typically very limited. On scripted environments, like Web browsers, the
CPU performance is heavily burdened thus probably preferring to move much
of the processing to the GPU, specially on desktop platforms with powerful GPU
hardware.

Chapter 3. Previous Work 30

Current compression techniques are capable of achieving very good ratios at
the expense of costly CPU or GPU decoding, thus not being suitable for platforms
with limited computing capabilities. In order to cope both with limited memory
resources and computing capabilities, compact data representations are required
in order to better utilize the available resources by maintaining a compromise
between compression ratio and decoding cost.

When dealing with scenes with complex lighting, real-time constraints limit the
visual quality that can be achieved, in particular on limited platforms such as Web
browsers or mobile devices. Thus, image-based techniques have to be exploited
in order to precompute the visual information for interactive exploration.

Current interaction techniques are typically not suitable for mobile devices with
small screens, where direct control is di�cult due to small interaction space and
finger occlusions. Other techniques designed for small screens are just suitable
for small scale models, with a fixed center of rotation, thus not being able to
provide the user with means to explore the multi-scale information present on
complex 3D models. Scalable interaction methods that can be adapted to a wide
range of display sizes supporting smooth multi-scale navigation have not yet
been proposed.

In order to facilitate the exploration of highly detailed 3D models image-assisted
methods and guided navigation are typically used. At the same time, contextual
information helps to amplify the visual representation providing the user with
better comprehension of the 3D virtual object. Current methods for contextual
information presentation are not well-suited for small scale displays or non
co-located interaction on large displays since they require precise picking, and
typically introduce cluttering in the visualization. Therefore, non obtrusive and
scalable methods for presenting contextual information to the user should be
studied.

In this thesis, our focus is ubiquitous exploration of highly detailed and an-
notated 3D models. For that purpose, we will tackle memory and computing
limitations on current platforms. We will also study interaction methods for
exploring complex 3D models on a wide range of display configurations, as well
as methods to aid the user during the exploration, both integrating guiding and
contextual information components.

Next Chapter 4 will present our approach for dealing with current limitations.

3.6 Bibliographical Notes

Most of the contents of this chapter were taken from papers [Gobb 12, Bals 13b,
Bals 14a, Mart 12b, Mart 14, Di B 14, Bals 15], in which we propose solutions to

Chapter 3. Previous Work 31

the limitations of current state-of-the-art.

C������

4 .

Work Plan

In the previous chapters we have defined and analyzed our ap-
plication domain. Moreover, we have also presented a brief
overview of the state-of-the-art covering results that deal with
our problem domain, and identified current limitations in terms of
scalable rendering solutions, camera control interfaces, and infor-
mation presentation techniques. In this chapter, we will present
our research goals aiming to provide solutions for coping with
current limitations. The basic idea underlying our approach is
to impose constraints on kind of objects handled, annotation
structure, and camera control techniques to propose efficient
specific solutions. In particular, in terms of data representations
and rendering techniques, we will explore methods for compact
multiresolution encoding dense triangulated meshes, even more
compact encodings for simpler objects that support an isometric
quad parametrization, and pure image-based pre-rendered repre-
sentations for 3D environments that can be appreciated from a
small number of point of views. In terms of camera control, we will
explore methods that guide the user by appropriately removing
degrees of freedom: from simple automatic centering of virtual
trackball, to surface-following methods, to constrained visits on
a graph of views. In terms of information presentation, we will
explore both a graph-based representation of 3D object annota-
tions, and how constrained camera controllers can be exploited
to guide the users towards interesting places and automatically
show the related information.

4.1 Research Goals

After a detailed analysis of state-of-the-art (see Chapter 3), we have identified a
number of limitations on current methods that need to be addressed in order to
satisfy the requirements presented in Sec. 2.2.

In our analysis of the problem domain, we aimed at covering most common
use cases. Being many the possible applications of highly detailed 3D models
in our current society, it implies a wide range of requirements that need to be
satisfied. There is no single solution able to cope with all the requirements and
current limitations. Thus, we plan to explore a set of approaches tackling with

33

Chapter 4. Work Plan 34

subsets of current limitations. The combination of such approaches should be
able to cover common use cases.

Our main global objective is ubiquitous exploration of complex 3D models on
common 3D platforms. For that purpose, we have defined and classified our
research goals as follows:

• Improving Scalability of Visualization Methods for Complex 3D Models.
In order to support ubiquitous visualization of highly detailed 3D models
we need to deal with distribution and rendering issues. First, large amounts
of data must be transmitted for remote rendering, with current bandwidth
limitations being specially tight on mobile and wireless networks (R3). Sec-
ond, the client side will receive and process this data for rendering, which
will require being able to display in real-time big amounts of geometry (i.e.,
triangles) (R1). Thus, we need compact data representations that not only
can be e�ciently streamed through networks while minimizing bandwidth
usage, but also are e�cient for being processed in the client for rendering.
In addition, adaptive rendering techniques must be used in order to pro-
vide real-time performance, reducing the amount of data transmitted and
rendered by exploiting view-dependent constraints (see Sec. 3.2.1). Current
3D platforms include, nowadays, mobile and web platforms (R9), which
impose further limitations on memory resources and computation power.
For that purpose, we must consider these platforms characteristics when
designing our approaches. In particular, real-time visualization of scenes
with complex lighting on low-profile platforms is one very challenging is-
sue (R4), since current solutions for real-time visualization of massive 3D
models have only been demonstrated on low-profile platforms with light 3D
models (see Sec. 3.2.1). For coping with those limitations, we plan to exploit
scene characteristics to design specific methods and algorithms for e�cient
distribution and rendering of complex 3D models. By imposing constraints
on the supported 3D models, we can develop compact e�cient data struc-
tures tailored for network streaming and real-time rendering on common
3D platforms, including low-profile platforms (i.e., mobile/web platforms).
In addition, camera movement constraints will be exploited for enabling
image-based rendering techniques to overcome real-time constraints when
dealing with scenes with complex lighting.

• Improving Navigation Techniques for Complex 3D Models. In complex
3D models, it is common for information to be found at multiple scales, such
as global shape or very fine details on the surface of the object. In order to
allow the user to explore all this information, navigation techniques must

Chapter 4. Work Plan 35

support both global inspection and proximal surface navigation (R5). In
order to avoid the user losing spacial context, guided navigation methods
must be used to help the user during navigation. For that purpose, we plan
to introduce constraints to the camera motion, slightly limiting movement
freedom in the environment aiming to help the user focus on the 3D virtual
object while ensuring “good views” of the scene (R6). Interaction with
large displays (R2) imposes a number of di�culties mostly due to their size,
thus rendering impractical co-located setups (i.e., touch screens). In order to
support multi-user visualization (R7), while avoiding cluttering due to other
users occluding the display (R8), we plan to design interaction techniques
supporting non co-located setups (R9).

• Improving Understanding of Complex 3D Models. Providing e�ective
3D content presentation is particularly relevant when the goal is to allow
people to appreciate, understand, and interact with intrinsically 3D virtual
objects. In this context, we plan to design a navigation-oriented interface
relying on guided navigation for information discovery (R6). Overlaid infor-
mation should be displayed associated to spatial and semantic constraints
(R10, R11, R12), while avoiding cluttering the visualization with obtrusive
indications such as hot spots (R8). Moreover, we plan to use an underlying
recommendation system for determining what information to be proposed
to the user, and exploiting guided navigation techniques to guide the user
towards the information, instead of relying on obtrusive indications, such
as hot spots or thumbnails. The recommendation system should let the
authors define the spatial and semantic constraints associated with the addi-
tional information in a flexible and simple way, without requiring complex
procedures in order to support non-expert users (R12, R13).

Table 4.1 shows a classification of the work presented in this thesis based on
constraints on the input 3D model, and constraints on the camera movement.

4.2 Our approach

In this section we will briefly introduce our approach towards ubiquitous explo-
ration of highly detailed and annotated 3D models.

Table 4.1 provides a classification of the methods that will be presented in this
thesis based on their generality, and camera movement freedom. The horizontal
axis classification is based on generality with respect to 3D model support: the
approaches in the leftmost column can be applied to general 3D meshes; the
approaches in the central column are suited for annotated 3D models or 3D

Chapter 4. Work Plan 36

Chapter 5

 – Compact Adaptive TetraPuzzles

Chapter 8

 – Auto-centering Pivot

Chapter 6

 – Adaptive Quad Patches

Chapter 9

 – ISOCAM

Chapter 11

 – Adaptive Recommendations

Chapter 7, 10

 – Explore Maps

3D Model Constraints

C
a

m
e
r
a
 M

o
ti

o
n

 C
o

n
s
tr

a
in

ts

Table 4.1: Method classification. This chart classifies the methods presented in this thesis in
function of constraints on the input 3D model, and constraints on camera motion.

models which can be parametrized as quad patches; finally, the ExploreMaps
approach in the rightmost column requires models that can be described with a
small number of points of view. On the other hand, the vertical axis classification
depends on camera freedom: the top row contains approaches providing free
camera movement; in the middle row there is the IsoCam approach which limits
camera movement to the set of isosurfaces surrounding the 3D model, and our
adaptive recommendation system that uses an attraction force to guide the user
during the exploration. The ExploreMaps approach, in the bottom row, is again
the most constrained technique since navigation is limited to a fixed set of points
of view and a number of connecting paths.

The remaining chapters will present the approaches listed below:

Chapter 5: Compression-domain Seamless Multiresolution Visualization
of Gigantic Meshes on Mobile Devices. Presents a method based on irreg-
ular triangulations which exploits the regularity of a hierarchical volumetric
space partitioning to construct a compact and seamless multiresolution
model (R1). We make use of the spatial partitioning for producing a lo-
cal (i.e., to its containing node) parametrization of the geometry, which is
clipped against its containing node bounds. This parametrization enables
us to use local quantization techniques while minimizing the quantization
error. The resulting compact representation can be directly decoded in the
GPU with negligible performance impact, minimizing the required memory
resources on the client. This approach is, thus, well suited for resource con-
strained platforms, such as mobile devices (R9). For network transmission,

Chapter 4. Work Plan 37

we introduce further compression using a low-complexity coding approach,
performing a prior data reordering in order to raise data coherency (R3).

Chapter 6: Adaptive Quad Patches: An Adaptive Regular Structure for
Web Distribution and Adaptive Rendering of 3D Models. Introduces a
compact representation for quad-parametrizable 3D models which produces
a fully regular multiresolution (R1) image-based representation suitable for
storage, distribution, and real-time rendering on modern commodity/web
platforms. Thanks to the quad parametrization the final encoding of the
3D model results in a very compact and e�cient collection of image tiles
(R3). Those tiles can then be e�ciently decoded in the GPU for rendering,
minimizing the processing in the CPU. This approach is, thus, well suited
for scripted environments such as Web browsers (R9).

Chapter 7: ExploreMaps: E�cient Construction of Panoramic View Graphs
of Complex 3D Environments. Presents an image-based technique that en-
ables interactive rendering of complex scenes on commodity platforms. To
make that possible, we constrain camera movements to an optimized set
of fixed panoramic view positions. This constraint allows us to overcome
the real-time rendering limitations by precomputing all the possible views
using o�-line photo-realistic renderers (R4). The resulting 3D representation
consists of a set of panoramic images (i.e., six images associated to the faces
of a cube), and a set of panoramic videos for transitions, relying on standard
image and video algorithms for network transmission (R3). Those features
render this approach convenient for browsing scenes with complex lighting
in low-profile platforms, such as mobile devices and Web browsers (R9).

Chapter 8: HuMoRS: Huge models Mobile Rendering System. Describes
a method for exploring complex 3D models which provides an automatic
centered pivot greatly simplifying the task of exploring multi-scale infor-
mation. Aiming to help the user exploring multi-scale information (R5),
we compute a natural interaction pivot from a stochastic sampling of the
visible geometry. Thanks to this automatic pivot, the user can concentrate
in the navigation (i.e. panning, rotating, and zooming) (R6) without having
to rely on precise picking at any moment to define the pivot for rotating.
Not relying on precise picking, makes this technique suitable for touch-
based interaction on small screens (R9), where finger occlusion and reduced
dimensions heavily penalize precision.

Chapter 9: IsoCam: Interactive Visual Exploration of Massive Cultural
Heritage Models on Large Projection Setups. Introduces a new method
that relies on a distance-field representation of the 3D model to provide

Chapter 4. Work Plan 38

collision-free and seamless multi-scale navigation while ensuring good view
directions. During multi-scale navigation inexperienced users easily lose
the spatial context (i.e., when navigating very close to the surface). We
tackle this problem by constraining the camera movement to follow the
continuous set of isosurfaces defined by a distance-field representation of
the 3D model. This constraint allows the user to explore the whole 3D
model while always ensuring “good camera orientations” (R6) and provides
smooth transition between global inspection (i.e., orbiting) and proximal
navigation (i.e., surface hovering) (R5). Furthermore, we describe a system
pairing a non co-located user interface with a large projection screen, for
supporting large scale visualization (R2) and multi-user visualization (R7).
Finally, we study how our constrained camera motion controller can be
exploited to enhance 3D stereoscopic rendering on light field displays (R9).
This kind of display provides multiple user stereoscopic 3D visualization
(R7) without requiring 3D glasses, thus providing a much more immersive
experience (R8).

Chapter 10: ExploreMaps: Ubiquitous Exploration of Panoramic View
Graphs of Complex 3D Environments. Introduces our approach for brows-
ing the Explore Maps generated with the method presented in Chapter 7.
A graph-based representation of the scene is used for presenting the user
with a selection of panoramic views that gives a full coverage of the scene.
Both thumbnail-based navigation and closest-path selection can be used for
traveling between graph-nodes (R6). The sense of immersion is enhanced
by employing panoramic transition videos, thus providing free camera
orientation during transitions. With this approach we can interactively ex-
plore scenes with complex lighting on commodity platforms (i.e., including
mobile/web platforms) (R9).

Chapter 11: Adaptive Recommendations for Enhanced non-linear Explo-
ration of Annotated 3D Objects. Introduces a novel approach for exploring
complex 3D annotated models, integrating an stochastic adaptive recommen-
dation system with a walk-up-and-use user interface that provides guidance
towards interesting view positions while being minimally intrusive. In order
to integrate and enhance the visual information (R10), we study unobtru-
sive methods for presenting the user with contextual information, while
not cluttering the interface with indications or hot spots (R8). We rely on
guided navigation techniques, introduced in previous chapters, for guiding
the user towards the information by slightly applying an attraction force
(R6). An stochastic recommendation system is in charge of determining the

Chapter 4. Work Plan 39

information to be displayed depending on current camera parameters and a
number of semantic and spatial constraints (R12), which are defined by an
expert (R13).

Part II

Compact Representations for
Complex 3D Models

41

Systems for rendering complex 3D models have to employ methods for filtering
out as e�ciently as possible the data that is not contributing to a particular image,
and to adaptively, i.e., incrementally, load and render parts which are needed,
e�ciently using bandwidth and local resources by combining compression and
data management methods.

In this part, we will present some approaches that exploit scene characteris-
tics to design specific methods and algorithms for compression and adaptive
rendering of complex 3D models.

Model
Type Approach Method Published

in Features

Dense 3D
meshes

- Tetrahedra hierar-
chy

- Clipped geometry
- Barycentric

parametrization
- Local quantization

See Chapter 5

I
F

E

c

Web3D’13

- Compact GPU-friendly represen-
tation

- 64bit per vertex encoding for posi-
tion, normal and color

- Proved e�cient on mobile plat-
forms

Parametriz-
able
meshes

- Quad-
parametrization

- Image-based
encoding

See Chapter 6

Web3D’12

- Image-based encoding enables us-
age of standard image compo-
nents for decoding on CPU

- Most of the work moved onto the
GPU

- Compact encoding using less than
25bit per vertex for position, nor-
mal and color

- Tailored for scripted environ-
ments, i.e., web platforms

Scenes
with
complex
lighting

- Graph-based repre-
sentation

- Pre-computed visu-
alization

See Chapter 7

EG’14

- Interactive exploration of complex
environments on low-profile plat-
forms, i.e., mobile and web plat-
forms

- Enables support for complex light-
ing simulation in pre-processing

Table 4.2: Scalable rendering approaches.

C������

5 .

Compression-domain
Seamless Multiresolu-
tion Visualization of Gi-
gantic Meshes on Mobile
Devices

The need for interactively inspecting very large surface meshes,
consisting of hundreds of millions of polygons, arises naturally
in many application domains, including 3D scanning, geometric
modeling, and numerical simulation. A number of solutions have
been presented in previous years to compactly represent objects
in a multiresolution way. In this chapter, we explore how to effi-
ciently combine multiresolution with compression in order to cope
with strong bandwidth and hardware capabilities limitations by
presenting a compression-domain adaptive multiresolution ren-
dering approach capable to scale from desktop GPU rendering to
mobile graphics. The basic idea behind the proposed approach
is to use, as in previous work, a regular conformal hierarchy of
tetrahedra to spatially partition the input 3D model and to arrange
mesh fragments at different resolution. In this approach, we cre-
ate compact GPU-friendly representations of these fragments by
constructing cache-coherent strips that index locally quantized
vertex data, exploiting the bounding tetrahedron for creating a
local barycentric parametrization of the geometry. For the first
time, this approach supports local quantization in a fully adap-
tive seamless 3D mesh structure. For web distribution, further
compression is obtained by exploiting local data coherence for
entropy coding.

This compact representation minimizes resource requirements,
thus being suitable for very constrained platforms (i.e., mobile
devices).

5.1 Introduction

N�������� massive model renderers have to employ methods for filter-
ing out as e�ciently as possible the data that is not contributing to a

45

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 46

particular image and to adaptively load and render them, e�ciently
using bandwidth and local resources by combining compression and data man-
agement methods. A compressed continuous level-of-detail (LOD) model, i.e.,
a compact description of multiple representations of a single shape supporting
the extraction of representations with varying accuracies in di�erent regions,
is the key element for providing the necessary degrees of freedom to achieve
run-time adaptivity. The basic ingredients of a such a model are a base mesh, that
defines the coarsest approximation to the 3D model surface, a set of compactly
represented updates, that, when incrementally loaded and applied to the base
mesh, provide variable resolution mesh-based representations, and a dependency
relation among updates, which allows combining them to extract consistent in-
termediate representations. Di�erent specialized multiresolution models, of
various e�ciency and generality, are obtained by mixing and matching di�erent
instances of all these ingredients.

In the most general (and common) case, the multiresolution model is based on
a fully irregular approach in which the base mesh is an irregular triangulation
with unrestricted connectivity, and updates are encoded as changes to regions
of this triangulations. Because of their flexibility, fully irregular approaches are
theoretically capable of producing the minimum complexity representation for
a given error measure. However, this flexibility comes at a price. In particular,
mesh connectivity, hierarchy, and dependencies must explicitly be encoded, and
simplification and coarsening operations must handle arbitrary neighborhoods.
By imposing constraints on mesh connectivity and update operations it is possible
to devise classes of more restricted models that are less costly to store, transmit,
render, and simpler to modify. This is because much of the information required
for all these tasks becomes implicit, and often, because stricter bounds on the
region of influence of each local modification can be defined.

The Compact Adaptive TetraPuzzle (CATP) method presented here builds on
Adaptive TetraPuzzles (ATP) [Cign 04] by using a regular conformal hierarchy
of tetrahedra to spatially partition the input 3D model and to arrange mesh
fragments at di�erent resolution in an implicit diamond graph.

In this work, however, tetrahedra not only partition but also clip the original
triangulation. We can thus create compact GPU-friendly representations of each
fragment by constructing cache-coherent strips that index compact interleaved
quantized vertex data, exploiting the bounding tetrahedron for creating a local
barycentric parametrization of the geometry. Appropriate boundary constraints
are introduced in the splitting, simplification, and quantization steps to ensure
that all conforming selective subdivisions of the hierarchy of tetrahedra lead to
correctly matching surface fragments. Such an approach introduces for the first

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 47

Figure 5.1: CATP overview. A regular conformal hierarchy of tetrahedra spatially partitions the
input 3D model and arranges mesh fragments at di�erent resolution in an implicit diamond graph.
Tetrahedra not only partition but also clip the original triangulation, ensuring that each mesh
fragment is fully contained within its bounding tetrahedron. Local quantization with appropriate
boundary constraints can thus be used to compress the model. At run-time, clients maintain
an adaptive local graph cut, and rendering is performed directed on compressed data, which is
dequantized in the vertex shader.

time local quantization in a general adaptive 3D mesh structure.
For web distribution, further compression is obtained on top of the compact

GPU-friendly representation by exploiting local data coherence using a low-
complexity coding approach based on a wavelet transformation followed by
entropy coding of coe�cients.

At run-time, mobile viewer applications adaptively refine a local multires-
olution model by managing a local GPU cache and asynchronously loading
on-demand from a web server the required fragments. CPU and GPU cooperate
for decompression, and a shaded rendering of colored meshes is performed at
interactive speed directly from an intermediate compact representation that uses
only 8bytes/vertex, therefore coping with both memory and bandwidth limita-
tions. Keeping data compact is of particular importance in resource constrained
platforms, e.g., current mobile devices, with extremely large screen resolutions,
which dictate large rendering working sets, but limited main memory sizes. For
instance, the current iPad generation sports a 3Mpixel display, but has a RAM
capacity of only 1GB. Moreover, by decoding compressed data on-the-fly on
graphics hardware, we can not only reduce local memory consumption and
minimize GPU bandwidth usage, but also power consumption, thanks to the
reduced memory access and data transmission through the system bus.

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 48

As highlighted in the overview of related work (Sec. 3.2.1), while certain other
approaches share some of our method’s properties, they typically do not meet
the capability to rapidly generate adaptive seamless meshes by rendering from a
very compact representation.

The e�ciency of the approach has been successfully evaluated with a number
of large models, including a massive 1G triangle colored model of Michelangelo’s
David (Sec. 5.6).

5.2 Method Overview

Starting from a high-resolution triangle mesh, we build, using a parallel out-of-
core process, a hierarchical multiresolution structure based upon a conformal
tetrahedra partitioning of the model’s bounding box, similarly to what is pro-
posed by the ATP approach [Cign 04].

The leaves of the multiresolution structure contain the full resolution original
model while inner nodes contain simplified representations of the geometry with
approximately half of the number of triangles contained into the children. The
building process is performed o�-line by iteratively inserting triangles from the
input mesh into the hierarchical structure, which is recursively refined in order to
maintain a maximum triangle count in the leaves. Then, coarser representations
are built bottom-up by recursively merging children nodes, with a maximum
triangle count and a representation error threshold as constraints.

A two-stage compression schema is used to transform input data to a compact
representation suitable for GPU rendering and then further compressing this
structure to reduce network tra�c. The tetrahedral structure is exploited to
encode vertex positions with barycentric coordinates. Tetrahedral barycentric
coordinates express the position of a vertex inside a tetrahedron, as the combina-
tion of its four corners. These coordinates can then be quantized locally for each
tetrahedra, thus minimizing the quantization error. To produce a conforming
mesh, input triangles, di�erently from ATP, need to be clipped against the tetrahe-
dra faces, thus each tetrahedron geometry is fully self contained. The continuity
among adjacent tetrahedra is ensured when quantizing positions, by the fact
that barycentric coordinates of vertices lying on tetrahedra faces are expressed
as a combination of only the three corners defining that face, which are the same
among neighboring tetrahedra in a conformal hierarchy. Normal and colors are
also encoded to produce a compact quantized representation which is further
compressed for storage and streaming (see Sec. 5.3).

At rendering time, multiple clients can access the data through a server farm
where the multiresolution models are stored (see Sec. 5.4). On the client, an

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 49

adaptive rendering approach incrementally updates the representation that best
fits the current point of view and retrieves the required data from the server
in an incremental fashion. Di�erently from ATP, where the multiresolution
structure was encoded by six binary trees of disjoint tetrahedra, we base our
run-time structure on diamonds. Each diamond is composed by the set of all
the tetrahedra sharing their longest edge. Using a diamond based structure,
see Weiss and De Floriani [Weis 10a], dependencies are implicitly encoded into
the hierarchy, and refinement is interruptible, producing a conforming mesh
also when children data is not available. This feature perfectly fits in remote
visualization applications, where is common to experience data fetch delays due
to bandwidth limitations. The working set is kept to a fixed small size by keeping
data directly in a compact GPU format suitable for direct rendering through
specific shaders that do the decoding directly in the Vertex Shader (see Sec. 5.5).

5.3 Building the multiresolution structure

The construction process (see Fig. 5.1) of the multiresolution structure starts from
a triangle soup, i.e., a flat list of triangles with direct vertex information, together
with a list of boundary vertices. The process is composed of two main phases:
a first one where the data-set is partitioned into a tetrahedra hierarchy, and a
second phase where data is simplified in a bottom-up fashion to build inner node
representations.

5.3.1 Tetrahedra Partitioning

The first phase starts with the insertion of the input triangles into the root dia-
mond, which is generated by partitioning the bounding box of the mesh into six
tetrahedra sharing a major box diagonal as their longest edge. Thereupon, in
a top-down manner, input triangles are inserted into the tetrahedra hierarchy,
which is recursively refined in order to maintain a maximum triangle count per
leaf node. In contrast with ATP [Cign 04], when a new triangle is to be inserted,
the triangle is clipped against each of the leaf nodes it overlaps. The generated
triangles are then inserted into the corresponding node. In such a way, each tetra-
hedron fully contains its geometry. Whenever the number of triangles contained
in a node exceeds a given limit, the tetrahedron � is split by the plane passing
through the midpoint of its longest edge and the opposite edge in �. Then, the
triangles contained in the tetrahedron are redistributed among the two children
tetrahedra. Towards guaranteeing the conformality of the resulting tetrahedra

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 50

mesh after this splitting, all the tetrahedra belonging to the same diamond of �,
are split at the same time.

After all the triangles have been inserted into the hierarchy, leaves contain the
original geometry. Nonetheless, due to quantization errors, this representation
slightly deviates from the input mesh. In order to be able to reproduce the
original geometry, leaf nodes are further refined, recursively splitting triangles
and inserting them into children tetrahedra until the quantization error is below
a user defined threshold, generally a fraction of the average edge length. After
this first phase, the original mesh is represented by the leaf nodes, while inner
nodes are empty.

Triangle clipping requires special care to avoid producing disjoint vertices due
to precision error on shared geometry (i.e., when splitting an edge shared by
two neighbor tetrahedra). Before performing the clipping, the edge vertices are
sorted according to a simple less operator which take into account also the plane
orientation, thus obtaining a repeatable procedure.

This pre-processing builds a diamond hierarchy where each diamond consists
of a set of tetrahedra. The diamond hierarchy contains three types of diamonds
formed by 6, 4 and 8 tetrahedra, and contain respectively 8, 6 and 10 vertices
[Weis 10a], see Fig. 5.2. These three diamond configurations occur repeatedly
in sequence during hierarchy traversals. Diamonds and tetrahedra corners are
expressed on an integer grid, where diamonds are uniquely identified by their
center, and tetrahedra are identified by their level and center integer coordinates.
It is possible through a look-up table to go from a diamond to its children,
parents, and constituent tetrahedra. Thus, we can avoid to store pointers in the
pre-processing and also in the run-time structure.

(a) Level 0 (b) Level 1 (c) Level 2

Figure 5.2: Sequence of diamond configurations. There are three di�erent diamond configura-
tions that occur iteratively during the hierarchy refinement.

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 51

5.3.2 Simplification

In a second phase, the hierarchy is traversed bottom-up in order to generate
inner nodes simplified geometry representation. For this purpose, for each inner
node, the geometry contained in its four child nodes is simplified by fulfilling the
maximum triangle count per node and a given representation error threshold.
Each diamond is simplified independently from the other diamonds, with the
constraint that vertices lying on boundary faces are left unchanged to maintain
continuity among neighboring diamonds of the same level and adjacent levels of
resolution.

There are three di�erent cases to take into account: (a) inner boundary vertices,
i.e., vertices near the inner faces of the diamond children, connecting with tri-
angles from other tetrahedra inside the diamond; (b) outer boundary indices,
i.e., vertices near the faces of the diamond, connecting with triangles of other
diamonds or tetrahedra; (c) inner vertices: all other vertices. Vertices of type (a)
can only be simplified against other (a) vertices in order to maintain the same
representation in all neighboring tetrahedra sharing these vertices, so the re-
parametrization of this vertices to barycentric coordinates remains the same.
Vertices of type (b) are fixed and cannot be simplified to ensure continuity with
neighbor diamonds. Inner vertices of type (c) can be simplified in any manner.
In brief, since triangles are clipped to their containing tetrahedra, in contrast
with ATP, during the simplification the only constraint is not to modify: external
edges on the faces of the diamond that are shared with other diamonds, and
internal edges on the faces of tetrahedra that are shared among two tetrahedra
in the diamond. The latter is required to ensure that edge vertices have the same
coordinates in both tetrahedra when re-parametrized into barycentric coordi-
nates, see Fig. 5.3(a). Because diamond topology changes at each level, there are
no vertices that remain locked up to the root and all the data can be simplified to
get a uniformly sampled model.

5.3.3 Barycentric parametrization and quantization

Before emitting tetrahedron data its geometry is reparametrized into barycentric
coordinates. Each inner point is expressed as a linear combination of the 4
tetrahedron corners, while points lying on tetrahedron faces are expressed as
combination of only the three corners defining the face. The latter, ensures
continuity between neighboring tetrahedra since the points on shared faces will
be defined as combination of the same three vertices, see Fig. 5.3(b). We chose
this representation because it o�ers a compact representation that can be locally
quantized without producing cracks between adjacent tetrahedra. However, due

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 52

(a) Inner boundary

I
F

E

c

(b) Barycentric coordinates

Figure 5.3: Tetrahedra merging.
a) Geometry simplification. An edge shared between two neighboring tetrahedra should be
simplified only over the plane defined by the face connecting the tetrahedra. This way, the
barycentric coordinates of the vertices will depend only on the coordinates of the vertices

defining face and so will be common for both tetrahedra. The blue edge disappears when blue
vertices are merged. Green edges appear during the re-triangulation of the clipped geometry. b)

Barycentric coordinates. Four examples of vertices with their positions with respect to the
tetrahedron: I inner, F on face, E on Edge, C on corner. For each vertex, we show the corners

which provide non null barycentric coordinate contribution.

to precision error, boundary points could be placed not exactly on the faces, thus
producing di�erent values on di�erent tetrahedra, once data is quantized, see
Fig. 5.4.

Figure 5.4: Geometry quantization. Projecting boundary vertices on tetrahedron faces permit to
solve mesh discontinuity among adjacent tetrahedra, which are due to quantization of slightly
di�erent values.

Hence, to ensure consistent quantizations, we subdivide the points in 4 cases
depending on their position with respect to the containing tetrahedra: near a
corner, near an edge, near one face, and inner point. In the first case the point
is represented with only 1 not null coe�cient, 2 coe�cients for the second case

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 53

expressing linear interpolation among 2 points, 3 in the third case for barycentric
coordinates over a 3D triangle, and finally 4 for inner points. These cases are
checked in this order, and with decreasing epsilon, to be sure to behave in the
same manner on adjacent tetrahedra for the same points, see Fig. 5.5.

(a) Input vertex snapping (b) Snap to corners (c) Snap to edges (d) Snap to faces

Figure 5.5: Vertex snapping. (a) Shows sample vertices that must be snapped onto (b) corners;
(c) edges or (d) faces.

The quantized geometry is stripified in a cache coherent way to maximize the
number of cache hits of transformed vertices. Thereafter, vertices are reordered
to match the order of appearance in the strip. This sorting permits to reflect
the spatial position in the memory layout, thus keeping similar values (i.e.,
neighboring vertices) near each other, which will be useful for the compression
step.

5.3.4 Compression

The quantized vertex coordinates are encoded together with normals and colors
into a compact 64bit representation suitable for direct rendering, where 3 bytes are
used for position, 2 bytes for normal and 3 bytes for color. Position is parametrized
with 4 barycentric coordinates, but only 3 components are required since the
four components sum to one. This 64bit/vertex encoding provides an extremely
compact aligned representation that can be e�ciently accessed on current GPUs,
which typically require vertex data to be aligned on 32 bit boundaries. For a
colored representation, 64bit/vertex is thus an optimal size. Normals are encoded
using the octahedron normal vector approach [Meye 10], which maps unit vectors
to two parametric coordinates. This encoding consists in projecting the normals
onto the octahedron by normalizing them with the 1-norm. The octahedron is
unwrapped to a square and the [u, v] parameters in the plane are quantized to 8
bits, leading to sub-degree precision [Meye 10]. Decompression is numerically

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 54

stable and requires only few basic operations which can be executed in the vertex
shader.

This compact representation is well suited for rendering through a simple
shader (see Sec.5.5), but higher compression rates can be achieved using a
low-complexity codec applied to both vertex data and topology. In order to
maximize data correlation for the entropy coding, color is transformed to the
YCoCg reversible format [Malv 08], and all of the vertex attributes (i.e., posi-
tion, normal and color) are deinterleaved and separated into their components
and stored as a sequence of streams, to which strip indices are also appended (i.e.,
[P 0

0 ..P
0
n

], [P 1
0 ..P

1
n

], [P 2
0 ..P

2
n

], [Nu

0 ..N
u

n

], [N v

0 ..N
v

n

], [Y0..Yn

], [Co0..Co
n

], [Cg0..Cg
n

], [I
o

..I
m

]).
Each stream is then transformed using a reversible n-bit to n-bit wavelet based
on the Haar wavelet transform in order to reduce entropy [Sene 04]. This ap-
proach uniformly treats topology and vertex data, and generalizes the usual
linear prediction methods typically applied to vertex positions. The low-pass
coe�cients produced by the wavelet transformation are iteratively filtered by
the same wavelet until we remain with a single (root) approximation coe�cient.
The resulting approximation and detail coe�cients are then transformed with
a range codec: integers are arithmetically coded using a single symbol for the
value 0, while other values are encoded using exponent, mantissa and sign, with
di�erent context for each encoded bit. This is a variation of the symbol encoding
method used in the FFV1 Video Codec [Mart 79]. During decompression all the
steps are undone in reverse order.

In the course of the building process we also maintain a temporary version of
the simplified data stored uncompressed on an external memory data reposi-
tory, which is used to build coarser level simplifications without accumulating
quantization errors.

5.3.5 Parallel processing

Simplification and encoding can be easily parallelized, being each diamond inde-
pendent from the others. After the recursive subdivision, the simplification starts
from the leaves and goes up to the root. A master process takes care of assembling
each diamond of the current level, fetching corresponding tetrahedra geometry
from the uncompressed data repository, and assigning it to a worker process. On
the worker process, inner node diamonds get their geometry simplified, encoded
and compressed. For leaf nodes, only encoding and compression are performed.
After this job the worker sends the compressed diamond geometry back to the
master node. After all diamonds of the current level are processed, the master
starts to process the next coarser level and, level by level, the data-set is simplified

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 55

up to the root. At that point, since children nodes are no more needed, their
uncompressed representations can be discarded.

5.4 Server

On the server side, data for each model is stored in separated databases. In the
pursuit of scalability, the server acts as a repository of data with zero process-
ing overhead. An abstraction layer handles communication processes through
di�erent transport protocols, such as HTTP or direct connection through TCP.
A simple module for Apache2 is in charge of handling HTTP requests, which
relies upon a local database to e�ciently locate the requested data. Berkeley DB
is used for storage, accessing and caching data in the server side due to its open
source license and its matureness as embeddable database. Berkeley DB provides
an e�cient and scalable transactional database engine with high reliability and
availability, able to handle up to terabytes of data. It also allows configuration of
per-process replicated cache and shared index memory among di�erent database
instances. Altogether, provides an scalable architecture with reduced memory
load for servers when dealing with hundreds of clients in parallel. On the other
side, Apache2 is a mature and open source server which provides an e�cient,
secure and extensible architecture for developing HTTP services. Its scalable
and multi-threaded architecture together with features like persistent server
processes and load balancing are essential to the performance of our application.
A custom Apache module implements a connection-less protocol based on HTTP
which receives queries composed of database name and node identifier. This
module extracts the query parameters, retrieves the corresponding data from the
DB, and sends back either node’s data or an empty message if it is not present.
This architecture relies on mature components that have been widely tested
and provide good scalability and performance when dealing with thousands of
clients.

5.5 Client architecture description

Although the method is directly applicable for desktop platforms, we have fo-
cused our tests on embedded devices such as Apple iPhone/iPad or Android
devices in general, since they provide a very promising platform for remote
exploration of high quality 3D content. On those platforms there is support for
OpenGL ES, the specification for embedded devices, which is slowly converging
with its desktop counterpart. Currently, the most commonly used version on
those platforms is OpenGL ES 2.0, although version 3.0 is already present on

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 56

most recent hardware. OpenGL specifications for Embedded Devices have been
defined to be a fully functional subset of its desktop counterparts where only
the more general functionality has been included in order to minimize circuitry
complexity and energy consumption.

Older devices support only the ES 1.1 version, which o�ers a lighter version of
OpenGL 1.5, where immediate mode has been suppressed together with complex
primitives such as quads or polygons. The functionality include Vertex Bu�er
Objects (VBO) and Vertex Arrays to feed the GPU with geometric primitives.
Most current devices do support the ES 2.0 version, based upon the 2.0 desktop
specification, where the whole fixed pipeline functionality has been removed in
favor of the shader based pipeline, where Vertex and Fragment shaders must be
provided giving more flexibility. The GLSL specification for ES has also been
modified adding control for data precision. On most recent devices there is
already support for ES 3.0, where occlusion queries, transform feedback and mul-
tiple render targets have been included in the specification. There is also finally
a standard compression format ETC2/EAC, and support for 32bit integer, and
3D textures, among a lot more of newly supported functionality. This concrete
version shows a clear converging tendency towards desktop OpenGL 4.x.

Embedded GPUs typically focus on high e�ciency and low power consump-
tion, although nowadays they are able to o�er decent computational power in
comparison with desktop GPUs. The Adreno GPU integrated in Qualcomm
processors, among other GPUs used in current mobile devices, use Tile Based
Rendering (TBR). Only once all the primitives have been submitted the driver
splits the geometry into tiles which are then rendered using a small amount
of in-core memory. The PowerVR SGX5XX, used in the various iPhone/iPad
series and some high-class Android devices, go a bit further and use Tile Based
Deferred Rendering (TBDR), which delays fragment operations until occlusion
tests have been processed avoiding expensive calculations for occluded frag-
ments. This architecture, widely used in embedded GPUs, penalizes reading
back from the frame bu�er since it requires waiting for all the tiles to be written
prior to reading. In general, current generation of embedded GPUs provide really
good performance together with an e�cient energy consumption; although the
continuously increasing display resolution makes the fragment load to penalize
heavily the rendering performance (i.e, iPad 3 resolution of 2,048 by 1,536 uses
a PowerVR SGX543MP4 with 16 unified shader units to render this massive
amount of fragments).

Taking into account these architecture constraints, the rendering engine has
been designed to minimize fragment processing while feeding the GPU with
large geometry batches using cache optimized indexed triangle strips.

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 57

5.5.1 Adaptive view-dependent representation

Each frame, depending on the viewing parameters and a given fixed screen space
tolerance, the client performs an adaptive rendering of the multiresolution model.
For this purpose, the client relies on a hierarchical multiresolution representation
of the model that is incrementally refined depending on the navigation. Initially
starting with a coarse representation of the whole model, the hierarchy is tra-
versed for each render view point in order to determine the available working set.
The traversal algorithm takes into account diverse parameters: the viewing posi-
tion, the available GPU resources, the current CPU usage level, and the required
network bandwidth. Di�erently from ATP [Cign 04] the refinement is performed
on a diamond basis. The viewer maintains the multiresolution structure as a map
of diamonds, each of them identified by its center integer coordinates. For each
diamond, on creation, there are available through a small look-up table its par-
ents, children and tetrahedra indices. Each of the tetrahedra indices corresponds
to an entry in the cache containing the compact representation of the fragment
geometry. To each diamond we associate a view dependent priority which is
the projected average edge length if the diamond is visible, or zero otherwise. A
diamond is refined if its priority is higher than a user selected pixel tolerance. Re-
finement of a diamond stops if it is not visible, if it should be refined but children
data is still not available, or if it fulfills the viewing constraints. Diamond based
refinement is capable of producing a conformal tetrahedral mesh when each
diamond is split only if its parent diamonds are already present in the graph.
Such a refinement has the valuable benefit of being interruptible, hence we can
use memory, triangle and time budgets to limit the used resources and to avoid
locks, thus permitting interactive performance. We update the multiresolution
structure cut using two diamond heaps: the refinement one, which is sorted with
decreasing priority, and contains the leaves of the cut, and the coarsening heap
which contains the parents of the leaves, with increasing priority. At each frame,
instead of traversing all the hierarchy from the root, we update the priority of
each diamond on the two heaps, then we refine the top of the refinement heap
until achieving the desired error threshold, or one of the budget constraints is
reached. Once over a new frame we also coarsen the top of the coarsening heap
to release resources. The two heaps are properly updated for each refinement
and coarsening operation.

In RAM memory, we maintain the cache of tetrahedra compact geometries,
which are indexed through the diamond graph. The cache implements a LRU
policy that maximizes the reuse of nodes while enforcing a resource usage below
a given limit. The compact format permits to directly map data as Vertex Bu�er

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 58

Objects, which are ready to be sent to the GPU. This compact representation
also permits to perform ray-casting without needing a decompression step. Ray-
casting is used to identify the touch point over the model for interaction purposes.
Each tetrahedron also contains a small hierarchical tree of bounding boxes, com-
puted just after loading, which is used to improve ray-casting performance. LRU
fragments are kept in the cache as long as they are referenced by the diamond
graph. After a coarsening operation, when a fragment is no more referenced, it
goes toward the end of the LRU and is discarded as soon as new resources are
needed.

5.5.2 Multi-threaded data access layer

The retrieval of data is performed through an asynchronous data access layer
which encapsulates the data fetching mechanism and avoids blocking the appli-
cation when the requested data is not yet available. The main thread, in charge
of performing the hierarchy traversal for determining the working set, asks the
cache for the nodes required for the current view position. If the requested data
is available, the node is returned and so the traversal continues until the best
available representation is reached; otherwise, a new request for this node is
enqueued and the traversal stops since this is the best available representation.
Another thread is responsible of fetching the requested data, contained in a pri-
ority queue. Depending on an available bandwidth estimation, a given number
of requests is sent to the server, while the remaining requests are ignored. Since
request priority corresponds to the node’s projected error, coarser nodes are
always requested first. On each frame, the request queue is cleared and filled
again with the nodes needed for that frame, and so will be served at some point
only after coarser nodes are available. This thread also handles incoming data
and performs the decompression from the entropy coded version to the com-
pact GPU representation, proceeding with the reverse sequence described in the
pre-processing phase. Entropy decoding, then per component backward wavelet
transform, and finally conversion from YCoCg to RGB. After this decompres-
sion, data is stored in an interleaved array of 8 bytes per vertex with 3 bytes for
barycentric coordinates, 2 bytes for the octahedron normals, and 3 bytes for the
RGB color.

5.5.3 Rendering process

Before rendering a simple shader is activated. The visible tetrahedra of the
current cut are traversed by a visitor which takes care of managing a cache on
GPU of Vertex Bu�er Objects (VBO). The size of the GPU cache is smaller than

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 59

Figure 5.6: Detail of David’s eye interactively rendered on a iPad. This 1Gtriangles model is
colored using post-restoration color data. Note how our compression preserves extremely high
quality details in shape, normal, and colors.

the size of the CPU one, thus more memory remains for CPU data, limiting
the need of requesting and decoding multiple times data that exited from the
limited GPU resources. When a node is visited, if it is not present in the cache,
a corresponding VBO is created and inserted into GPU cache and rendered,
otherwise only rendering is performed. Rendering consists in binding the bu�er,
setting up the vertex attribute pointers and drawing the optimized stitched strip
sequence present in the geometry indices. For alignment purposes, we address
vertex attributes as two 4-bytes words, and let the shader separate the position,
normal, and color components.

The shader must transform data expressed in local barycentric coordinates.
The transformation is given by this simple equation v = ||c0c1c2c3|| · |vb|, where
ci represent the corner ith while vb is the vector of the 4 barycentric coordinates.
Thus the 4 corners can be replaced by a matrix, which is post-multiplied to
the model view matrix. Therefore, rendering from barycentric coordinates is
not causing extra per-vertex cost with respect to using Cartesian coordinates.
Since color is already in the RGB24 format, the only extra work that needs to
be performed is the decoding of normals from the two quantized octahedral
map coordinates. From the quantized coordinates remapped into [�1, 1] we

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 60

compute n
z

= 1.0 � |u| � |v| . Then if n
z

> 0 we are on the upper side of the
octahedron and n

xy

= uv, otherwise we are on the lower part and we need to
revert the n

xy

components according to these equations: n
x

= (1� n
y

) · sign(u)
and n

y

= (1� n
x

) · sign(v), see [Meye 10] for further details. Attribute decoding
cost is thus negligible with respect to the other work performed by the shader
(in particular, transformation, projection, and shading). Fig. 5.6 illustrates the
quality of rendering that can be achieved using compressed data.

5.5.4 Graphical User Interface

On the iOS platform, we have taken advantage of the Cocoa Touch UI framework
to design a simple Graphical User Interface (GUI) composed of a Model List
Widget and OpenGL Rendering Layer. End users can easily browse and select
the desired model through the Model List Widget and interact with the OpenGL
Rendering Layer through standard multi-touch gestures. It is possible to rotate
the model about its bounding box by moving a single finger on the screen, move
the model with two fingers or zoom it in and out by performing a pinch gesture.

Interaction is also possible through an alternative “target-based” approach,
with which a single quick tap by the user selects a target point which is attached
to the model. This target point, rendered on screen as a small colored sphere,
allows the user to easily rotate the model about by moving a single finger on the
screen. By tapping the target again instead, it will trigger a smooth animation
that moves the camera from its current position toward the target’s position. The
target sphere can be deactivated anytime by tapping outside of the model.

5.6 Implementation and Results

We have implemented a prototype hardware and software system based on the
design previously discussed in this chapter.

Using this method, we developed a framework composed of a C++ pre-processor,
a client iOS app, and a HTTP server. Several tests were performed on pre-
processing and rendering of very large models. Here we present results relative
to two 3D large models from the Digital Michelangelo Repository of Stanford
University with 0.25mm resolution: the David statue with 940 M triangles, and
the St. Matthew statue with 374 M triangles. The David model is enriched with
the color signal acquired after restoration and blended with geometry with the
algorithm proposed by [Pint 11], while the St. Matthew has a precomputed
ambient occlusion gray scale per vertex.

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 61

Figure 5.7: St. Matthew and David on a 3rd generation iPad and a iPhone 4. Representative
frames from the accompanying video illustrating the interactive remote exploration of the colored
David (1Gtri) and St. Matthew (374Mtri) datasets. The average frame rate is 37fps on the iPad and
10fps on the iPhone. Triangle throughputs vary from 30Mtri/s on iPad to 2.8Mtri/s on iPhone.

5.6.1 Dataset Construction Performance

The pre-processor has been implemented using C++ and the OpenMPI high
performance message passing library. Each model has been processed using
a single o�-the-shelf PC with Linux 3.0.6 (Gentoo distribution) and an Intel(R)
Core(TM) i7 CPU 960 @ 3.20GHz with 24GB RAM. We constructed all multireso-
lution structures with a target maximum leaf size of 8000 triangles/tetrahedron
and a leaf quantization tolerance of 0.25mm.

Processing of the David statue took about 10h45m on 8 cores, while about
4h15m for the St Matthew, which correspond to roughly 24k triangles/second.

The data compression rate is 49.1 bits/vertex for the David model and 45.1
bits/vertex for the St. Matthew model, including the mesh topology information,
see Table 5.1. The David’s color information is heavier than St.Matthews, since
the latter is only a low frequency ambient occlusion component. Instead, normals
of the St. Matthew require more bits due to the roughness of the surface with
respect to the David. Color encoding is loss-less, and normal error induced by
octahedron encoding is sub-degree, and this represents the limit of this method
when using 8 bits per component. Our wavelet transformation and entropy

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 62

coding step produces a compression of about 2.3x for vertex data and 3.5x for
mesh topology with respect to our compact GPU friendly representation.

David bpv St Matthew bpv
Position 10.9 10.9

Color 9.1 3.8
Normal 8.6 9.7

Mesh Topology 20.5 20.7
Total 49.1 45.1

Table 5.1: CATP encoding bit rates. Bits per vertex subdivided per position, color, normal and
mesh topology for the two processed models.

5.6.2 Rendering performance

The client was implemented on iOS 6 using C++, OpenGL and Objective-C++/C++.
We evaluated the rendering performance of the technique on a number of in-
spection sequences on an iPhone 4 and on a 3rd generation iPad. The iPhone
has a 1Ghz Apple A4 processor with 512 MB RAM, a PowerVR SGX535 GPU
and a screen resolution of 640 x 960 pixels, while the iPad has a 1Ghz Dual-core
Apple A5X processor with 1GB RAM, a PowerVR SGX543MP4 GPU and a screen
resolution of 2048 x 1536 pixels. The two devices were chosen as representative
extreme cases. The iPad has the currently largest screen, while the iPhone is an
“old generation” phone with average specs. It must be considered that the current
generation of mobile devices, such as the Apple iPhone 5, Samsung Galaxy S3
and Note 2, have technical specifications similar or even higher than the iPad
3’s, with a sensibly smaller screen resolution. We can thus expect much better
results on these newer generation devices.

The quantitative results presented here in details were collected during inter-
active inspections with pixel tolerance 3 of the David and St. Matthew models.
The sessions were designed to be representative of typical mesh inspection tasks
and to heavily stress the system, and includes rotations and rapid changes from
overall views to extreme close-ups. The qualitative performance of our adaptive
renderer is also illustrated in an accompanying video, that shows live recordings
of the analyzed sequences. Representative frames are shown in Fig. 5.7.

On the 3rd generation iPad we are able to render models with an average
throughput of 30 Mtriangles/second, with an average rendering frame-rate of
37 fps, which eventually drops to 15 for full refined views, when the number of
triangles reaches the 2 Mtriangles maximum triangle budget. As expected, the
iPhone 4 got slightly worse results in terms of interactivity, with a throughput of
2.8 Mtriangles/second, with an average frame-rate of 10 fps, and a worst case of
2.8 fps for views with maximum of 1 M Triangle budget. As demonstrated in the

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 63

video, performance is perfectly adequate for interactive inspection tasks. The
quality of representation is extremely high. An example is presented in Fig. 5.6.

5.6.3 Streaming performance

The latency time needed to fully refine the data at the application start-up and
to refine the model during the exploration, is probably one of the most critical
issues that a mobile device need to deal with. Of course, this time is independent
from the rendering thread but only depends on the network bandwidth. The
multiresolution structure along with the output-sensitive technique adopted,
allow the client to only need a working set which depends on the screen resolution.
Hence, the latency time to download the current working set is proportional to
the maximum resolution of the mobile device. We have measured performance
with a wireless connection of a Linksys WAP 200 802.11 b/g access point 54
Mbps, as well as with UMTS/HSPA connections. The wireless network was
shared among many clients, and we measured its peak performance to be 17
Mbps.

With the iPad, at start-up we need to load about 14.5MB to see the whole David
statue in full screen (1.1Mtri), and 19.9 MB to see the St. Matthew (1.8Mtri).
Our application performs data fetching asynchronously in a separate thread to
avoid delaying interactive rendering. We measured data fetching speed to be of
about 4.8Mbps on the wireless network. We are thus able to use about 35% of
the available bandwidth. Full refinement takes about 30s for both statues. Due
to progressive refinement, after a couple of seconds, however, the statues are
already visible with a reasonable quality. On the UMTS/HSPA, the data fetching
speed was measured to be about 3.3Mbps, for a full refinement latency of about
45s. The iPhone4 is about 1.5x slower, which is mostly due to the lower CPU
performance, which leads to increased decoding time.

5.7 Discussion

We have presented an architecture capable of distributing and rendering gigantic
3D triangle meshes on low-powered platforms, proving its performance on com-
mon hand-held devices. Our architecture exploits the properties of conformal
hierarchies of tetrahedra to produce a data structure which is adaptive, compact,
and GPU friendly. By combining CPU and GPU compression technology with
our multiresolution data representation, we are able to incrementally transfer,
locally store and render extremely detailed models on hardware-constrained
platforms with unprecedented performance.

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 64

The original Adaptive TetraPuzzles approach was tailored for desktop systems
which typically have enough memory resources and local data storage, as well as
fast network connection. On mobile devices, where memory resources are much
more limited, it is not always possible to maintain in memory the working set of
data needed to render the visible part of the model. This is particularly relevant
when exploring very fine details of the model where more data is needed to
satisfy the visual quality constraints. Nonetheless, due to power consumption
constraints and driver limitations, network bandwidth on mobile devices is
usually way below desktop platforms. Thanks to our compact GPU-friendly
representation we can cope with the limitations on bandwidth and memory
resources present in mobile platforms, since the rendering can be performed
directly from our compact representation.

Besides improving the proof-of-concept implementation, we plan to extend
the presented approach in a number of ways. In particular, we are currently
incorporating occlusion culling techniques, useful for data-sets with a high depth
complexity, and we plan to introduce more sophisticated shading/shadowing
techniques.

This enabling technology is intended to be a high performance building block
for mobile 3D graphics. A major application area of massive model rendering
is cultural heritage, where highly detailed representations area required to re-
produce the unique aura of real objects. We also plan to better integrate this
technology with web infrastructures by providing an implementation running
in WebGL.

Advantages. Our approach improves on the well-known ATP, supporting gen-
eral dense 3D meshes and providing an e�cient method for distribution and
rendering complex 3D models on resource-limited platforms. The compact GPU-
friendly representation allows both minimizing bandwidth and memory usage,
and power-consumption thanks to this reduced data tra�c. Bigger portions of
the 3D model can be stored in local memory enabling high resolution 3D model
exploration on devices with reduced memory resources, and at the same time
the cache module is better exploited reducing bandwidth usage when re-visiting
parts of the model.

Limitations. The regularity of the subdivision structure does not adapt to ge-
ometric complexity. In addition, the mesh simplification approach repeatedly
merges nearby surface points based on error minimization considerations. The
method, thus, perform best for highly tessellated surfaces that are otherwise
relatively smooth and topologically simple, since it becomes di�cult, in other

Chapter 5. Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes
on Mobile Devices 65

cases, to derive good “average” merged properties and to generate subdivision
with a reduced amount of boundary vertices/patch.

Scalability. The method poses minimal constraints on the hardware, and just
requires standard vertex shaders for data decoding. In terms of computation cost,
the decoding in the vertex shader adds only a matrix multiplication for vertex
position dequantization, and a few basic operations for recovering the normal
vector. On all tested platforms, we achieved maximum performance when data
is stored in an interleaved array of 8 bytes per vertex.

5.8 Bibliographical Notes

The major part of the content of this chapter is based on paper [Bals 13c] where
we presented an extension to the well-known Adaptive TetraPuzzles [Cign 04]
with a compression-domain representation that reduces both the size of data to
be transmitted and the memory occupancy both in system and video memory.
Introduction and Discussion are based on paper [Bals 13b], which discusses the
method presented in this chapter and the Adaptive Quad Patches approach
presented in Chapter 6.

C������

6 .

Adaptive Quad Patches:
An Adaptive Regular
Structure for Web Dis-
tribution and Adaptive
Rendering of 3D Models

The scheme presented in the previous chapter provides an ef-
ficient solution for general triangulated meshes, providing fast
incremental loading and reasonable compression, GPU accel-
erated rendering methods, and adaptive view-dependent culling
techniques.

There is now, however, an increasing interest for techniques
tuned for lightweight, interpreted, and scripted environments. The
limitations of such platforms impose additional constraints on 3D
streaming formats, which should be based as much as possible
upon preexisting components in order to avoid the overhead of
coding complex decoders and data structures in non-optimized
programming environment, such as JavaScript.

In this chapter, we show how a much simpler representation can
be obtained for particular kinds of objects, smooth and topologi-
cally simple, which comprise an important subset of the 3D mod-
els, e.g., in cultural heritage applications. We exploit these char-
acteristics by proposing a solution based on an iso-parametric
quad-parametrization of the 3D models, on top of which we con-
struct a multiresolution structure. The resulting representation
is extremely compact, and can be implemented on top of pre-
existing libraries. Thus, this scheme is well-suited for scripted
environments such as Web browsers, where the limited CPU
performance for interpreted code can be overcome by exploiting
efficient implementations for image decoding already present in
the API.

6.1 Introduction

W� introduce a remote rendering approach in which a large class of
textured geometric models, which can be parametrized into quads,

67

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 68

are converted into compact multiresolution representations suitable
for storage, distribution, and real-time rendering on modern commodity/web
platforms.

The Adaptive Quad Patches (AQP) method presented here employs a solution
that encodes much of the shape and appearance of a model into a texture. This
is also the goal of geometry images [Gu 02, Sand 03], which enable the power-
ful GPU rasterization architecture to process geometry in addition to images,
and the networking component to rely on already existing and optimized li-
braries for compression and streaming of images. Geometry images focus on
re-parametrizations of meshes onto regular grids, while we focus on developing
a specific multiresolution structure on top of a re-parametrized model. Our quad-
based parametrization leads in addition to a tighter texture packing and a simple
handling of chart boundaries. We also adapt semi-uniform adaptive patch tessel-
lation [Dyke 09] to handle collections of quad patches at di�erent LODs with
textured detail. Whereas previous adaptive GPU mesh refinement approaches
are typically used to amplify coarse geometry, our end-to-end framework is
designed to faithfully reproduce a resampled high-resolution model.

Our method extends and combines recent results in geometric processing,
real-time rendering, and web programming. In particular: we exploit recent
results on surface reconstruction and isometric parametrization to transform a
point cloud into a two-manifold mesh whose parametrization domain is a small
collection of 2D square regions; we encode the resulting parametrized mesh
into a very compact multiresolution structure composed of variable resolution
quad patches whose geometry and texture is stored in a tightly packed texture
atlas; we adaptively stream and render variable resolution shape representations
using a GPU-accelerated adaptive tessellation algorithm with negligible CPU
overhead.

Our approach is scalable and enables interactive exploration of gigantic 3D
mesh models on common hardware, including web browsers.

6.2 Method Overview

Our contribution is an unattended software pipeline for automatically convert-
ing a large variety of textured geometric models into compact multiresolution
representations suitable for storage, distribution, and real-time rendering on
modern commodity/web platforms. Fig. 6.1 illustrates the main components of
our pipeline.

The pipeline takes as input a dense point sampling of the original model. This
kind of sampled representation can be created from a large variety of models -

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 69

Figure 6.1: The AQP pipeline. We take as input renderable models and generate compact
adaptive streamable representations.

point clouds, meshes, or parametric objects. A two-manifold triangular mesh
is first fit to the point cloud using a surface reconstruction and topology clean-
ing step, and the resulting two-manifold mesh is parametrized (see Sec. 6.3).
Our parametrization domain D consists in a small collection of almost isometric
square patches. Since each of these patches can be sampled on a grid with lines
parallel to its sides, storing 3D positions, normals and colors of the associated
point on the mesh in a N ⇥ N square patch, the overall shape representation
consists of M square patches of N ⇥N samples. This regular structure is then
encoded into a compact multiresolution structure composed of variable resolu-
tion quad patches assembled in 2D images. Geometry and texture are stored
in a tightly packed multiresolution texture atlas, which can be streamed over
the network for generating variable resolution shape representations using a
GPU-accelerated adaptive tessellation algorithm (see Sec. 6.4). The resulting
rendering subsystem has negligible CPU overhead and is heavily built on top of
consolidated 2D image representations. It can thus be e�ciently implemented
both on conventional commodity platforms and on the newly emerging scripting
platforms for the web. The various steps of our pipeline are detailed in the
following sections.

6.3 Surface Reconstruction, Parametrization and Quad Re-meshing

We assume that the input to our pipeline is a point cloud or a tessellated mesh,
possibly with artifacts such as non manifoldness.

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 70

The first phase of the method transforms the input in a clean manifold triangle
mesh. As a first step, we use Poisson reconstruction [Kazh 06] to obtain a man-
ifold and watertight version of the input mesh, which is saved in a streaming
format. We then perform a single streaming pass over the generated triangle
mesh, and discard from it the connected components with less than a prescribed
number of triangles, to remove topological noise. It should be noted that these re-
construction and filtering steps may not be necessary if the input mesh is already
two-manifold, or it may be replaced with other reconstruction or topological
repair techniques.

The second phase consists of parametrizing the mesh on a simple quad-based
domain. We first construct an almost isometric triangle mesh parametrization
through abstract domains [Piet 10] (see Fig. 6.2.(b)), which maps the original
mesh to a simplified parametrization domain made of equilateral triangles. The
method works by applying local simplification operations to the input mesh,
and remapping the triangles of the original region onto those of the simplified
region. By iterating the simplification and remapping process, the algorithm
ends with a small parametric domain consisting of a simple triangle mesh. This
domain is in turn remapped into a collection of 2D square regions by adding a
vertex in the barycenter of each triangle and building a quad for each edge (see
Fig. 6.2.(c)). The produced parametrization exhibits very low isometric distortion,
because it is globally optimized to preserve both areas and angles. In order to
manage larger models than those handled by the original method [Piet 10], we
have heavily reduced memory usage by employing a multiple-choice approach
instead of a global queue to select the edge collapses during the simplification
phase [Wu 02].

Once we have obtained the quad-based parametrization of the input model,
we re-sample each quad, taking the samples from the original geometry. The
sampling phase, which works on the point cloud representation used as input
for the reconstruction step, associates to each quad a regular grid of samples
(position, color, normals). This final collection of regular grids (see Fig. 6.2.(d)) is
used as input for the multiresolution structure creation phase.

6.4 Quad-based Multiresolution Structure

The previous steps of the pipeline are able to produce a parametrized mesh made
of a set of equally sized quad patches, each of them composed of w ⇥ w samples.
Vertex, color and normal information are available for each sample.

In order to achieve adaptivity, we encode the resulting parametrized mesh into
a very compact multiresolution structure composed of a collection of variable

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 71

Figure 6.2: Reconstruction steps. The original model (a) is parametrized on a simple quasi
isometric triangulation (b), which is in turn remapped to a collection of 2D square regions (c),
used as a basis for re-sampling the model (d).

Figure 6.3: Rampant model. Example of rendering with patch color, level color and with original
color.

resolution quad patches, whose geometry and texture is stored in a tightly packed
texture atlas. At run time, we exploit this structure to rapidly distribute and
generate seamless view-dependent multiresolution visualizations. These view-
dependent representations are constructed by adaptively loading and combining
patches at di�erent resolutions, depending on viewing parameters. Surface
continuity is guaranteed by carefully handling patch boundaries (see Fig. 6.3).

6.4.1 Quad Structure

The main advantage of our quad parametrization is that a complex surface can be
compactly and e�ciently stored by storing geometry in a tightly packed texture
atlas. Since all quads have the same size, packing is trivial and very e�cient.

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 72

Each image quad represents a square surface patch, and is made independent
from the others by replicating in it the boundary vertices. The patch triangulation
is implicit. A surface is thus represented by a 2D texture that contains a number
of patches, arranged in a 2D grid. Because of the GPU maximum texture size
limitation (generally 4K or 8K), a single large model can be split into a number
of texture pyramids, each of them with the maximum resolution lower than the
limit. A multiresolution representation is constructed from the high-resolution
representation by building a texture mip-map through a filtering operation (see
Fig. 6.4(a)). Each half resolution representation can be constructed by a simple
average filter, with special care taken only for properly handling samples at quad
boundaries (see Sec. 6.4.2). Inside a single pyramid, square patches are simply
organized as a square 2D matrix of N ⇥M patches (see Fig. 6.4(a)).

The geometry mipmap is enriched by parallel color and a normal mipmaps,
which are based on the same concept of quad patch simplification. These two
mipmaps are not constrained in our system to have the same resolution of the
geometry. In general, they will have higher resolution with respect to the geom-
etry one, allowing us to achieve the same e�ect of surface texturing with color
and normal maps (which typically are at higher resolution than the geometry).

6.4.2 Pre-processing

For each pyramid we build three mipmap hierarchies: a geometry, a color and
a normal mipmap. Processing of the three structures share some aspects: they
start sampling the input data-set on a patch basis, and then build inner mipmap
level, with a patch filter approach that maintains continuity among boundary
samples of adjacent patches. Inner patch samples are simply averaged from 4

children samples, instead boundary samples are averaged without taking into
consideration the 2 samples which do not belong to the boundary. The corner
samples which are shared among 4 adjacent patches, are filtered with pure
sub-sampling for the same reason, see figure 6.4(b). Operating without this
special care would produce corresponding boundary samples with di�erent
contribution for adjacent patches, thus losing continuity.

We exploit the geometry patch structure to encode the positions as a map of
3D displacements with respect to the bi-linear interpolation of the patch corners
at the corresponding u,v parametric coordinates. The corners of all the square
patches are stored quantized at 16 bits per component, in a root file, which would
correspond to the coarsest level of our multiresolution structure. All other levels,
which represent displacements with increasing resolution with respect to the root,
are stored quantized at 8 bits per component. Instead of using a global, per level,

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 73

(a) Geometry Mipmap (b) Patch filtering

Figure 6.4: Multiresolution structure. In figure 6.4(a) there is an example of three levels of
a geometry mipmap with 76 patches on a grid 9 ⇥ 9, with highlighted the filtered patch of
figure 6.4(b). Figure 6.4(b) shows three levels of a quad patch. Circles inside quads shows which
samples contribute to the generation of the parent sample: one for the corner (sub-sampling),
two for edges, and four for inner sample. Upper level correspond to the root patch representation
with only the four corners.

uniform quantization range, which would introduce too many discretization
artifacts, we decided to modulate the quantization range per generated vertex.

In a first step, quad quantization ranges are computed for each patch, by taking
the minimum and the maximum di�erences between positions inside the patch
and predictions obtained through bi-linear interpolation of corner positions.
In order to avoid discontinuities caused by di�erent per-patch quantization,
we move quantization information to the patch corners. We thus determine
for each patch corner the minimum of all the adjacent quad minimum values,
and the maximum of all the maximum values. Using these corner values, the
quantization range for a sample of a patch at parametric coordinates u,v is given
by the bi-linear interpolation at u,v of all the for corner quantization factors. This

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 74

way, quantization on edges depends only by the two corners defining the edge,
and thus is shared among the two adjacent patches, solving the quantization
continuity problem.

Geometry is finally stored using PNG compression to avoid to introduce further
artifacts due to possibly uncontrolled lossy compression. For colors and normals,
instead, we can choose between storing them as PNG files or using DXT1 (for
colors) and DXT5 (for normals) compression. Using these hardware-supported
compressed formats is only possible when using our OpenGL renderer, since
WebGL currently lacks support for them. Data is stored in separate files: each
mipmap is subdivided by levels, and then the level is split into tiles if its width is
bigger than a predefined value, 512 samples in the current implementation. This
approach is useful to avoid to require a complete level at a single time, which
surely would be too big for the finest level of details. Tile width is a multiple of
the patch finest width to avoid to split a patch into separate files.

6.4.3 Adaptive seamless rendering

Figure 6.5: Seamless point dequantization. Vertices on the boundary of the two adjacent patches,
like the red one, share the same dequantization values derived by the linear interpolation of the
same two corners C0, C3. Inner vertices quantization min, max are derived from the bi-linear
interpolation of the 4 corners min,max values. White circles show corners interpolations on the
patch. Vertical arrows shows the corner min,max ranges, used for dequantization.

We adaptively stream and render variable resolution shape representations
using a GPU-accelerated adaptive tessellation algorithm with negligible CPU

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 75

Figure 6.6: LOD seamless tessellation. Seamless tessellation among patches at di�erent LODs:
vertices are snapped on the edges at the edge LOD, which depends from the projected edge
length on the screen.

overhead. Seamless rendering is substantially performed by the GPU through
a vertex/fragment shader pair, leaving to the CPU only the tasks of selecting
the proper level of details for each patch, and of querying missing data from
a server. Adaptive tessellation of a coarse mesh could be done exploiting the
geometry shader, but this GPU stage cannot output more than a certain number of
primitives, (1024 in the original specification) thus limiting the subdivision levels.
We preferred to use the instancing approach, creating during the initialization
a small number of subdivision regular grids, containing the (u, v) parametric
coordinates of the vertices and an index telling where the vertex resides (inside
or on the boundary) relatively to the patch. We use K = log2(w) � 1 vertex
bu�er objects, (being w the linear size of a patch at maximum resolution) to
tessellate the patches from a size of 4 linear samples to the maximum size w, with
resolutions doubled for each level. Let’s say that root is at level 0, first patch at
level 1, and finest patch at level K. The renderer pre-allocates for each pyramid
three texture mipmaps (geometry, color and normals) initialized only with the
root data and which will contain the patches at various resolutions, once they
will be available. At each frame the renderer selects the proper level of detail for
each patch, if it is not available chooses the finest available level for it and posts
a request for the tile containing the desired data (see Sec. 6.4.4). To produce a

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 76

continuous representation patches must match perfectly along the edges, so they
must have the same level of resolution for each edge. The patch LOD evaluation
first computes the desired LOD for each edge of the quad by projecting it to the
screen and comparing it with the desired screen tolerance. Edge LOD cannot
be higher than the minimum of the two finest level of available data of the two
adjacent patches along this edge. The quad patch LOD is set to the maximum
(finest) of the 4 edge LODs. A texture is filled at each frame with the 4 edge LODs
for each quad.

In the draw procedure for each patch the tessellation corresponding to the
selected quad LOD is drawn with a proper vertex/fragment shader pair. The
tessellation vertices are triple with (u, v, e) where e represent the edge to which
belongs that vertex (0, 1, 2, 3) or 4 for inner vertices. The vertex shader convert
the (u, v) and quad patch id to the corresponding coordinates in the texture
mipmap, where it can fetch the geometry displacement. When a vertex belongs
to the inner part is simply a matter of scaling and translating (u, v) to fetch proper
data. Instead when detecting edge vertices we need to handle them properly
before fetching data, to be able to stitch together adjacent patches. Edge LOD is
always coarser or equal than patch LOD. To get a seamless representation we
snap boundary patch vertex parametric coordinates (u, v) at the edge resolution,
which is the same for adjacent patches also if their quad LOD is di�erent. The
snap procedure identifies the edge id from the third component of the vertex and
read the corresponding LOD value from the edge LOD texture at (quad, edge id)
texture coordinates. Then snaps the vertex (u, v) parametric coordinates from
current quad LOD to the edge LOD using following equations:

edgesize = 2

edgelevel+1 � 1

uv =

round(uv · edgesize)
edgesize

Once modified (u, v), and set LOD as the current edge LOD, the sampling proce-
dure is the same as for inner vertices. The dequantization is performed with a
scale factor that depends from (u, v) as highlighted in 6.4.2: we need to get the 4

quad corners quantization min and max values, and bi-linearly interpolate them.
The resulting min,max pair is used to dequantize the vertex displacement. The
quantization factors obtained in such a way permits to have the same values all
over the edge between two adjacent patches, because they derives only from the
interpolation of the two corners defining that edge. Corners min,max quantiza-
tion factors are four pairs of 16 bit values stored for each quad of each levels into
a static texture which is loaded at initialization and reused at each frame. The
base quad position is given by the bi-linear interpolation of the 4 quad corners

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 77

at the possibly modified (u, v) coordinates. Then, if vertex is not one of the four
corners, its value is o�set by the vector found in the geometry texture mipmap at
remapped uv coords, considering the quad o�set and the quad size (see Fig. 6.5).
The resulting rendering is seamless (see Fig. 6.6).

Color and normal (u, v) coordinates are found in a similar way, except for
the snap step, which revealed to be not necessary for these attributes. Then
these coordinates are passed to the fragment shader which takes care of properly
sampling color and normal mipmaps to perform per pixel texturing and shading.

6.4.4 Adaptive streaming

Our compressed representation forms the basis of a scalable streaming system
able to adapt to client characteristics and to exploit available network bandwidth.

The server component provides access to tile repositories, without di�erentiate
among position, normal, or color components. From the server’s point of view,
a repository is just a database with a unique key for indexing a block of bytes
containing an encoded bit-stream representing a compressed wavelet coe�cient
matrix. In order to increase server-side scalability, no processing is done in
the server, whose only behavior is to return a block of bytes if present. This
approach makes it possible to leverage existing database components instead
of being forced to implement a specific storage manager. In this work, storage
management is done through Berkeley DB, and data serving is done through an
Apache2 server extended with an appropriate module.

The client implements streaming using asynchronous data fetching during
rendering. During rendering, requests for missing patches are remapped to
unique identifiers built from pyramid ids and tile ids and stored in a request
queue. The priority is the di�erence between the desired patch LOD and the
currently available one. At the end of the frame, only as many new requests as
those allowed by the estimated network bandwidth are issued and managed by
a separate network access thread, and the remaining ones are ignored.

A separate thread takes care of getting data from the server and possibly
decompresses them as in the case of PNG tiles. When data becomes available it
is inserted into the proper pyramid texture mipmap.

6.5 Implementation and Results

An experimental software library and viewer applications supporting the AQP
technique have been implemented both using the OpenGL and WebGL environ-
ments. The OpenGL version, implemented in C++, works both on Linux and

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 78

Figure 6.7: Models rendered with the adaptive quad patches method. Top row shows the
rendered models at pixel tolerance one. Bottom row shows the patch structure. Complexity
ranges from 6.4 to 62.5Msamples.

Windows platforms, and can be also used as a Web browser plugin using QT
4.8. The WebGL version is written in JavaScript on top of the publicly available
SpiderGL library [Di B 10].

We have extensively tested our system with a number of data-sets. In this
paper, we discuss the results obtained with the models in Fig. 6.7, all coming
from laser scanning acquisitions. The complexity of the input data-sets ranges
from 8Mtriangles to 90Mtriangles (left to right). Our tests are focused on the
WebGL version of our code, in order to evaluate the feasibility of the method for
coping with scripted environment limitations.

6.5.1 Pre-processing and compression rates

Table 6.1 shows the processing results of the various data-sets, using the WebGL
version of our code, which uses only PNG compression applied to delta encoded
samples. It is clear that compression rates can be heavily improved by using
DXT1 and DXT5 to compress attributes, but these compressed encodings are not
widely supported in WebGL implementations. For this reason, the benchmarks
presented in this paper use plain textures and PNG encoding for transport. Even
with such a simple approach, the method is able to encode a sampled geometry
in about 15bps for models with positions and normals, and about 24bps for

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 79

colored models. It should be noted that our objective is not to achieve state-of-
the-art compression rates, but, rather, to propose a method supporting adaptive
streaming, and variable resolution rendering with an easy implementation in a
WebGL context.

Dataset Input Out Patch Output Geom. Color Normal
Tri level Count Samples bps bps bps

Dwarf 8.4M 7 300 6.4M 6.3 9.54 8.53
Shepherd 8.4M 7 300 6.4M 6.3 0 8.71

Horse 8.4M 7 300 6.4M 6.3 9.21 8.42
Head 94.4M 9 180 62.5M 6.3 0 8.40

Table 6.1: Adaptive Quad Patches processing results. Adaptive quad patches representations
of the test models.

Figure 6.8: WebGL implementation running in Chrome. 3D content can be delivered in a
HTML5 canvas. Models are incrementally loaded during rendering.

6.5.2 Adaptive rendering

The method has been implemented for both mobile clients using native code and
web-based environments, using JavaScript and OpenGL. In order to guarantee
full compatibility among platforms and minimum decoding overhead, we have

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 80

used plain PNG encoding for storage and transport of quad patches, achieving a
compression rate of about 24bps for colored models. Rendering performance has
been evaluated both for in-browser rendering (desktop machine) using WebGL
and mobile rendering using the native implementation. Using a Chromium
browser, on a 1.6 GHz laptop equipped with an NVidia Geforce GTX 260M with
1 GB video memory, we achieve a throughput of of 34.2MTri/s, for an average
frame-rate of 37fps for a 750x350 in-browser window and a tolerance of 1 pixel.
Coming to mobile platforms, on a Acer Iconia Tab W501, with a AMD Radeon
HD 6290 graphics adapter with 384MB DDR3, we achieve a peak throughput of
27.5MTri/s using the native C++/OpenGL implementation, which is perfectly
adequate to guarantee real-time performance. The combination of incremental
multiresolution refinement with compression also reduces network bandwidth,
which was measured to range from 312Kbps for exploration of areas not previ-
ously seen, and peaks of 2.8Mbps at viewpoint discontinuities. Interactive mobile
applications are thus possible both for wireless connections to typical ADSL lines,
and for current mobile broadband network such as UMTS/HSPA. More detailed
results, with a focus on the WebGL implementation, are available in the original
paper [Gobb 12].

6.5.3 Network streaming

Extensive network tests have been performed on all test models, on an ADSL
8Mbit/s connection, on a mobile broadband connection, as well as on an intranet.
Tests have been made for the viewer application under interactive control.

In an interactive setting, since rendering is progressive and, on average, view-
point motion is smooth, only few new patches per frame need to be refined, and
only data for patches not already cached are requested to the server. We have
measured the bandwidth required by a client to provide a “no delay” experience
in typical inspection sequences. We measured an average bit rate of 312Kbps

for exploration of areas not previously seen, and peaks of 2.8Mbps at viewpoint
discontinuities, i.e., when the application has to refine the model all the way to
the new viewpoint and the refinement algorithm has to always push new patches
to refine in the request queue because of non incremental update.

By introducing client-side or server-side bandwidth limitations, it is possible
to reduce burden on network and server, making the system more scalable while
maintaining a good interactive quality. Due to the reasonable compression rate
and refinement e�ciency, we have found that using the system on a 8 Mbps
ADSL line produces nice interactive results. In that case, delays in case of rapid
motion become visible, but with little detriment to interaction (e.g., only 2s are

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 81

needed to produce a fully refined model visualization from scratch). This also
allows a single low-end server to manage a large number of clients.

6.5.4 Device compatibility considerations

There are a variety of GPU chipsets from di�erent vendors present in current
mobile devices. From those, the most extended ones include the PowerVR
SGX 5xx GPUs present in Apple devices and many Android phones, and the
Qualcomm Adreno family integrated in Android HTC devices and many of
the latest high-end Android devices. The hardware present in those two GPU
families fully support OpenGL ES 2.0 and, in their latest versions, OpenGL ES
3.0. Unfortunately, while on Android devices the drivers typically expose VTF
capabilities,the drivers from iOS 4.x and on does not. Rendering this feature
unavailable in iPhone/iPad/iPod devices. The latest T6xx version of the ARM
Mali GPU, integrated in the Nexus 10, also includes support for VTF. A number
of tablet devices, in addition, use chipsets with discrete or integrated GPUs
originally designed for netbooks, which fully support VTFs. An example are
chips from the AMD Radeon HD series used in a number of Windows-based
tablets.

6.6 Discussion

We have introduced a remote rendering approach, which builds a compact
image-based multiresolution representation suitable for e�cient distribution
and rendering of highly detailed 3D models on low-powered platforms and, in
particular, scripted environments such as Web browsers.

In the future, we want to study the impact of more aggressive lossy compression
on the error introduced in geometry reconstruction.

Advantages. The pipeline is fully automatic and targets densely tessellated mod-
els, such as those created by 3D scanning or modeling systems such as ZBrush.
Our approach bridges the gap that currently exists from general-purpose meshes
to rendering oriented structures based on real-time tessellation with normal/bump
maps, which are typical of modern gaming platform but currently require con-
siderable human e�ort to create. The simplicity of a regularly re-meshed repre-
sentation has many benefits. In particular it reduces random memory accesses
and eliminates the indirection and storage of per triangle vertex indices and per
vertex texture coordinates. The resulting representation is compact, can be built
on top of existing image representations, and is very well suited to streaming.

Chapter 6. Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and
Adaptive Rendering of 3D Models 82

Due to the negligible run-time CPU overhead, real-time performance is achieved
both on conventional GPU platforms using OpenGL, and on the emerging web-
based environments based on WebGL. Promising applications of the technology
range, thus, from the automatic creation of rapidly renderable objects for local
and online games to the set-up of browsable 3D models repositories in the web.

Limitations. The proposed method is not general purpose, but targets meshes
defining closed objects with large components (i.e., typical solid objects without
fine topological details). As for other compressed streamable formats, we do not
strive to exactly replicate the original geometry and color, but only to visually
approximate them in a faithful way. As a result, and similarly to compressed
video/image formats, our representation is lossy, and thus not applicable in
situations where precise measures of the original geometry are required (e.g.,
CAD systems).

Scalability. This technique performs vertex displacement of a base surface using
the information contained in the image-encoded representation, thus Vertex-
Texture-Fetch is a required feature. Although nowadays most desktop and mobile
GPUs already support texture access in the Vertex Shader (thanks to unified
shader architectures), there are still some cases where it is not supported (i.e.,
old NVIDIA Tegra GPUs).

6.7 Bibliographical Notes

The major part of the content of this chapter was based on paper [Gobb 12], where
we presented the Adaptive Quad Patches approach. Introduction and discussion
are based on paper [Bals 13b], where we discussed both the approach presented
in this chapter and the Compact Adaptive TetraPuzzles which is presented in
Chapter 5.

C������

7 .

ExploreMaps: Effi-
cient Construction of
Panoramic View Graphs
of Complex 3D Environ-
ments

In previous chapters, we have presented some approaches for
interactive exploration of highly detailed 3D models on common
3D platforms. When dealing with scenes with complex lighting,
on the other hand, real-time constraints impose hard limits on
the achievable quality. The approach presented in this chapter
addresses these limitations by introducing a simple graph repre-
sentation named ExploreMaps, where nodes are nicely placed
point of views, called probes, and arcs are smooth paths between
neighboring probes. The basic idea is to ensure visual quality
in all kinds of environments by presenting precomputed imagery
rather than real-time-renderings. This chapter focuses on the
problem of how to appropriately place these probes in arbitrary
3D environments and how to compute nice-looking path, while
Chapter 10 will focus on the navigation interface approach than
can be realized on top of the graph-based representation.

7.1 Introduction

R����� research e�orts have produced systems capable of rendering mod-
erately complex environments [Yoon 08]. Besides of that, real-time
constraints limit the quality that can be achieved to simple shading

and/or baked illumination, specially on low performance platforms such as
mobile and web environments.

In current 3D repositories, such as Blend Swap, 3D Café or Archive3D, 3D
models available for download are mostly presented through a few user-selected
static images, or simple orbiting of simplified versions of the original 3D models.

83

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 84

for interactive applications, exploration is typically limited to simplified models.
This is particularly true on low-powered mobile devices or script-based Internet
browsers.

In this work, we introduce an approach aimed at automatically providing a
richer experience in presenting 3D models on low-powered platforms and web
environments. The method builds on a novel e�cient technique for transform-
ing a generic renderable 3D scene into a simple graph representation, dubbed
ExploreMaps, where nodes are nicely placed panoramic views, called probes,
and arcs are smooth panoramic video paths connecting neighboring probes.
Our GPU-accelerated unattended construction pipeline distributes probes so
as to guarantee complete coverage of a generic scene, before clustering them
using perceptual criteria, determining preferential viewing orientations, finding
smooth good looking connection paths. Probe images and path videos are then
computed with o�-line photo-realistic renderers, overcoming real-time rendering
limitations. At run-time, the graph is exploited both for generating visual scene
indexes and movie previews, and for supporting interactive exploration through
a low-DOF assisted navigation interface (see Chapter 10 for details). Due to
negligible CPU/GPU usage, real-time performance is achieved on emerging
WebGL environments even on low-powered mobile devices (see Fig. 7.1).

Figure 7.1: ExploreMaps pipeline. We automatically transform a generic renderable model (left)
into a simple graph representation named ExploreMaps (center), where nodes are nicely placed
point of views that cover the visible model surface and arcs are smooth paths between neighboring
probes. The representation is exploited for providing visual indexes for the 3D scene and for
supporting, even on low-powered mobile devices, interactive photo-realistic exploration based
on precomputed imagery (right).

7.2 Creating the ExploreMaps graph

The input scene is assumed to have a geometry, used for view discovery, as well as
a shaded representation, used for high quality rendering. The only assumptions
made on the geometric representation is that its bounding box is known, that it
can be rasterized producing depth and normal bu�ers, and (optionally) has a
preferential up vector (+Y by default). The explicit definition of the up direction
can be removed by employing an unsupervised upright direction solver for
man-made objects [Fu 08, Jin 12]. The shaded representation, instead, is any

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 85

description of the same scene that can be given as input to an external high-
quality renderer. In the simplest form, it consists of the geometric representation
enriched with lights and material properties.

VirtualExploration () {
v = PlaceFirstProbe ();
V += MaximizeSeenSurface(v);
while (not IsComplete(V)) {

v = PlaceNewProbe ();
V += MaximizeSeenSurface(v);

}
}

Listing 7.1: Placing a set of probes to cover
all visible surfaces

MaximizeSeenSurface(v){
do{

Snew = NewSurface(v);
b = Barycenter(Snew);
v = MoveTo(b);

} while (not Converged ());
return v;

}

Listing 7.2: Moving a probe to maxi-
mize the new surface seen

7.2.1 Discovering the scene

We start by formally defining the problem of exploring a scene given only its
bounding box and an abstract method for rasterizing the geometry. Let v =

{v0, . . . , vn�1} be a set of n probes, S the entire input surface to be discovered,
S(v

i

) ✓ S the portion of surface seen by probe v
i

, and S(v) =
S

8v
i

2v S(vi). With
this notation, the exploration problem is posed as the problem of finding a set of
probes v such that S ✓ S(v). We say that a set of probes satisfying this condition
is complete, which means it sees the whole input surface. Note that we do not
have prior knowledge of S, which must be discovered by the algorithm.

Figure 7.2: Finding probe positions. Occlusion surfaces and occlusion volumes.

7.2.1.1 Incremental algorithm

Our incremental algorithm, see Listing 7.1, starts with an empty set of probes
and, at each iteration, adds a new probe and optimizes its position so that it
sees a portion of the surface not visible from previous probes, until the coverage
is complete1. Fig. 7.2 illustrates a 2D example of an object, with two probes,
the portion of surface seen, and the occluded surfaces Os(v

i

), i.e., the surfaces
1Note that, while in this paper we focus on complete automation, the method could also start with user-defined set of

probes, e.g., to force inclusion of semantically relevant/nice shots in the graph

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 86

joining the discontinuities of S(v
i

). The occluded volume for a probe, Ov(v
i

) is
the (infinite) region of 3D space non visible from v

i

and the occluded volume
from a set of probes is the intersection of the single viewing volumes Ov(v) =
T

v

i

2v Ov(v
i

). Finally the occluded surfaces of a set of probes, Os(v) is the union
of the single occluded surfaces intersected with the occluded volume: Os(v) =
S

v

i

2v Os(v
i

) \ Ov(v). The occluded surfaces are typically used as candidate
locations to place the next probe [Wils 03] as a way to look “behind the corner".
It is easy to prove that if we found a set of probes v such that the occluded surface
is empty, it means that all the reachable surface is seen by some probe, that is: if
Os(v) = ; then S(v) = S. Since we are interested only on the surface reachable
from the outside, placing the first probe outside the scene bounding box is a
su�cient initialization (PlaceFirstProbe()).

Figure 7.3: Optimizing probe positions. Illustration of the view optimization algorithm. (a)
Probe v1 is added on the occluded surface Os(v0); (b) the new surface portion seen by v1 and
its barycenter b are shown; (c) the probe is moved to b, and visible surface and barycenter are
recomputed; (d) the probe ends up on the barycenter of the surface seen.

7.2.1.2 Finding a new probe position

The position for placing a new probe (PlaceNewProbe()) is chosen at random in
the current occluded surface. This is a common choice for many view planning
strategies, as it guarantees that some new portion of the surface that will be seen.
We then start an iterative optimization algorithm, described in Listing 7.2. At
each step, the algorithm tries to maximize the area of the surface seen by the
new probe and unseen by previous ones. This is done by iteratively moving
the probe position towards the barycenter of the surface visible from its current
position (MoveTo(b)). If this is not possible because the segment connecting the
current position and b intersects the surface, the probe is put halfway between
the current position and the intersection point. This strategy, reminiscent of
Lloyd relaxation [Lloy 82], ends when an equilibrium position is reached, i.e.,
when the barycenter of the surface seen is the same as current position itself (up
to a small threshold). The approach implicitly assumes that the probe is at the
interior of a closed surface, e.g., inside a building, since, otherwise, the location
of the barycenter of the unseen surface would tend to be too close to the surface

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 87

itself, or even collapse onto it. We therefore artificially bound the scene with a
spherical background object, used by the discovery algorithm, but ignored in
the final panoramas. Figure 7.3 illustrates the positioning of a probe, from its
placement on the occluded surface to the convergence of the algorithm. The
situation depicted in the example is fairly common. We can see that a probe
“entering” in a room tends to position itself at the room’s center. Note that not all
the surface seen by the new probe during the first steps of the optimization will
be visible also from the final position (see the portion indicated by a red arrow
in Fig. 7.3.(d)).

7.2.2 Optimizing the set of probes

Our exploration algorithm finds a set of probes that globally guarantee the full
coverage of the reachable surface (see Figure 7.4, left). While in principle we
could build a graph over this set, we infer a new graph that also takes into account
perceptual criteria, in order to enhance user experience. This is done by clustering
the set of probes obtained by the exploration phase and replacing each cluster
with a representative probe so that the resulting graph is almost equivalent in
terms of coverage but better in terms of browsing.

Figure 7.4: Resulting probes. Left: result of Virtual Exploration; middle: two clusters highlighted;
right: synthesis of the clusters.

7.2.2.1 Probe Clustering

The clustering is performed by applying the Markov Cluster Algorithm (a.k.a.
MCL [Van 08]), with default power and inflation parameters (e = 2, r = 2) to
the coverage graph. MCL is a well known randomized algorithm that finds out
natural clusters of nodes in a graph. The key idea is that when you take random
walks starting from a node, it is more likely that you stay in the same cluster of
the starting node than you jump to another cluster. MCL can use weights on
the arcs (i.e., the weight determines how likely the arc is crossed in the random
walk), and we assign the weights as the amount of overlap in visible surface
between the two probes connected by the arc. This will tend to cluster together

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 88

probes that see the same area. The algorithm terminates when it reaches a steady
state, obtaining a number of clusters c0 . . . cm. Two examples of these clusters
are shown on Figure 7.4 (middle). In a second phase, we find the synthesis of
each cluster c

i

, i.e., a single new probe that sees most of the surface seen by all
the probes in the cluster, while providing a significant panorama in terms of
perceptual criteria.

7.2.2.2 Stability Criterion

Secord et al. [Seco 11] introduce criteria for assessing the quality of a view with
the purpose of automatically defining the best point of view in a perceptual
sense. However, there are important di�erences with our case, because we must
support general object viewing, including exploration of indoor scenes, while the
metric proposed in [Seco 11] is only concerned with the object-in-hand paradigm,
assuming that the object silhouette is entirely visible. This means that attributes
concerning the projected surface area, silhouette and semantic (see [Seco 11])
are hardly applicable in our case, and the linear goodness function they propose
would reduce to:

G(v) = ↵ MaxDepth(v) + �

✓
1�

Z
H(z)2dz

◆

where Maxdepth is the maximum depth value, H is the normalized histogram
of the depth values and ↵ and � are [0, 1] weights to combine the two metrics.
However, it is easy to verify that these criteria alone could lead to unnatural
positions. A clear example is a point of view “behind” a column, from where
there may be large maximal depth and uniform depth distribution, but where
the feeling is to hide behind a column and not exploring the scene. Therefore, we
weight G(v) with the stability St(v) of the point of view v, leading to a goodness
function

G
s

(v) = G(v) · St(v)

We say that a point of view is stable if the view does not change much with
respect to the neighborhood. In the previous example, it is clear that a position
behind a column (that is, near to an occluder) is not stable because a small
displacement would unveil a large part of the scene. In order to formalize this
idea, we define a distance function between two points of view v and w as
�(v, w) = max{�(v, w),�(w, v)}, where �(v, w) = Diff(P

w

(S(v)), D(w))), S(v)
is the 3D surface seen from v, P

w

(.) is the projection of a 3D surface on w, D(.)

is the depth map from a point of view and Diff(., .) is the number of di�erent
depth values in the comparison between two depth maps. We thus define the
stability of a point as St(v) = max

w2N(v){�(v, w)}, where N(v) is a set of point

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 89

near v. In our system we used the points distributed on the sphere centered at v
with radius equal to the distance of the near plane used to produce the panoramas.

7.2.2.3 Probe synthesis

The synthesis step starts from the position of the probe within the cluster that
has the largest coverage of the surface seen by all probes in the cluster. We
then perform a local randomized search using a simulated annealing approach,
which applies small random perturbations of a probe’s position, with an objective
function that combines the coverage and the perceptual metric using a weighted
average. Upon convergence, using the same perceptual metric, we determine a
small set of orientations for each probe that will serve both as preferred arrival
orientations when the user move to the probe, and as the look-at orientation used
when generating thumbnails to represent the probes in a navigation application.
Best orientations for each view are selected by finding the dominant peaks in the
goodness function with mean-shift clustering [Coma 02]. The up vector for the
data-set, if present, is used to avoid upside-down views.

7.2.3 Connecting probes

Once we have the new set of probes, we have to define which probes must be
connected with an arc and the geometric path that connects them. One simplistic
choice would be to connect two probes if they are mutually visible from each
other. This solution is definitely not acceptable, since it would drastically reduce
navigation possibilities. For instance, see Fig. 7.5, a probe in a room may not
necessarily directly see a probe out of the window, nonetheless the transition
from the first to the second makes perfect sense. More generally, view planning
does not even guarantee that nearby probes are in general mutually visible. A
smarter choice would be connect probes that see a common point in the surface.
Even though this strategy would perform much better, it is easy to see that a
number of common cases break the same rule (see, e.g., the same example in
Fig. 7.5). We have thus decided to connect two probes if there exists a point in space
that is visible from both of them. which generally leads to a meaningful set of arcs
(see Figure 7.5 right and accompanying video). The technique for finding smooth
feasible paths is explained in Sec. 7.3.2.

7.3 Efficient GPU Implementation

The di�erent phases of ExploreMap construction have been mapped to an e�cient
and robust GPU implementation, whose major components are probe placement

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 90

Figure 7.5: Connecting probes. Left: Two probes are connected if there exists a point in space
that is visible from both of them. Right: the path graph found for the German house example.

(Sec. 7.3.1) and path generation (Sec. 7.3.2).

7.3.1 Probe placement

The structure of the GPU implementation of our exploration algorithm is il-
lustrated Fig. 7.6. Although the GPU algorithm follows the scheme presented
in Listing 7.1 and Listing 7.2, there are several technicalities that need to be
addressed.

Figure 7.6: GPU algorithm. Flowchart of the GPU implementation of our Virtual Exploration
algorithm.

A panoramic view is composed of 6 renderings from the probe position so
as to create an environment cube map, and the surface S(v) is the set of 3D
points obtained by unprojecting all the fragments belonging to the renderings in

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 91

v. In the following, when we refer to operations on the (panoramic) views, the
intended meaning is to all their 6 sub-views.

7.3.1.1 Render

The function Render(v) performs the rendering of the scene for each view with
a render-to-texture (RTT) approach, producing a depth map D(v) and a normal
map N(v) of the acquired surface. These two maps are then analyzed with a
full-screen quad pass to generate a discontinuity (or jump) map J(v), a map of
boolean values where true indicates the border of the occluded surface Os(v). We
perform a full-screen pass to find out in parallel, for each acquired pixel, if it is
on a discontinuity by testing if its projection in world space is more distant than
a threshold ⌧

pln

from the plane defined by its neighbor pixels and their respective
normals. This is slightly more sophisticated than just testing the di�erence in
the depth map or the distance in world space, for it takes into account the local
orientation of the surface with respect to the view direction, as shown in Fig. 7.7.

Figure 7.7: Discontinuity detection. The sample p is considered on a discontinuity if it is farther
than ⌧

pln

from any of the planes built with its adjacent samples positions and normals.

7.3.1.2 MaskOut

Once D(v), N(v) and J(v) have been produced, we need to find out how much
of the acquired scene surface is seen only by the new probe. This is done by
using a shadow map-like approach, treating the surface acquired by all previous
probes as a shadow caster on the new, shadow receiving probe. The test, referred
to as MaskOut(v, v

j

), is asymmetric, meaning that it only determines which
fragments of S(v) will be lost in the comparison against v

j

. This phase starts by

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 92

generating a mask map M(v) where all pixels are set as valid, e.g., not masked.
Then, with a series of full-screen passes, we try to invalidate the pixels belonging
to already acquired surfaces. For this purpose, we use the depth map D(v

j

)

of previous probes as a shadow bu�er and perform the visibility test with the
corresponding pixel of the current probe in D(v). Note that since each view
consists of 6 rendering, MaskOut(v,v

j

)would require, in a trivial implementation,
36 renderings to be completed. We optimize the operation by skipping non-
intersecting frustum pairs.

7.3.1.3 Barycenter

To compute the barycenter of non-masked parts of the scene seen by the probe
(Barycenter(S(v))), we consider D(v) as a range map whose regular tessellation
form the acquired scene surface. A full-scene pass is used to generate a barycenter
map B(v) that will contain, at each pixel (x, y), the barycenter of a surface quad
obtained tessellating the samples (x+ �

x

, y + �
y

) �
x

, �
y

= 0, 1 of D(v). Note that
only the newly seen surface must contribute to the barycenter computation, and
quads over discontinuities must not be taken into account (they are no other than
the occlusion surface of the view). To this purpose, we access the discontinuity
map J(v) and the mask mapM(v) to ignore the contribution of quads that contain
at least one vertex classified as a discontinuity or masked out. At the end of this
process, every pixel in B(v) will contain its associated, area-weighted barycenter
b
q

, or zero if it has been rejected due to discontinuities or masking. Calculating
the barycenter of the acquired surface then consists of summing all values in
B(v): this is accomplished by applying a parallel reduction on B(v) with the sum
operator, easily done by generating mipmap pyramids. The barycenters of the
six views, thus contained in the top-level 1⇥ 1 pixel maps, are then read back on
the CPU and summed to produce the final probe barycenter.

7.3.1.4 Converged

Convergence is tested using the relative length of the movement from the current
probe position to its barycenter and variation of acquired area. When one of
these quantities is below a given threshold (or a max number of iterations has
been reached), the probe terminates its exploration.

7.3.1.5 MoveTo

As explained, moving the position p of the probe towards the barycenter b

(MoveTo(b)) requires to test that the segment connecting p and b does not in-
tersect the surface, i.e., they are in line of sight from each other. Luckily, this test

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 93

is trivial and only consists of projecting b on the depth map D(v) and check if it
is visible or in shadow.

7.3.1.6 Placing a new probe

The first step (GenerateOs(v)) consists of generating a sampling of the occluded
surface Os(v). This is done by explicitly generating a tessellation of the occluded
surface by means of a geometry shader. We issue the rendering of a regularly
tessellated grid with vertices associated to samples in the map of discontinuities
J(v). If at least one of the is a jump, the geometry shader outputs all 3 vertices
by reading the depth values from D(v) and unprojecting them in world space,
otherwise the input triangle is discarded. These surviving triangles are are no
other than a tessellation of the occluded surface Os(v). The output vertex stream
is recorded by the transform feedback into a bu�er that is then read back in
CPU memory, where triangles are densely sampled into a texture T (v). With
the hardware used in our tests, this proved to be faster than using tessellation
and geometry shaders to generate samples directly on the GPU. The second
step, (Subtract(Os(v), Ov(v

j

))), consists of erasing all the samples outside the
occluded volume, i.e., that are visible by at least one of the previous probes.
Again, this is accomplished with a shadow map-like approach: we first test
samples visibility using the depth map of previous probes, then use a geometry
shader and the transform feedback to compact the samples list by eliminating
visible ones. After reading back the samples contained in the transform feedback
bu�er, they are added to the occluded surface samples listL. The starting position
of a new probe is then selected by randomly picking a sample from L. If L is
empty, then the whole occlusion volume has been carved and the set of probes
generated so far is complete.

Figure 7.8: Exploring the geometry. Sampling of the occluded surface after the first probe is
positioned (left, shown as a red sphere), and after 7 probes (right).

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 94

Figure 7.8 shows probe positions (red spheres), surface seen (dark green), and
sampling of the occluded surface (magenta) at two steps of our virtual exploration
algorithm.

bool FindPath(v,u){
v_curr = v;
do{

SetCamerasFrom(v_curr);
RenderSceneOffset ();
EnableOcclusionQuery ();
RenderOffset(DM(u));
nfrag = FinishOcclusionQuery ();
if (nfrag > 0) {

p = ClosestTo_u ();
if (p == u) v_curr = u;
else v_curr += delta * Normalize(p-v_curr);

}
} while((v_curr != v) && (v_curr != u));
return (v_curr == u);

}

Listing 7.3: Finding a path between two probes.

7.3.2 Path generation

In order to check if there is a point that sees two probes v and u, and to define
a path connecting them, we adopt the following GPU accelerated strategy (see
Listing 7.3). From the probe v, we render the scene, then enable hardware occlu-
sion queries and render a tessellation of the depth map of u (DM(u)), assigning
to each vertex of the tessellation its distance from u. If at least a fragment of
the tessellation is written in the bu�er, the corresponding 3D point can be seen
both from u (because part of the depth map tessellation) and from v (because the
tessellation is rendered from v). We thus know that the two must be connected.
In order to find a path, we can then move v by a fixed step towards the common
point closest to u and iterate the algorithm, as shown in Fig. 7.9.

A very important detail is that each rendering of the scene must be done with
an o�set, in order to prevent the path being closer to the surface than the value
of the near plane used when building panoramic views. We do this by using
screen space impostors. Let r be value for the near plane. We first render the
scene, then for each fragment we issue a quad with side r in world space, which
will be used to ray-cast a sphere of the same radius in the fragment shader.

The path found with this algorithm could be already used for computing the
transition videos. In order to make it smoother while preventing interpenetration
with the scene without drastically changing the path, we finally optimize the

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 95

Figure 7.9: Path optimization. The path is smoothed by minimizing a set of energies:
E

rest

, E
length

and E
bend

are strings connecting path nodes and E
off

is a repulsion force aiming
to avoid interpenetration with the scene.

path by solving a energy minimization problem:

min E
rest

+ E
length

+ E
bend

+ E
off

implemented with a mass-spring system. While the first three energy terms are
simple springs connecting the path’s nodes as shown in Fig. 7.9, the component
E

off

is introduced to prevent the optimized path to get too close to the surface,
and it is calculated by rendering the scene from the node position, computing a
repulsion force for each fragment (proportional to the inverse of square distance)
and summing up to obtain a global vector force. It should be noted that we could
further include a more sophisticated perceptual metric here, in order to optimize
the panoramic images seen during the path. This is not currently included in our
system, since we are focusing on short paths connecting probes that already meet
quality constraints. Fig. 7.5 right shows the path graph found for the German
house example.

7.3.3 Creating a data-set

Once we have probes and paths, we can assemble the final data-set, which
consists of one panoramic image and one thumbnail image for each probe and
one panoramic video for each path. These are created on a render farm using the
shaded model and an external photo-realistic renderer, which renders all probes
and video frames as cube maps, and all thumbnails as perspective images. Path
timings are computed using a slow-in/slow-out travel strategy (in this paper, 4s
for traversing the model in all presented results). Finally, an index file describing
the graph structure is generated.

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 96

Figure 7.10: Connecting probes. (Left) Choosing the probes to connect with an arc. p is the
closest point to u that is also visible from v, therefore the algorithm moves v towards p. The
squares around v

i

and u represent the near planes. (Right) A real case: on the left the tessellated
depth map, on the right the path (green), and the smoothed path (blue).

7.3.4 Pre-fetching behavior

While the user is looking around and zooming, we pre-fetch transition videos
of all paths leaving the probe. The current version loads all videos in parallel.
Given the client-server implementation, it would also be possible to assign to
each path leaving a probe a pre-fetching priority, based on prior choices of people
having visited the data-set.

7.4 Implementation and Results

We have implemented a prototype system based on the design previously dis-
cussed in this chapter.

The proposed method has been used to develop a complete prototype system,
using C++/OpenGL for pre-processing, Blender 2.68a as external rendering
engine, and Apache2 for web serving. The client application, which is described
together with our graph-based navigation approach in Chapter 10, has been
written in JavaScript using WebGL and HTML5. It is able to deliver results in a
HTML5 canvas running in WebGL-enabled browsers (Chrome 30 in this paper).

7.4.1 Test models

In order to evaluate our pipeline, we downloaded several models from public
repositories (Trimble 3D Warehouse, Archive3D). These websites show a few

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 97

views of each model so that users can judge if they are interested in downloading
it. Therefore, these sites are a perfect example of how the ExploreMaps could
be used for a higher quality browsing of 3D models. Results discussed in this
paper are for the models presented in Table 7.1, which have been selected to be
representative of various model kinds, featuring complex illumination and/or
geometry. In particular, Museum, Sponza, and Sibenik contain complex material
and lighting descriptions, including global illumination and participating media,
Neptune is a typical 3D scanning result, while the others feature di�cult case for
general planning methods (e.g., underground tunnels and complex multi-room
environments).

Museum Sponza Sibenik Lighthouse Lost Empire Medieval Town German Cottage Neptune

Input
#tri 1,468,140 262,267 69,853 48,940 157,136 14,865 79,400 2,227,359
Output
#probes 70 36 92 57 74 78 140 79
#clusters 17 10 21 17 25 30 23 19
#paths 127 29 58 81 206 222 102 93
Time (s)
Exploration 154 23 63 15 41 34 163 38
Clustering 17 3 27 8 13 14 118 14
Synthesis 144 35 449 453 284 395 427 279
Path 7 1 31 12 22 80 23 13
Path smoothing 3,012 122 81 89 482 199 185 150
Thumbn. 11 3 7 5 8 10 7 6
Thumbn. pos 2 2 1 1 4 4 2 1
Total 3,347 189 659 583 854 736 925 501
Storage (MB)
Probes 59 28 72 59 86 103 79 43
Paths 248 146 113 159 371 376 390 120

Table 7.1: Explore Maps pre-processing results. Selected input data-sets and associated pro-
cessing statistics. Probes are stored as 6x1024x1024 JPEG images, while paths are stored as
6x256x256@25fps webm videos. The numbers are for the graph instance used for the accompany-
ing video. We verified that the number of probes, clusters, and transitions are only marginally
influenced by the randomized initialization by processing the same models 10 times with di�erent
initialization. The Hausdor� distance between the probes of all the pair of graphs is 0.9% of the
diagonal of the bounding box, the maximum distance is 10% and the number of probes varies in
an interval of 10% around the expected value.

7.4.2 Pre-processing

Table 7.1 shows the performance of the pre-processing phase for the test models
on a PC with Windows 7 64-bit OS, Intel i7 @3GHz CPU, 12GB RAM, equipped
with a NVIDIA GTX 670. First of all, we ran an experiment to prove that the
number of probes, clusters, and transitions highly depend on the shape of the
scene and are only marginally influenced by the randomized initialization. We
processed the same model 10 times and then computed the Hausdor� distance
between the probes of all the pair of graphs, obtaining that the average distance
between two graphs for the same model is 0.9% of the diagonal of the bounding

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 98

box, the maximum distance is 10% and the number of probes varies in an interval
of 10% around the expected value. As expected, for instance, a scene like Sponza
needs less probes than the Medieval Town, because there are less separated
spaces. The important thing, however, is that the processing time for each phase
is linear with respect to the size of the elements involved. Thus, the time for
Virtual Exploration is linear in the number of probes, the time for the synthesis
is linear in the number of clusters, and the times for path determination and
smoothing are linear in the number of paths. The number of paths is generally
much higher for urban models, because it is more likely that two probes are
visible from a common point, while it is smaller for closed environments like
the German house. The synthesis task requires the acquisition and evaluation of
nearby locations to estimate viewpoint stability, thus requiring more renderings.
Also, finding and smoothing the paths are time consuming tasks, especially
smoothing, which runs a local search optimization and requires 6 renderings
for each evaluation of the objective function. However, note that our pipeline
processed each of these models in times ranging from about 3 to a little less
than an hour. It is interesting to observe that the biggest model in terms of
polygon count was also one of the fastest to process. This happens because time
depends on how complex the scene is, i.e., how many probes and paths do we
need to see it all. Moreover, note that these phases may be easily distributed.
More specifically, the synthesis only concerns a single cluster and path related
operation involve pairs of probes. The dominant time of processing thus ends up
being the rendering of panoramas and panoramic videos, which, as for movies,
can be parallelized on a render cluster. In this paper, we used 32 8-core PCs, for
rendering times ranging from 40 minutes to 7 hours/model.

7.5 Discussion

Our main contribution is an automated GPU-accelerated technique for trans-
forming general renderable scenes into a panoramic view graph representation,
exploited for creating automatic scene indexes and movie previews of complex
scenes, as well as for supporting interactive exploration through a low-DOF
assisted navigation interface (see Chapter 10). Real-time performance is achieved
on WebGL-based environments even on low-powered mobile devices.

There are many potential applications for the ExploreMaps. In particular,
we aim to open the way to a richer experience in presenting 3D models on
dedicated web sites, no more limited to few still images or very constrained
orbiting interfaces. Furthermore we can turn construction CAD into navigable
previews for presentation to stakeholders/potential owners. Thanks to our

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 99

unattended processing pipeline, we envisage the implementation of a public
web service allowing users to upload 3D models and make them browsable in
WebGL-enabled browsers, making for 3D models what Flickr/YouTube made
for images and videos.

Advantages. The proposed technique provides an automated pipeline for cre-
ating 3D explorable representations of general renderable scenes supporting
complex lighting simulation. Limiting camera freedom allows overcoming real-
time constraints and exploiting state-of-the-art rendering systems to precompute
high quality renderings for interactive exploration. The scene can be interactively
explored using image-based techniques and constrained navigation to inspect
the static panoramic views and to navigate through connected points of view
through a low-DOF interface.

Limitations. Admittedly, there are still a few limitations that need to be addressed.
On the construction side, the sampling rate (that is, the viewport size of the cam-
eras during the exploration phase), is fixed and inferred from the scene bounding
box. For models where there are interesting details at very di�erent scales (teapot
in a stadium problem), the sampling rate should be made adaptive. Furthermore,
shading information is not taken into account in the placement of probes, while
it could be important for certain models, especially for the selection of best views.
Currently, the proposed system considers a binary visibility model: if a surface
exists, and is not fully transparent, it acts as a blocker. Semi-transparency han-
dling could be included by considering the degree of opacity of a path during the
path construction phase, penalizing paths that go through semitransparent sur-
faces with respect to paths going through free space. Domain-specific knowledge
could also be incorporated in the system, e.g., to achieve human-scale explo-
ration in architectural models. The incremental nature of our probe placement
technique should also be exploited to let users optionally provide user-defined
set of probes, e.g., to force inclusion of semantically relevant/nice shots in the
graph.

Scalability. The visualization just requires correct panoramic view rendering,
thus being suitable for most visualization platforms supporting texture mapping.
The use of standard image and video data encoding gives a very wide range of
configuration opportunities for tailoring quality and performance for the target
platform.

Chapter 7. ExploreMaps: E�cient Construction of Panoramic View Graphs of Complex 3D
Environments 100

7.6 Bibliographical Notes

Most of the contents of this chapter regarding the rendering of complex 3D models
using image-based rendering is based on paper [Di B 14], where we presented
an approach for rendering complex 3D scenes with complex illumination by
computing a set of best views from the input model and letting the user navigate a
graph-based representation of the scene through precomputed paths connecting
the set of selected views. This is a joint work between CRS4 and ISTI-CNR.
My contribution in this work is mainly on designing and implementing the
navigation interface, which is presented in Chapter 10.

Part III

Assisted Exploration of Complex 3D
Models

101

The exploration of complex 3D models, which typically contain information
at multiple scales, requires the user to be able to explore the 3D model from a
wide range of viewing distances. Thus, navigation interfaces must provide the
means for covering both global shape inspection and proximal navigation for
exploring fine details very close to the surface. Free movement in such complex
environments may easily cause the user to lose the spatial context.

In this chapter, we present some approaches for interactive exploration of
complex 3D models that exploit constraining the camera movement in order to
provided guided navigation, allowing the user to concentrate on the 3D virtual
object instead of the navigation itself.

Movement
Type Approach Method Published

in Features

Free

- Automatic pivot
placement

- Pivot computed from
stochastic sampling of
visible geometry

- Image-assisted explo-
ration

See Chapter 8

Web3D’14

- Natural automatic pivot place-
ment

- Support for disconnected surfaces
- No precise clicking required
- Tested on small screen devices

and large display setups

Constrained
to surface

- Isosurface navigation
- Implicit distance-field

representation
- Image-assisted explo-

ration

See Chapter 9

JOCCH’14

- Smooth transition between or-
bital/proximal navigation

- Natural guided navigation
- Ensuring good views
- Tested on large display setups

Graph-
based

- Graph-based naviga-
tion

- Image-assisted explo-
ration

See Chapter 10

EG’14

- Interactive exploration of complex
environments on low-profile plat-
forms, i.e., mobile and web plat-
forms

- Supports complex lighting simu-
lation through precomputed visu-
alization

Table 7.2: Interactive exploration methods.

C������

8 .

HuMoRS: Huge models
Mobile Rendering Sys-
tem

Exploring complex 3D models imposes the need of a navigation
interface which allows the user to navigate through the 3D model
both from far views, for inferring the global shape and function
of the object, and from very close views, to be able to analyze
fine details that can be present on the surface of the object (i.e.,
carvings). In order to address the problem of complex 3D model
exploration, we start with a free movement camera controller
with automatic pivot definition in order to simplify the interaction.
In particular, this greatly improves the usability on small screen
devices where the task of pivot selection is difficult due to precise
picking limitations. In addition, by automatically computing the
interaction pivot, our approach provides smooth and continuous
navigation between far and close views.

8.1 Introduction

T�� increased availability and performance of mobile graphics terminals,
including smartphones and tablets with high resolution screens and
powerful GPUs, combined with the increased availability of high-speed

mobile data connections, is opening the door to a variety of networked graphics
applications. In this world, native apps or mobile sites coexist to reach the goal
of providing us access to a wealth of multimedia information while we are on
the move.

In the sector of cultural heritage, for instance, most applications of mobile
devices are, however, focused on providing aids for navigation inside museal
spaces [Fili 11, Rubi 13] or to substitute the audio guides with enriched 2D
multimedia content, and they do not provide support for the inspection of 3D
artworks, such as sculptures or bas-reliefs. In this context, for museum promotion,

105

Chapter 8. HuMoRS: Huge models Mobile Rendering System 106

it would be of great interest to provide tools for planning the visit of statue
collections, allowing potential visitors to explore with the now ubiquitous tablets
or smartphones the detailed 3D digital representation of artworks. To serve this
goal, networked, user-friendly, flexible, scalable systems are required, and many
challenges need to be addressed in parallel [Kufl 11]. Of particular importance
is the need to present information at the highest possible visual quality, in order
to convey as much as possible the aura of the original artifact.

Figure 8.1: Remote inspection. Remote virtual exploration of a scene composed by several high
resolution statues on a Asus TF201 tablet (left image), and on a LG Nexus 4 smartphone (right
image). During interaction, models are adaptively downloaded from the network, and knowledge
of the currently rendered scene is exploited to automatically center a rotation pivot for the camera
controller and to propose context-dependent precomputed viewpoints.

In this chapter, we present a networked framework, dubbed HuMoRS, for
streaming and interactive exploring huge highly detailed surface models on
mobile platforms. In our approach, 3D models and associated information are
stored in a web server and streamed in real-time on mobile devices (tablets and
smartphones). The mobile client, implemented as an Android app, is controlled
by a simple user interface, which combines an interactive camera controller, to
incrementally explore the 3D model, with an interactive point-of-interest selec-
tor (see Fig. 8.1). During interaction, the camera controller exploits knowledge of
the currently rendered scene to automatically center the trackball pivot and to
propose context-dependent precomputed viewpoints in the neighborhood of the
current view.

Our main contributions are the context-dependent camera controller and the
point-of-interest selector, which are able to take context-based decisions based
on an adaptive structure maintained on the mobile device and streamed from
the web server. Our simple 3D camera controller extends the Two Axis Valuator
Trackball [Chen 88, Zhao 11] with automatic pivoting, i.e, an automatic way to
determine a good center of rotation based on the current view. In this way, we ob-
tain a user interface for inspecting complex objects which is general, predictable,
robust, scalable, smooth, and intuitive.

Chapter 8. HuMoRS: Huge models Mobile Rendering System 107

Our scalable implementation, relying on the approach presented in Chapter 5,
supports giga-triangle-sized scenes composed by di�erent models and hundreds
of points-of-interest on mobile platforms, including middle-level smartphones
and tablets. Moreover, we demonstrate the e�ectiveness of the proposed interface
with a preliminary user-study comparing the time performances with respect
to the most typical Virtual Trackball implementations, with and without pivot
positioning.

8.2 System overview

We designed the HuMoRS system architecture by integrating the following com-
ponents: a pre-processing component which builds multiresolution databases
starting from high resolution triangle meshes, a web server for storing and stream-
ing 3D models and associated information, and a mobile client integrating an
adaptive multiresolution renderer and a simple and e�ective user-interface (see
section 8.3).

8.2.1 Model preparation

In order to ensure real-time performance on large data-sets presented at high
resolution on mobile devices, we rely on the visualization technique presented
in Chapter 5, which builds a multiresolution representation of the 3D model
suitable for adaptive streaming and rendering.

Additional information is stored in the server in order to enable image-based
navigation. Through a manual authoring process the user defines a set of inter-
esting views on the model, and a thumbnail of the viewpoint is generated and
stored together with the associated view matrix.

8.2.2 Client-server architecture

Figure 8.2: Client-server architecture.

Chapter 8. HuMoRS: Huge models Mobile Rendering System 108

The HuMoRS networked communication system is composed by the following
components: a server for storing the models databases and related information,
and a client for interactive rendering (see Fig. 8.2).

On the server side there is an Apache2 module for handling HTTP requests,
which is built upon a local database for e�ciently data retrieval. We use Berkeley
DB for storage, accessing and caching data in the server side due to its open
source license and its matureness as embeddable database. This database is
exploited both for streaming the tetrahedra geometry for the rendering, and the
views and associated snapshots for the image-based navigation.

On the client, an Android native application, the communication is handled
through an abstraction layer relying on the CURL library for e�cient communica-
tion under HTTP 1.1 protocol. Rendering is performed as described in Chapter 5,
maintaining in RAM memory a cache of tetrahedra compact geometries which is
adaptively refined in order to satisfy the visualization constraints (i.e., camera
position and projected error threshold).

Figure 8.3: Detail of a model interactively rendered on a Nexus 4 smartphone. This 70Mtrian-
gles model is colored using post-restoration color data. Note how our compression preserves
extremely high quality details in shape, normal, and colors.

Chapter 8. HuMoRS: Huge models Mobile Rendering System 109

8.3 User interaction

The design of our method has taken into account requirements gathered from
domain experts (see Sec. 2.2), as well as our analysis of related work (see Sec. 3).

Figure 8.4: Auto-centering and Interaction. Left: automatic pivot computation performed by a
weighted averaging of a uniform point sampling of the model in that moment observed by the
camera (lighter samples have lower weights). Center: rotations are performed by dragging and
mapping displacements according to the classical Virtual Trackball.Right: interaction gestures:
one finger for rotation, two fingers for pinch zoom and translation. When interaction stops a set
of precomputed views is presented to the user.

Since we deal with decorated and highly detailed cultural heritage objects, like
statues and bas-reliefs, we had to take into account the fact that they present
information at multiple scales (global shape and carvings), which could require
sub-millimetric model precision. This carving information should be clearly per-
ceivable at all scales, and should be magnified for close inspection. Furthermore,
camera navigation should provide real-time feedback, in order to engage users
providing them the sense of control, and support smooth and seamless object
inspection, going back and forth from shape inspection to detail inspection. The
user interface should thus also be perceived as simple and immediately usable.
Given the limited size of display, the visualized object should not be obstructed
by fingers and other interaction widgets, and finger movements should be lim-
ited in order to reduce user’s e�ort during the exploration. Finally, since the
application has to work in mobile settings, all context-dependent operations have
to be designed so as to work on locally maintained structures, as querying the
server for information would introduce too much latency on mobile networks.

To fulfill these requirements, we designed a user interface composed by a
simple and e�ective metaphor (ACeViT: Auto-Centering Virtual Trackball) for
interactive camera motion, and a context-based point-of-interest selector for
moving the camera to precomputed viewpoints, see Fig. 8.4 and Fig.8.5.

Chapter 8. HuMoRS: Huge models Mobile Rendering System 110

Figure 8.5: Interaction states. This diagram shows the various state transitions that compose the
user interface.

8.3.1 Auto-Centering Virtual Trackball

During the last two decades many devices, interfaces and algorithms have been
designed and proposed to map user input to virtual camera motions [Chri 09],
aiming to maximize user performance and comfort during interactive explo-
rations. The majority of navigation methods are devoted to typical desktop
systems, in which user focus is directed to a monitor screen surface, and the
input is given by employing 2D pointing devices, like mice, pads or joysticks.
In these scenarios in which the work area size is comparable to the view area
size, direct interaction methods are normally considered, and many exploration
metaphors can be designed to fulfill the system requirements given by the data
to explore and the user needs.

The widespread di�usion of touch devices, such as tablets or smartphones, has
made people used to touch-based user interfaces based on direct manipulation of
on-screen objects. 3D variations of the well-known 2D multi-touch RST technique,
that allows the simultaneous control of Rotations, Scaling, and Translations from
two finger inputs are becoming increasingly used as viewpoint manipulation
technique in this context [Kurt 97, Jank 13]. While no real standard for 3D touch-
based interaction exists [Keef 13], touch surfaces are now so common that people
are encouraged to try to interact with them using typical 2D gestures, which is
an important aspect for reducing training time. Even if the mapping between 2D
and 3D motions is non-trivial and varies from a user interface to the next, users
are encouraged to learn by trial and error while interacting.

It should be noted, however, that in the case of small mobile touch screens

Chapter 8. HuMoRS: Huge models Mobile Rendering System 111

standard co-located interaction techniques are not always e�ective due to occlu-
sion problems since fingers can occlude the scene during motion, and simpler
incremental techniques which reduce the user input need to be considered. It is
therefore important to design the technique so as to avoid the need for precise
co-location.

According to previous user analysis [Bade 05], the Two-Axis Valuator [Chen 88]
appears to be the best incremental 3D rotation technique in terms of speed and
satisfaction in standard settings, and it was considered as the base for our method.
This interface maps 2D device motions to two axes of the view coordinate system,
both orthogonal to the view-vector of the camera through a center of rotation
[Shur 11]. Specifically, horizontal mouse movement �u is mapped to rotations
about the up-vector of the camera and vertical mouse movement �v is mapped to
a rotation about the vector perpendicular to the up-vector and the view-vector (see
figure 8.4). Then diagonal device movements are mapped to a combined rotation
about both axes. The center of rotation (pivot) can be defined in di�erent ways:
traditional trackballs fix the pivot as the center of the object bounding sphere, but
many systems give the user the possibility to manually define the rotation center
as a 3D point in the object surface. Both solutions can be tedious for users, since in
the first case they are forced to many motion corrections, while in the latter they
have to change operation mode when they want to select a new pivot position. In
our method, users do not have to take care of controlling the rotation center, since
it is automatically placed. Whenever a panning or rotation interaction ends (see
Fig. 8.5), the pivot position is computed according to the current projection and
viewing matrices (P,V) and a stochastic sampling ⌃ = {p1,p2, ...,pN} of current
visible points on the surface. The following weighted sum is employed:

c =

X

i

�(u
i

, v
i

, w
i

) · pi (8.1)

where (u
i

, v
i

, w
i

) = PV · pi are the NDC coordinates of the projected point,
and �(u

i

, v
i

, w
i

) = �(u
i

) · �(v
i

) · �(w
i

) is a 3D separable Gaussian filter, giving
the maximum weight to the current view matrix target position, and lower
values when the samples are in the peripheral areas of the viewport. With
respect to depth, the Gaussian is centered at the near plane, as to give to closest
points the maximum contribution. The random sampling and the distance-based
weighting ensure the avoidance of abrupt pivot changes when the user performs
multiple small rotations. In order to suit di�erent hardware settings, a variety
of implementations can be considered. An e�cient GPU-based screen-space
implementation can be obtained by performing a stochastic sampling of the depth
bu�er and weighted accumulation of samples, by employing typical multi-pass

Chapter 8. HuMoRS: Huge models Mobile Rendering System 112

pyramid methods derived from image processing [Stre 06]. A model-based
implementation instead can be applied to platforms where fragment processing
and GPU feedback are not well supported or have performance issues (e.g., many
mobile phones). In our implementation, we perform all computations in CPU
and, since the models are rendered using patches (e.g., [Cign 04]), the sampling
algorithm is applied to individual patches during hierarchy traversal and results
are combined at run-time according to the renderer selection.

8.3.2 Image-based navigation

Figure 8.6: Views selection process. When the camera stops, the application identifies the best
closest views and posts a request to the server which sends back the selected view thumbnails.
Finally the user selects the desired view and an animation moves the camera to the requested
position.

We provide the user also with a context-based guided navigation relying on
nearest point-of-interest selection. This alternative control method allows the
user to explore the object by traveling through a set of previously defined in-
teresting views. On startup, the application loads a list of precomputed view
points of the scene, which is organized into a KD-tree in order to provide fast
searches. For each view point, a view matrix is stored together with the url of
the corresponding view point thumbnail. Whenever an interaction ends, a list of
best view candidates is computed and a separate thread is in charge of gathering
the associated thumbnails to each view from the server. A small two level LRU
cache in the client alleviates the latency of thumbnail retrieval for already visited
viewpoints. The first cache is in charge of handling image requests to the server,
containing various dozens of compressed images. The second level caches 2D
textures, and must handle at least the number of simultaneous views that will
be visible at the same time. Computation of best view set if performed in two
steps. First, the closest views with respect to current view position are retrieved
performing a Knn search. The resulting set of views is further filtered to select
the views subset that best approximate the current view point. For that purpose,
a uniform point sampling of the visible model is performed. The resulting point

Chapter 8. HuMoRS: Huge models Mobile Rendering System 113

Model CPU GPU RAM Screen
Nexus 7 Tegra 3 4x1.3Ghz GForce ULP 1GB 7" 800x1280 0.9MPix

ASUS TF201 Tegra 3 4x1.3Ghz GForce ULP 1GB 10.1" 1232x800 0.9Mpix
Nexus 4 Snapdragon S4 Pro 4x1.5Ghz Adreno 320 2GB 4.7" 768x1280 0.9Mpix
Nexus 5 Snapdragon 800 4x1.5Ghz Adreno 330 2GB 4.95" 1080x1920 2Mpix

Asus TF701 Tegra 4 4x1.9Ghz GeForce ULP 2GB 10.1" 2560x1600 4Mpix

Table 8.1: Test device characteristics. Hardware characteristics of the devices used for testing,
with processors from NVIDIA (Tegra) and Qualcomm (Snapdragon).

set is projected both from current view and from the candidate view in order
to compute point-wise 2D distances. The views with lowest distances are then
selected and presented to the user as a grid selection interface shown on the
screen side, see Fig. 8.1.

The user can then navigate the model by clicking on the various thumbnails,
thus starting an animation that will take the observer from its current position to
the target view point, see Fig. 8.6.

The approach can be furthermore extended with static overlays, for authoring
annotations and presenting heterogeneous enriched multimedia information,
like required in typical cultural heritage applications [Mart 14].

8.4 Implementation and Results

We have implemented a prototype hardware and software system based on the
design previously discussed in this chapter.

The HuMoRS system has been successfully tested in a variety of mobile plat-
forms, in particular for the exploration of a set of 3D highly detailed models
derived from the 3D scan acquisition of the statues of Mont’e Prama, ancient stone
sculptures created by the Nuragic civilization of Sardinia, Italy, see Fig. 8.3, 8.7.
The 3D models of these statues are highly detailed and often made of a few
disconnected parts, posing important problems to navigation techniques. See
Bettio et al. [Bett 13, Bett 14b] for details on the Mont’e Prama dataset.

8.4.1 System performance

The mobile client was implemented on Android 4.4 using C++, OpenGL ES 2.0
and Qt. The Qt library is in charge of handling UI events and GL context creation
providing good portability for Android, Windows, Linux or iOS. We evaluated
the rendering performance of the system on a number of inspection sequences
on a variety of devices that represent both mid-class and top-class SoC(System
on Chip) currently available in the market, see Table 8.1 for device characteristics.

Chapter 8. HuMoRS: Huge models Mobile Rendering System 114

Figure 8.7: Various levels of detail of a statue. Images correspond to Nexus 4, Asus TF201 and
Nexus 7, respectively. Top: View of the whole statue. Bottom: A close-up of the statue showing
small-scale details.

8.4.1.1 Rendering performance

Models were rendered using a target resolution of 0.3tri/pixel on screens with
less than 2Mpix and 0.2tri/pixel when there are more than 2Mpix, leading to
graph cuts of 150 nodes on average, with approximately 8Ktri/node. Navigation
was interactive with negligible interaction delays for all datasets, with frame rates
constantly above 20 fps, for the Tegra 4 and SnapDragon processors, while Tegra
3 handled above 10 fps. The multiresolution structure used for rendering is also
exploited for object queries during interaction, proving successful, as camera
transformation computation, and pivot calculation, in our camera controller
always took below 10% of the frame time. The sessions were designed to be
representative of typical mesh inspection tasks and to heavily stress the system,
including rotations and rapid changes from overall views to extreme close-ups.
The qualitative performance of our adaptive renderer is also illustrated in an ac-
companying video, that shows live recordings of the analyzed sequences. During
the tests the average triangle count was 1-3Mtris per frame, depending on screen

Chapter 8. HuMoRS: Huge models Mobile Rendering System 115

Device Rendering Downloading Decoding Whole view refine Close view refine
ASUS TF201 10 Mtri/s 11.2Mbps 1MB/s 4.6MB, 7s 37MB, 57s

Nexus 7 10 Mtri/s 11.2Mbps 1MB/s 4.6MB, 7s 37MB, 57s
Nexus 4 20 Mtri/s 18Mbps 1.2MB/s 4.6MB, 5s 37MB, 41s
Nexus 5 20 Mtri/s 20Mbps 1.4MB/s 7.4MB, 8s 45MB, 40s

Asus TF701 25 Mtri/s 24.8Mbps 1.5MB/s 8.2MB, 8s 65.8MB, 59s

Table 8.2: Test devices performance. Performance results for the various hardware configura-
tions.

coverage and model refinement. The measured performance shown average
frame rates of 10-30 fps on most devices, while Tegra 3 devices performance
was about 5-15fps, see Table 8.2. When the user is interacting, the maximum
triangle budget is adjusted to ensure a minimum of 10 fps. As demonstrated
in the video, performance is perfectly adequate for interactive inspection tasks,
while providing extremely high representation quality. An example is presented
in Fig. 8.3.

We have also performed tests on a scene composed of 10 statues, ranging from
40Mtri to 70Mtri each, resulting in about 600Mtri, see Fig. 8.1. Performance
was measured between 4-10 fps on Tegra 3 devices, and 10-20 fps on the other
tested devices. Average triangle count per frame depends mostly on the statue
in foreground, while other statues covering less than 1/4 of the viewport add no
more than 60Ktri each, representing about 10-30% overhead.

All the measures correspond to a rendering viewport of 5/6th of the screen,
excluding the area used for image-based navigation, ranging from 0.7Mpixels to
3.3Mpixels.

8.4.1.2 Streaming performance

The latency time needed to download the data at the application start-up and to
refine the model during the exploration is the most critical bottleneck a�ecting
mobile devices, and it is independent from the rendering thread only relying on
the network bandwidth. Performance was measured on a wireless connection
using a Linksys WAP200 802.11b/g AP 54 Mbps, obtaining a peak performance
of 28Mbps under a heavily shared environment.

For a full view, where the whole statue fits in the rendering viewport (see Fig. 8.7
top-left), about 4.6-8.2MB (500Ktri-1.3Mtri) were required for full refinement,
depending on the rendering viewport resolution. In the case of a detail view, a
close view of a small part of the statue (see Fig. 8.7 center-bottom), 37-65.8MB
(1.6-2.3Mtri) are needed (see Table 8.2 for further details).

Data fetching is performed asynchronously in a separate thread, so it doesn’t
interfere with interactive rendering performance. Data fetching over Wifi shows

Chapter 8. HuMoRS: Huge models Mobile Rendering System 116

download speeds about 11-26Mbps, representing 40-88% of the available band-
width. The decoding performance varies among the various devices ranging from
0.9MB/s to 1.5MB/s, thus determining the maximum streaming throughput,
see Table 8.2. Achieving a fully refined full view of the statue requires about 5-8s
depending on the screen resolution and the device performance when decoding.
For a detail view, between 40-59s are required for full refinement. Nonetheless,
thanks to the progressive refinement, within just few seconds the statues can be
inspected with a reasonable quality.

Under UMTS/HSPA connection, we measured an average data fetch speed of
2.5Mbps over a measured peak performance of 3.4Mbps. Full refinement of a
full view took about 20-50s, and 120-140s for a detail view.

All this times correspond to a fresh start with no cached data. However, during
a typical inspection of the model, when the user gets to a new close-up view
most data from the coarse representation is already present, thus requiring less
time for full refinement.

8.4.2 User study

Figure 8.8: User study performed on a Nexus 7 tablet. ACeViT compared to Virtual TrackBall
with fixed pivot and with manual pivot positioning. Left: test scene composed of a detailed
surface model composed of 70Mtri. Right: tasks consisted of reaching and shooting specific
positions and orientations indicated by green cylinders.

In order to test the e�ectiveness of the interaction method on mobile devices,
we carried out also a preliminary performance evaluation of our auto-centering

Chapter 8. HuMoRS: Huge models Mobile Rendering System 117

Virtual Trackball (AceViT) with respect to the standard Two Axis Valuator Virtual
Trackball with fixed pivot, and with manual selection of the pivot obtained by
ray-casting against the scene on user request.

8.4.2.1 Setup

The user tests were performed on an ASUS Nexus 7, see Table 8.1. All the
interfaces were implemented by using the typical RST approach: one finger
to generate rotations, two fingers to perform zoom (by pinching) or pan (by
dragging), continuous pressure with one finger to perform pivot update. As
testing scene, we considered a scene composed of a Boxer statue (see Fig. 8.8)
consisting of 70Mtri.

8.4.2.2 Tasks

The experiments consisted in letting users try the three di�erent manipulation
controllers (ACeViT, TrackBall with fixed pivot and TrackBall with manual pivot)
in the context of a point-and-shoot interaction task [Bade 05]. Participants were
asked to point-and-shoot a small set of green cylinders, which had to be shoot
through in order to get a positive hit. By forcing the user to align the camera
view direction with that of the cylinder axis, we obtained a task composed of
a global approaching phase and a later local step for aligning camera with the
cylinder. The cylinder radius was adjusted in order to avoid trivial alignments
so the second step was hard to skip (see Fig. 8.8 left). When the targets were
precisely pointed and aligned with respect to a cross viewfinder, users could
shoot them by pressing a touch button (see Fig. 8.8 right).

8.4.2.3 Subjects

Ten subjects with ages ranging from 27 to 51 (mean 38.4 ± 7.9) were selected
between the researchers of our research department. All persons involved had
previous experience with 3D software systems and interfaces (particularly with
Virtual Trackball interfaces).

8.4.2.4 Design

Subjects were proposed the interfaces in randomized order. After a brief training
with the touch interface, the measured tests consisted of shooting 5 targets,
randomly selected from a list of 10 potential candidates, in order to avoid any
bias due to a-priori knowledge of target positions. For a complete testing session,
users needed times ranging from 180 to 280 seconds. The times for hitting all
tasks for each interface were measured and recorded.

Chapter 8. HuMoRS: Huge models Mobile Rendering System 118

8.4.2.5 Analysis

Figure 8.9: Performance comparison: Timings.

In summary, the complete test design consisted of 10 subjects, each one test-
ing 3 camera controllers for a total of 30 time measurements. We performed a
statistical analysis of completion times for the shooting tasks experiment. All
computations were done by using the R package. Mean completion times were
53.68 ± 11.41 seconds for ACeViT, 73.64 ± 14.84 seconds for manual pivoting,
and 90.95± 12.26 seconds for fixed pivoting. After performing a Shapiro-Wilk
test for normality (W = 0.948, p = 0.2101), an analysis of variance revealed a
significant e�ect of the interface (F = 17.652 and p < 0.001). Finally a post-hoc
Tukey multiple comparisons of means revealed dramatic di�erences between
ACeViT and fixed pivoting(p < 0.001), important di�erences between ACeViT
and manual pivoting (p < 0.01), and significant di�erences between manual
pivoting and fixed pivoting (p = 0.029). Fig. 8.9 shows the boxplots of the task
completion times, as rendered by the R package. Statistical analysis and boxplots
showed that automatic pivoting improves the time performances of shooting
tasks. Moreover, by observing and listening think-aloud comments during the
experiments, it appeared evident that users felt very comfortable with ACeViT
since they could explore in intuitive manner the complex scene, and they could
perform tasks with less motion corrections with respect to standard Virtual
Trackball implementations, with fixed and manual pivoting.

Chapter 8. HuMoRS: Huge models Mobile Rendering System 119

8.5 Discussion

We have presented HuMORS, an interactive system for natural exploration of
extremely detailed surface models on mobile devices. The system has been suc-
cessfully tested in a variety of mobile platforms, in particular for the exploration
of a set of 3D highly detailed models obtained with high resolution laser scanning
of cultural heritage artworks. Furthermore, our auto centering camera controller
has been compared with two consolidated Virtual Trackball implementations,
collecting quantitative results from a series of tests on a mobile device involving
10 people. The camera controller appears to be intuitive and simple enough even
for casual users who quickly understand how to browse complex models imme-
diately. Our future plans concentrate on extending the system for supporting
bidirectional connection between multiple multimedia types as well as narrative
contents.

Advantages. The proposed technique provides natural exploration of complex 3D
models, in particular highly detailed 3D models with multi-scale information, by
providing an automatic rotation pivot. Automatic pivot selection allows the user
to explore the 3D model going from global shape views to surface exploration in a
continuous navigation without needing to perform precise picking (i.e., changing
the interaction mode).

Limitations. Since the pivot is computed using an stochastic sampling of the
visible surface, this technique is better suited for the exploration of highly detailed
3D models with fine surface details (e.g., 3D scanned objects).

Scalability. The pivot computation depends on a sampling of the visible surface
of the 3D model, thus performance directly depends on the internal 3D object
representation. When dealing with simple 3D models (i.e. few thousands of
triangles) there is no need for complex data structures and brute-force approaches
are perfectly feasible. Paired with e�cient multiresolution data structures it has
been proved both on high-end desktop systems and on mobile devices, exploring
datasets composed of hundreds of millions of triangles.

8.6 Bibliographical Notes

Most of the content of this chapter is based on paper [Bals 14a]. In this paper,
we presented a system for interactive exploration of huge 3D mesh models on
mobile platforms which presents the user with a selection of close views aiming
to facilitate the discovering of information on the various details of the 3D model.

C������

9 .

IsoCam: Interactive Vi-
sual Exploration of Mas-
sive Cultural Heritage
Models on Large Projec-
tion Setups

The camera controller presented in previous Chapter 8 enables
natural free exploration of complex 3D models. Although the
method works and provides a relatively easy-to-use interface,
novice users easily get lost when having too much freedom in 3D
environments. This is particularly true in complex environments
requiring multi-scale exploration. In this chapter, we propose a so-
lution, dubbed IsoCam, which combines an object-aware interac-
tive camera controller with an interactive point-of-interest selector
and is implemented within a scalable implementation based on
multiresolution structures shared between the rendering and user
interaction subsystems. The collision-free camera controller auto-
matically supports the smooth transition from orbiting to proximal
navigation, by exploiting a distance-field representation of the 3D
object. The point-of-interest selector exploits a specialized view
similarity computation to propose a few nearby easily reachable
interesting 3D views from a large database, move the camera to
the user-selected point of interest, and provide extra information
through overlaid annotations of the target view. Chapter 11 will
further expand on how to efficiently combine camera controllers
with information presentation to go beyond pure visual explo-
ration. We also demonstrate how this constrained method can
be adapted to ensure that nice views are presented in a variety
of setups, including demanding light-field displays, which impose
severe constraints on the placements of the displayed objects.

121

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 122

Figure 9.1: Museum exhibition. The method described in this work has been employed for
the virtual stands in a large exhibition attended by approximately 3500 people, who had the
possibility to freely inspect 38 highly detailed models. A larger setup is now installed in two
permanent exhibitions at Archaeological Museums in Cagliari and Cabras (Italy).

9.1 Introduction

N�������, shape and material acquisition, as well as modeling tech-
niques, are able to produce highly detailed and accurate 3D represen-
tations of cultural heritage artifacts. While this digitization process

has a variety of applications, including archival, study, and restoration, visual
communication is by large the most common utilization. Until recently, the
most successful and widespread use of 3D reconstructions for exploration have
been through mostly passive visual presentation modalities, such as videos or
computer-generated animations. Interest is, however, now shifting towards more
flexible active presentation modalities, such as virtual navigation systems, which
let users directly drive navigation and inspection of 3D digital artifacts. These
active presentation approaches are known to engage museum visitors and en-
hance the overall visit experience, which tends to be personal, self-motivated,
self-paced, and exploratory [Falk 00]. In general, visitors do not want to be
overloaded with instructional material, but to receive the relevant information,
learn, and have an overall interesting experience. To serve this goal, user-friendly
and flexible systems are needed, and many challenges need to be addressed in
parallel [Kufl 11].

In our approach, 3D models and associated information are presented on a large
projection surface (projection wall). We let users focus their attention exclusively
on the large screen, while controlling the application through a touch-enabled
surface placed at a suitable distance in front of it (see Fig. 9.1 right). In this setting,
the display of the touch-enabled screen is used only to provide minimal help
information on the application. We exploit this simple setup with an indirect user
interface, dubbed IsoCam, which combines an object-aware interactive camera
controller, to incrementally explore the 3D model, with an interactive point-of-
interest selector. Our camera controller exploits a multiresolution distance-field
representation of the 3D object, which allows it to be scalable and to smoothly

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 123

transition from orbiting to proximal navigation (see Sec. 9.3). The simple point-
of-interest selector exploits a specialized view-similarity computation to propose
a few nearby easily reachable interesting 3D views from a large database, move
the camera to the user-selected point of interest, and provide extra information
through overlaid annotations of the target view (see Sec. 9.4). A scalable imple-
mentation is realized on top of specialized multiresolution structures shared
between rendering and user interaction subsystems.

Our system combines and extends a number of state-of-the-art results. The
main novel contribution is an intuitive 3D camera controller, handling objects
with multiple components while smoothly transitioning from orbiting to prox-
imal navigation, integrated with a simple user interface for point-of-interest
selection and overlaid information display. Thanks to view-adaptive structures,
object-aware user-interface components are capable to support models composed
of various billions of primitives and large numbers of points of interest, and have
been used by thousands of inexperienced users in a real exhibition with a massive
object collection (see Sec. 9.8).

9.2 Overview

The design of our method has taken into account requirements gathered from
domain experts and described in Sec. 2.2. In Sec. 9.2.1 we provide a general
overview of our approach, justifying the design decisions in relation to the
requirements.

9.2.1 Approach

Requirements R1–R13, as well as our analysis of related work presented in Chap-
ter 3, were taken as guidelines for our development process, which resulted in
the definition of an approach based on indirect touch-based interactive control
of a large projection surface through an assisted user-interface. The main com-
ponents of our user-interface are an object-based assisted system for interactive
camera motion tuned for both orbiting and proximal object inspection, and a
context-based point-of-interest selector for moving the camera to precomputed
viewpoints and display associated information in overlay. Multiresolution tech-
nology is used both in the user-interface and the rendering subsystem to cope
with performance constraints.

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 124

touch
interface

pointerless
indirect
interaction

large
projection
screen

museum setup

(a) Setup (b) Assisted camera control

Selected point of interest

Points of
interest
database

Context
Selection

New camera pose
and annotation display

(c) Points of interest

Figure 9.2: Method overview. Users focus on a large projection screen. Object exploration is
achieved by moving the camera on isosurfaces of the object’s distance field, and point-of-interest
selection is context sensitive and associated to display of auxiliary information.

9.2.2 Proposed setup

The widespread di�usion of touch devices, such as tablets or smartphones, has
made people used to touch-based user interfaces based on direct manipulation
of on-screen objects (R6). This kind of setting is increasingly being used at a
larger scale, also for museum presentations, with users exploring models on
touch-enabled monitors, tables, or walls [Hach 13]. Instead of using a large
touch screen as input/output device for direct manipulation, we have preferred
to decouple the devices for interaction and for rendering as to allow for large
projection surfaces and enable multiple users to watch the whole screen without
occlusion problems (R2, R7) and staying at a suitable distance from it when
viewing large objects of imposing scale (R2). By contrast, using co-location of
touch interaction and display would force users to stay within reach of the display,
limiting its size. Many embodiments of this concept are possible. In this work,
we present a low-cost solution based on a single PC connected to a small touch
screen for input and display of help information and a projector illuminating
a large screen for application display (see Fig. 9.2(a)). We emphasize that the
touch screen does not display any visual feedback, encouraging the users to focus
solely on the large display (R8) where the objects of interest are rendered (see
Fig. 9.12(a)). Both single- and multi-touch controls have been implemented (see
Sec. 9.5).

9.2.3 Camera control

3D variations of the well-known 2D multi-touch RST technique, that allows the
simultaneous control of Rotations, Scaling, and Translations from two finger
inputs are becoming increasingly used as viewpoint manipulation technique
in this context [Kurt 97, Jank 13]. While no real standard for 3D touch-based
interaction exists [Keef 13], touch surfaces are now so common that people are

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 125

encouraged to immediately start interacting with them, which is an important
aspect of walk-up-and-use interfaces. Moreover, even if the mapping between
2D and 3D motions is non-trivial and varies for a user interface to the next,
users are encouraged to learn by trial and error while interacting. Inspection
of complex objects, especially for novice users, can be di�cult, as, similarly
to virtual trackball approaches, users are continuously shifting between pan,
orbit, and zoom operations, and, in the case of topologically complex objects
presenting many cavities and protrusions, the camera eye can cross the object
surface, resulting in an undesirable e�ect. General 7DOF controllers also require
special handling to avoid lost-in-space e�ects. These problems occur because
the navigation interface is not context-aware, but simply operates on the model
transformation, leaving the burden to adapt to the surface to the user. We have
thus designed an object-aware technique explicitly targeted to constrained macro-
scale and micro-scale object exploration (R6). Among the possible solutions
discussed in Chapter 3, we focus on techniques that do not require on-screen
widgets, in order to have a clean view of the work of art (R8). IsoCam (see
Sec. 9.3) automatically avoids collisions with scene objects and local environments,
while trying to maintain the camera at a fixed distance around the object while
maintaining a good orientation (R5). When hovering around the surface, our
method maintains the camera position on the current isosurface of the distance
field generated by the model, and, once computed the new viewpoint, devises a
good orientation based on temporal continuity and surface orientation at multiple
scales. Zooming instead is obtained by changing the current isolevel. With this
approach, collisions are avoided, and the camera accurately follows the model
shape when close to the object, while smoothly evolving to move around a
spherical shape when moving away from it (see Fig. 9.2(b)). This approach
permits to browse in a smooth way the model always facing the camera in a
proper direction, but also allows the user to move among disconnected parts,
due to the topological structure of a distance field. User interaction does not
require to provide a visual feedback or to implement picking, as needed, e.g., to
select a pivot for rotation over a model. The user can update the camera position
by interacting with the touch screen, while always looking at the large display
where the object of interest is shown (R8). Among the many non-standardized
mappings of 3D touch gestures to 3D manipulations [Keef 13], we choose the
simple approach of mapping common 2D RST gestures, such as pinch-to-zoom,
one- and two-fingers pan, and two-finger rotate to analogue 3D behaviors, as this
encourages people to quickly learn the mapping by looking at the e�ect of their
actions. We note that this is made possible because of the constrained nature of
our interface, which reduces degrees of freedom in order to favor ease of use at

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 126

the expense of generality.

9.2.4 Points of interest

3D hot-spots, popularized by VRML/X3D browsers and geoviewers, are the
most common methods for associating auxiliary information to the 3D model
[Call 08, Jank 12]. These methods, however, require pointing methods and/or
produce clutter. Instead of using hot-spots, we thus employ a context-based
radial menu to select among a subset of context-selected views. The system
thus supplies the user, on demand, a set of precomputed points-of-interest,
corresponding to the best ones with respect to the observer position and view
similarity metric (see Fig. 9.2(c) and Sec. 9.4). Each view is also enriched with an
associated overlaid information, which is presented to the viewer (R10). As for
constrained navigation, point-of-interest selection does not require any visual
feedback on the interaction touch screen, nor the availability of a specific pointing
method (see Sec. 9.5) (R8).

9.2.5 Scalability

In order to ensure real-time performance (R5) on large datasets (R2) presented
at high resolution (R1) (e.g., billions of triangles and hundreds of points of inter-
est per model), we employ specialized multiresolution structures and adaptive
algorithms. In our approach, the renderer and the user-interface subsystem
share structure and work on a view-adapted representation of the data-set (see
Sec. 9.7). In particular, we have extended the Adaptive TetraPuzzles (ATP) ap-
proach [Cign 04] for massive model multiresolution visualization to implement
all required geometric queries, and employ kd-trees to organize the points of
interest. Since the complexity of all operations depend only on the (bounded)
view complexity, rather than on the (potentially unbounded) model complexity,
we can guarantee high display accuracy and real-time performance both for
macro- and micro-structure inspection (R1, R2, R5).

9.3 Camera control

Previously proposed object-based orbiting approaches, well suited for indirect
interaction, are based on the concept of sliding a target point on the object surface,
and determining the camera orientation based on the local surface normal, using
ad-hoc techniques to manage cavities and sharp turns. These requirements have
two implications: first, the user can easily move only on connected parts of the

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 127

model, and second, the movement is highly sensible to the surface roughness
and thus needs to be filtered properly to avoid abrupt accelerations.

We start from a concept similar to the one of the sliding surface, but the basic
idea is to exploit the structure of the object’s distance field. Thus, during hover-
ing operations, the camera position is maintained at a constant isolevel, while
zooming is achieved by changing the isolevel. Camera orientation is determined
in this approach only after position is incrementally updated. One of the benefits
is that isosurfaces of the distance field, being o�set surfaces, are much smoother
than the surface itself and change smoothly from the model shape to a spherical
shape with increasing distance, combining increased smoothness with topolog-
ical simplification. This permits to follow all the fine detail when the distance
is small, while smoothly orbiting and moving across disconnected parts when
the distance increases. For example, when inspecting a human figure, users can
hover over a single leg when looking from a few centimeters, while orbiting
around both legs from a further distance, see Fig. 9.3(a).

As we will see, orientation is computed by considering the gradient of a
smoothed version of the distance field, an up-vector model, and temporal conti-
nuity considerations. Decoupling position and orientation computation allows
us to have precise guarantees in terms of collision-free motion, which are not
shared by hovering techniques which smooth the surface to reduce jittering
[Moer 12]. In particular, distance field information is extracted with on-the-fly
nearest-neighbor computation on multiresolution approximations of the current
view-dependent approximation of the model (see Sec. 9.7). It should be noted
here that position computation must be precise enough to avoid collisions, while
orientation computation can trade precision with smoothness. Thus, a precise
nearest neighbor search is used to keep the user at a fixed distance from the model
surface, while a coarser nearest neighbor computation is preferred to compute
the view direction, towards having smooth camera orientation variations. In the
following, we define fine target as the nearest neighbor on the refined model with
respect to the eye, while the coarse target corresponds to the nearest neighbor on
a smoother coarse model (see Fig. 9.3(b)). Sec. 9.7 details how fine and coarse
targets can be e�ciently computed using the same multiresolution structure that
is used for rendering.

9.3.1 Hovering

The hovering operation tries to maintain the camera on the current isolevel,
looking straight at the model. Hovering is performed through an incremental
update of the current position on the isosurface, followed by an update of the

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 128

(a) Isosurface (b) Positioning and hovering (c) Zooming

Figure 9.3: IsoCam. a) Some line of the isosurface. b) Hover movement orthogonal to gradient,
user input �m split into 4 steps to follow the isosurface. c) Zooming stopped in three situations:
(case 1) approaching fine target, (case 2) approaching coarse target, (case 3) zooming backward
(circle radius represents the minimum permitted distance from surface).

view direction. As user input, the camera controller takes a 2D vector indicating
the desired direction and amount of motion in the camera plane. We assume
in the following that the increment is small. Therefore, large user inputs (large
velocities) imply multiple update steps. In order to update the position, we
achieve motion by tracing an isoline starting from the current position. The
tracing algorithm moves the observer position tangentially to the isosurface,
re-projects it onto the isosurface, and finally updates the view direction, see
Fig. 9.3(b). For that, each step is unprojected from screen to world space using the
current projection and view transformation looking towards the fine target, thus
producing a movement tangential to the isosurface. Projecting the observer onto
the isosurface consists of moving the observer position towards the fine target to
adjust the distance, and then recomputing the fine target. Working exclusively
on fine targets for position computation ensures that we cannot have collisions
with the model. Since the gradient direction changes from point to point, a
single translation would not be enough to reach the original isosurface, and the
projection algorithm is applied iteratively until the correct isolevel is reached
within a prescribed relative tolerance (a small fraction of the isosurface value)
or a maximum small number of iterations has been done. After this iterative
adjustment, a new coarse target is recomputed for orientation computation. At
this point the observer position and the view target are available, but we still need
an up vector to define the current view transformation. Up-vector definition is a
classic problem in camera motion control, and many solutions are available in the
literature (see Khan et al. [Khan 05] for up-vector techniques suited for proximal
navigation). In this work, we use a global up vector model, which is particularly
suitable for exploring standing sculptures. In order to handle singularities, we
limit the camera tilt with respect to the up vector, generating a camera motion
similar to the one a human would perform around a statue.

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 129

9.3.2 Zooming

Zooming is achieved by switching between the di�erent isosurfaces. The user
input modifies the distance of the observer from the coarse target. The coarse
target position, which defines the view direction, is not updated during the
zooming, thus leaving unchanged the orientation and producing a smooth and
intuitive movement. Moving between isosurfaces has the benefit that we always
know the distance from the model surface, thus we can easily avoid collisions,
simply limiting the distance from the model. We perform the movement only if
the new distances from both the fine target and the coarse target are greater or
equal than a minimum distance. We obviously need to check the fine target to
avoid collisions. At the same time, we check the coarse target distance to avoid
abrupt rotations when keeping facing the coarse target, see Fig. 9.3(c) (case 1,
2). Zooming in and zooming out use the same algorithm, since these checks are
enough to prevent forward, but also backward collisions, see Fig. 9.3(c) (case 3).

(a) Temporal smoothing process (b) Free motion (c) Temporally smoothed orientation

Figure 9.4: Temporal smoothing. Position and orientation interpolation when reaching coarse
target discontinuity. In the 3D views, lines identify view direction in di�erent frames. Large view
direction discontinuities are highlighted in red.

9.3.3 Sudden orientation changes and temporal smoothing

A benefit of moving over an isosurface is the ability of early detecting collisions
with invisible parts, as could happen in the HoverCam approach [Khan 05]
when browsing a surface which presents a sudden change of orientation, as in
Fig. 9.4(a). HoverCam solves this problem with prediction in the movement
direction to avoid hitting the hidden surface. In our case, this is implicit when
moving over an isosurface that covers the entire model. It is important to note that
our view-dependent representation is complete, i.e., it covers the entire model
without clipping it outside the view frustum (resolution of far/out-of-view nodes
are only reduced) (see Sec. 9.7). Sudden surface orientation changes could cause,
however, accelerations in user motion, due to fast changes of view direction
(coarse target) even in a smoothed surface. This is a simpler situation to handle,

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 130

as it does not need to modify the path of the camera and only requires introducing
acceleration control in the orientation. Working on coarse targets for orientation
computations already introduces a degree of smoothness in orientation changes.
Moreover, limiting the screen space movement of the coarse target produces a
smooth change of orientation also in case of sudden coarse neighbor changes.
To achieve this goal we introduce hysteresis in the process, achieving temporal
smoothing. Positions and orientations are thus adaptively interpolated between
previous and current view transformation. The interpolation value is given by the
ratio between the user input movement and the coarse target screen movement,
see Fig. 9.4(b), 9.4(c). Since orientation does not change linearly, we recursively
apply this procedure until the coarse target screen movement is within a certain
tolerance from the user input. This procedure converges in a few steps, generally
2 or 3. Finally, the current camera view transformation is interpolated at each
step with previous camera transformation to produce a smoother movement.

9.4 Image-based navigation and points of interest

We provide the user also with a context-based guided navigation relying on
nearest point-of-interest selection. This alternative control method allows the
user to explore the object by traveling through a set of interesting views that
have been previously defined and annotated. For that, the user is presented with
a small set of images consisting of interesting views that can be reached from
its position and can be selected with a radial selection interface shown in the
projection screen (see Fig. 9.5). Selecting one of the presented images triggers
a camera animation that moves the viewpoint to the location associated to the
images and, then, presents in overlay the associated information (see Fig. 9.5). The
information remains visible until the user decides to move to another position.
This approach, based on static overlays, which can freely contain 3D sketches
to be super-imposed to rendered 3D models, greatly simplifies the authoring
of annotations by domain experts, which can use standard 2D graphics tools to
generate vector graphics representations enhancing and commenting particularly
interesting views.

No hot-spots or hyperlinks are visible during the navigation, but activated on
demand by the user (see Sec. 9.5). Upon activation, a search is performed for
determining the best view candidate set from the user viewpoint. The search
of the best view candidates is performed on a separate kd-tree that contains all
the views (see Sec. 9.7). For each view we store the associated image previously
rendered, a description of the view contents, which is then rendered as overlay,

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 131

(a) Current view (b) Context-sensitive view selector (c) Final image with overlay

Figure 9.5: Radial view selector. A small set of images is presented to the user corresponding to
the nearest views available from the current viewpoint. Selecting one of the presented images
triggers a camera animation that moves the viewpoint to the location associated to the images
and, then, presents in overlay the associated information.

and the viewing transformation from which we derive the point of view. Context-
based selection selects from the database images that are similar to the current
view and easily reachable from the current position (see Sec. 9.7).

(a) Selection with similarity filtering (b) Selection without similarity filtering

Figure 9.6: Context-based selection. Selected images with (a) and without (b) similarity filtering
images from the point of view corresponding to the top view in the radial view selector. In the
image without similarity filtering (b), we have highlighted in red the views less related to the
current point of view, like the knee and the two closeup of the hand, which are close in terms of
viewpoint but not in terms of similarity.

By using a radial selection interface, the user is no more required to look at the
touch screen for switching between the di�erent views, which are distributed
onto a circumference around the center of the display. The upper position is
held by the the nearest view with the following views in distance order being
distributed in a clockwise fashion. Relative displacements from the initial touch
position determine the selection in a natural way.

9.5 Device mapping

Our user interface for model manipulation and point-of-interest selection requires
minimal user input, and can be mapped from input devices in a variety of ways. In
this paper, we are interested in a situation where a touch screen is used for motion
control and the rendering is displayed onto a big projective screen. For such a

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 132

setup, we avoid using the touch-screen to display content-related information,
in order to encourage the user to focus on the visualization screen instead of
concentrating on the user interface, see Fig. 9.12(a). It should be noted that, when
using touch input, we not only have to deal with 2D-input-to-3D-output mapping,
but also have to be aware of modality and precision issues [Keef 13]. The IsoCam
interface helps in this respect, since it uses a constrained navigation approach
that reduces degrees of freedom in order to simplify common operations, limits
operations to zooming (1D), hovering (2D), and optional twist (1D), employs a
fully incremental mode of operation that does not require pointing. We have
implemented the interface both with a single touch as well as a multi-touch
input. The single touch interface can be operated also with a one-button 2D
mouse. Incremental camera motion control requires only to di�erentiate zoom
vs. hovering and to continuously specify the associated 1D or 2D amounts.
Point-of-interest selection requires the activation of the circular menu, and the
specification of an angle to select the desired point-of-interest.

Figure 9.7: Multi-Touch gestures. Device mapping using a multi-touch device. Hand im-
ages adapted from Wikipedia (contributor GRPH3B18) under a Creative Commons Attribution-
ShareAlike license.

9.5.1 Multi-touch mapping

Multi-touch is our preferred mode of operation. In order to reduce training times,
we considered common single-touch and multi-touch gestures, as used for 2D
actions in commodity products such as smart-phones or tablets, and mapped
them to analogue 3D behaviors in our constrained controllers. To the same end,
we also found useful to associate multiple gestures to the same action. While no
standard exists for mapping 3D touch gestures to 3D manipulations [Keef 13],
one-finger pan and two-finger rotate-scale-translate gestures are well established
and accepted in the 2D realm. Since our controller is constrained and maps 3D
motions to locally 2D actions, it is possible to map common 2D RST gestures to

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 133

analogue 3D motions. This has the advantage of encouraging walk-up-and-use
behaviors, with people learning the 2D to 3D mapping while interacting.

One-finger long press is thus mapped to the activation of the point-of-interest
menu, and a radial motion in the direction of the desired thumbnail followed
by a release performs selection. Single finger panning gesture is used to control
hovering. Direction and velocity are specified by the vector from the first touch
position to the current finger position. Two-finger gestures can also be used to
control hovering, as well as zooming and up-vector control. Two-finger panning
has the same e�ect as single-finger panning (i.e., hovering control), while two-
finger pinch controls zooming, and two-finger rotate controls twist (i.e., up-vector
modification). See Fig. 9.7.

9.5.2 Single-touch mapping

The single-touch interface is used on desktop applications and in cases where
a multi-touch screen is not available. Device mapping is similar to the multi-
touch interfaces, with long press (or right button press for a mouse) for menu
activation, and dragging gestures for hovering control and point-of-interest
selection. Similarly to other works on unified camera control [Zele 99], zooming
in this case is activated by reserving a specific area of the touch device (a vertical
bar placed on the left of the screen), and using dragging in this area for zoom-in
(drag up) or zoom-out (drag down).

9.6 Extending support to light field displays

The evolution of 3D displays, with “light field displays” (see Section 3.3.6) as a
good example, provide a well suited 3D visualization platform for exhibitions
and museum installations. This kind of displays are now capable of providing
multi-user immersive exploration of high quality 3D content. Besides, those
displays provide variable resolution depending on the projection depth, where
3D objects lying in a depth range close to the screen plane are displayed at
maximum resolution.

Aiming to extend our current system, we have studied how our method could
be exploited for enhancing the visualization of complex 3D models on “light
field displays”. For that purpose, we constrain the region of the 3D model which
is in focus to lie in the correct depth range for optimal display resolution.

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 134

Figure 9.8: Natural immersive exploration of the David 0.25mm model (1GTriangle) on a
35MPixel light field display. Images taken with a hand-held camera. The 3D user interface
allows casual users to inspect 3D objects at various scales, integrating panning, rotating, and
zooming controls into a single low-degree-of-freedom operation, while taking into account the
requirements for comfortable viewing on the light field display hardware. The model appears
to be floating in the display workspace, providing correct parallax cues to multiple naked-eye
observers.

9.6.1 Light field display: concepts and consequences

The light field display employed for this work uses a specially arranged projector
array driven by a cluster of PCs and a holographic screen (see Fig. 9.9 left).
The projectors are densely arranged at a fixed, constant distance from a curved
(cylindrical section) screen. The projectors cast their respective images onto the
holographic screen to create the light field. Mirrors positioned at the sides of
the display reflect back onto the screen the light beams that would otherwise be
lost, thus creating virtual projectors that increase the display field of view. The
holographic screen has a holographically recorded, randomized surface relief
structure able to provide controlled angular light divergence: horizontally, the
surface is sharply transmissive, to maintain a sub-degree separation between
views determined by the beam angular size. Vertically, the screen scatters widely,
hence the projected image can be viewed from essentially any height. Thus, this
approach creates a display with only horizontal parallax.

In order to cope with the parallax-only design, we employ a multiple-center-
of-projection (MCOP) technique [Jone 07, Agus 08] to generate images with
good stereo and motion parallax cues. The method is based on the approach
of fixing the viewer’s height and distance from the screen to those of a virtual
observer in order to cope with the horizontal parallax. We assume that the
screen is centered at the origin with the y axis in the vertical direction, the x axis
pointing to the right, and the z axis pointing out of the screen. Given a virtual
observer at V, the ray origin passing through a point P is then determined
by O = (E

x

+

P

x

�E

x

P

z

�Ez

(V
z

� E
z

), V
y

, V
z

), where E is the position of the currently
considered projector. The ray connecting O to P is then used as projection
direction to transform the model in normalized projected coordinates. The
parameters used for mapping screen pixels to screen 3D points can be determined
by automated multi-projector calibration techniques [Agus 08].

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 135

Figure 9.9: Light field display concept. The display is uses a specially arranged projector array,
a holographic screen, and side mirrors to increase the field of view. Left: horizontally, the screen
is sharply transmissive and maintains separation between views. Right: vertically, the screen
scatters widely so the projected image can be viewed from essentially any height.

By appropriately modeling the display geometry, the light beams leaving
the various pixels can be made to propagate in specific directions, as if they
were emitted from physical objects at fixed spatial locations. Freely moving,
naked eye users can thus have the illusion of seeing virtual objects floating in
the display workspace. It is important to note that the images of these objects
are sharp only near the holographic screen, since the spatial resolution of the
display is variable with respect to depth, approximately according to the equation
s(z) = s0 + 2kzk tan(�2), where z is the distance to the holographic screen, and s0
is the pixel size on the screen surface [Agus 08] (see Fig. 9.10 left). While blurred
images are acceptable on the background, far from the viewer, excessive blurring
near the viewer leads to discomfort.

Thus, the 3D display and related rendering methods have peculiar characteris-
tics which impose constraints to the interaction and rendering system in order to
generate compelling visualizations and reduce rendering artifacts. Specifically,
the following characteristics have to be taken into account for the implementation
of a natural interactive rendering system for massive models on a light field
display:

• the spatial resolution of the display is variable with respect to depth, and
objects far from the display’s holographic screen appear blurred; thus, points
of interest of the objects should be rendered near the screen surface;

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 136

Figure 9.10: Light field display spatial resolution. The spatial resolution of the display varies
with the depth. Only the region near the holographic screen is rendered sharply.

• the calibration technique minimizes errors only on the surface of the screen;
thus, the e�ective depth of field of the display is reduced not only because of
the diminishing spatial resolution, but also because of the spatially varying
calibration accuracy;

• because of the display geometry, the angular field of view is limited and
allows presentation of objects only within well defined angular bounds.

Thus, the best viewing experience is obtained when: (a) the scene is kept
centered with respect to the screen; (b) the scene remains inside a limited depth
range (at least in the front area of the display); and (c) the frequency details of the
objects are adapted to the display’s spatial accuracy. While (c) can be obtained by
suitable rendering methods (see [Mart 12b]), (a) and (b) are best met by taking
special care to position the scene within the display workspace.

9.6.1.1 Automatic model depth adjustment

We ensure that the model is always in contact with the display hot-spot, which
should be at the center of the screen. Another requirement imposed by display
characteristics is to keep the surface being manipulated at a good viewing depth.
The display achieves its best resolution on its surface (z = 0). However, we found
that users prefer to have the object slightly protruding from the screen in order
to be able to virtually touch it (see Fig. 9.8 right). Thus, we would like the system
to place the surface approximately at a depth H⇤ a few centimeters out of the
screen. Simply placing the hot-spot at a fixed depth H⇤ is not su�cient, since the
model can have complex asymmetric shapes around the hot-spot.

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 137

Figure 9.11: Automatic hot-spot placement. The depth of hot-spot is tuned automatically during
interaction to keep the manipulated surface in a good viewing position. To do so, a least square
plane of the points in the neighborhood of the hot-spot is computed.

To implement this depth adjustment feature, we developed a feedback cor-
rection scheme that automatically updates the model’s position (and thus the
hot-spot depth) during interaction. For each user interaction step, our depth
correction method extracts a coarse approximation of the surface in contact with
the display hot-spot (see Fig. 9.11 left). This coarse point cloud, (P0, Pi

, ..., P
N

),
quickly extracted from our multi-resolution model representation (see Sec. 3.2.1),
is then used to compute a weighted average depth s

z

of the surface in the neigh-
borhood of the hot-spot H = (h

x

, h
y

, h
z

):

s
z

=

P
i

w(i)P (i)
zP

i

w(i)
(9.1)

where the weight of each point w(i)
= �

⇣
k(p(i)

x

,p

(i)
y

)�(h
x

,h

y

)k2
R

⌘
is computed by a

smooth, radially decreasing weight function for which we use the following
compactly supported polynomial: �(x) = max(0, (1� x2

))

4. Since the function
has local support, only points within an xy-distance of R from the hot-spot
contribute to determining the desired visible model surface depth s

z

. For the
purposes of this work, R was set to half the height of the display.

At this point, the amount of depth correction theoretically required is the
di�erence between the average depth s

z

and the comfortable depth H⇤ a few
centimeters out of the screen (see Fig. 9.11 right).

In order to avoid abrupt changes in depth due to any surface discontinuities
in the model and to reduce high-frequency vibrations, the depth correction is

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 138

temporally low-pass filtered by applying at each frame only a fraction � of the
full displacement (in our implementation � = 50% adequately cut all undesired
vibrations while still e�ectively correcting the scene depth). The overall model
(and thus also the surface hot-spot) is thus translated at each frame by an amount
�(s

z

�H) in the z direction.
With this scheme, we are able to automatically keep the position of the ap-

proximated surface in a comfortable viewing position (close to the focal depth).
Points near the hot-spot are therefore rendered at a good resolution and, since
they are placed out of the screen, the surface can also be “touched” by users,
increasing the quality of the experience. In our tests, a sampling rate twenty
times coarser with respect to the original surface employed for rendering resulted
to be computationally e�ective and su�ciently accurate for automatic model
depth adjustment. A prototype system integrating this approach was presented
in [Mart 12b].

9.7 Scalability

Both the rendering and user interface require specialized spatial indexing and
multiresolution structures and adaptive algorithms to ensure real-time perfor-
mance on large data-sets (billions of triangles and hundreds of points of interest
per model).

We employ kd-trees to organize the points of interest, and have extended the
Adaptive TetraPuzzles (ATP) approach [Cign 04], which already provides the
features and performance required for massive model rendering, to implement
the required geometric queries. The ATP coarse grained multiresolution structure
is based on a hierarchical tetrahedral subdivision of the input volume. Each
tetrahedron contains at leaf level a portion of the original model, while in inner
levels, coarser representations are constructed by constrained simplification from
children tetrahedra. Each node is made of a few thousands of triangles, leveraging
the cost of the CPU traversal, amortizing node selection over many graphics
primitives and properly exploiting current GPU bandwidth and processing
capabilities. The algorithm is able to produce view-dependent adaptive seamless
representations at high frame rates. The original algorithm has been improved,
similar to what has been done by Balsa et al. [Bals 13c] by using a diamond
structure which is refined with the use of a double heap refinement / coarsening
strategy, to produce time critical interruptible view-dependent cut adaptations.
At each frame, the view-adapted cut is used for all operations.

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 139

9.7.1 Nearest neighbor computation for camera control

The use of the multiresolution structure is mandatory to be able to perform,
multiple times per frame, fast nearest neighbor search at multiple scales on
massive models made up of hundreds of millions of samples, as required by
our constrained camera controller (see Sec. 9.3). We perform all searches on the
view-adapted tetrahedron graph. Each node of the tetrahedral hierarchy has
been enriched with an internal bounding box hierarchy which permits to per-
form nearest neighbor computation at fast pace. This box tree is constructed by
hierarchically bi-sectioning the node’s vertex array and calculating the associated
bounding box, exploiting the fact that the vertices in the triangle strip are sorted
in a spatially-coherent order, similarly to ray strips methods [Bals 13c, Laut 07],
which, however, construct a similar hierarchy on triangle strip. This is not re-
quired for our meshless approximation. Each node of the axis aligned box hi-
erarchy contains, in addition the implicitly defined bounding box, the first and
last indices of the vertex array portion it contains in order to be able to refine
the search. The per-node bounding box hierarchy gives us the ability to perform
nearest neighbor search at di�erent levels of resolution, just by specifying the
maximum level of the box hierarchy at which to perform the search. If the level is
coarser than the box’s maximum level, the search will return the point contained
at half of the vertex array of that node. Returning a point belonging to the vertex
array gives a better surface approximation with respect to returning for example
the center of the bounding box, which could be placed away from the surface,
depending on the point distribution inside the box. The fine search will look for
the nearest neighbor among the leaf vertices (in our implementation there are
N < 16 vertices at leaf level). Hence, coarse target search is performed near the
root of the bounding box hierarchy, while fine target search is performed deeper
in the hierarchy. In order to remove discrete sampling e�ects, each nearest neigh-
bor search returns not only a single sample but a Gaussian weighted average
p⇤ =

P
K

i=1 wi

·p
iP

K

i=1 wi

of the first K nearest neighbors identified by the knn-search, where

w
i

= (1 � d

2
i

�d

2
min

d

2max�d

2
min

)

4 is the Gaussian-like weight for each of the K points, d
i

is
the distance of p

i

to the eye, and dmax and dmin are the minimum and maximum
distances among all d

i

values. In our implementation we use K = 8 for fine target
computation and K = 16 for coarse target computation to provide smoothing
of sampling discontinuities at small CPU costs. Note, again, that this weighted
averaging process is aimed at reducing discontinuities due to discrete sampling,
not at smoothing the surface. Surface smoothing is not required for the fine target,
used for position computation, while it is achieved for the coarse target through
the sampling sparsification (subsampling) obtained by controlling search depth

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 140

in the box hierarchy.

9.7.2 Scalable selection of points of interest

Our context-based user interface requires scalable methods to e�ciently select
a good set of points-of-interest from a large database using a view similarity
metric. We start from the fact that our situation is di�erent from just image
matching, since we have full information on the camera parameters as well as
on the imaged 3D model. Thus, instead of computing image correlations or
extracting and matching feature sets, we can compute similarity based on the fact
that, for two similar views, a given point model would project to about the same
image pixel. In order to e�ciently perform the operation, we split the search into
two phases. We organize all views in a kd-tree, indexed by the observer position,
The selection of the M view candidates starts with a traversal of the kd-tree,
looking for the N � M points of view nearest to the user viewpoint that satisfy
the following two constraints: (a) the angle � between the user view direction
and the candidate view direction must be below a certain threshold (in our case
�  90

�); (b) there should not be any obstacle between the user viewpoint and
the candidate view (we perform a ray-casting between the two points of view
to check for that constraint). Constraint (a) ensures that selected viewpoint has
approximately the same orientation of the current view, while (b) ensures that the
current viewpoint sees the target viewpoint, and a simple linear path can move
the camera to the target point without collisions. Once the N nearest neighbors
set satisfying both constraints has been determined, the set is further filtered
to select the most similar views. Intuitively, two views are similar if surface
samples in 3D model geometry project approximately to the same pixels in the
two images. We perform the computation in Normalized Device Coordinates
(NDC), see Fig. 9.6, using minimal information. For that, a small random set of
3D points is extracted from the view-adapted tetrahedron graph. This is done
using a simple traversal of the graph leafs, selecting a few points per node. These
points are then projected using the view parameters both from the candidate view
and the user viewpoint, in order to calculate the average screen space distance
between the two point sets, defined as d =

1
S

·
P

S

i=1 kPV
j

p
i

� PV
current

p
i

k, where
P is the projection matrix, V

j

is the candidate’s view matrix, V
current

is the current
view matrix, and p

i

corresponds to each of the S random selected points. Only
N  M views pass this last filter where d  2 is required (as we work in NDC
coordinates, a distance of two corresponds to screen width or height). A major
advantage of this technique is that it is purely geometry-driven, and the only
required information on the stored views are the viewing parameters.

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 141

9.8 Implementation and Results

We have implemented a prototype hardware and software system based on the
design previously discussed in this chapter.

The techniques presented in this work have been implemented in a system
for exploration of highly detailed models in museum settings. The system has
been successfully used in a variety of settings, in particular for the exploration
of a set of 3D models derived from the 3D scan acquisition of the statues of
Mont’e Prama, ancient stone sculptures created by the Nuragic civilization of
Sardinia, Italy, see Fig. 9.12(c),9.12(d). The 3D models of these statues are highly
detailed and often made of a few disconnected parts, posing important problems
to navigation techniques. See Bettio et al. [Bett 13, Bett 14b] for details on the
Mont’e Prama dataset.

(a) Museum setup (b) Main menu (c) Mont’e Prama database (d) Rendered model

Figure 9.12: Application setup. a) Setup of touch-screen large projection device on a exhibition.
b) Main menu interface. c) Mont’e Prama full database. d) Detail of a single Archer statue.

9.8.1 Reference implementation

A reference system integrating all techniques described in this paper has been
implemented on Linux using OpenGL and GLSL for the rendering, and Qt
4.7 for the interface, while the database component relies on BerkeleyDB. The
hardware setup for the interactive stations was composed of a 2.5m-diagonal
back-projection screen, a 3000 ANSI Lumen projectiondesign F20 SXGA+ projector,
and a 23” ACER T230H optical multi-touch screen, both controlled by a PC with
with Ubuntu Linux 12.10, a Intel Core i7-3820 @ 3.6Ghz, with 8GB of RAM and a
NVIDIA GTX 680 GPU. The multi-touch screen was designed to be placed one
and a half meter away from the projection screen in order to allow visitors to see
the whole display without being occluded by the user that was interacting.

The system has been tested on a variety of models including the Mont’e Prama
statues. Models were rendered using a target resolution of 0.5 triangles/pixel,
leading to graphs cuts containing on average 250 leaf nodes, with approximately
8K triangles/node. Interactive performance was achieved for all data-sets, with
frame-rates constantly above 30fps and negligible interaction delays. Reusing

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 142

the multiresolution structure used for rendering also for object queries during
interaction proved successful, as camera transformation computation in our
camera controller always took just between 10% and 30% of the graph adaptation
time required for rendering.

9.8.2 User study

In order to assess the IsoCam exploration controller we carried out a thorough
user evaluation involving quantitative and subjective measurements based on
interactive tasks carried out by a number of volunteers.

(a) Global positioning task (b) Local positioning task (c) Target writing in the model

Figure 9.13: User interface evaluation. Tasks consisted of: (a) manipulating the model until
reaching given specified global positions highlighted in yellow, (b) exploring a search area to find
meaningful details (b), (c) identifying a 5-letter writing textured over the model.

9.8.3 Goal

The main goal of the evaluation was to assess whether the proposed camera
controller is adequate for usage in the typical scenario of virtual museums, where
many users with di�erent skills and experiences try to interactively explore
digital models in order to highlight details at various scales. Given the large
number of 3D object exploration techniques, it is impossible to carry out a fully
comprehensive comparison considering all the existent navigation systems. We
thus limited our comparison to the virtual 3D trackball [Henr 04], and the
HoverCam proximal navigation controller [Khan 05]. The virtual trackball was
chosen because it is the interactive camera controller most commonly employed in
virtual environments, and is considered easy and immediate to learn. HoverCam
was considered because it is the most similar to IsoCam between the object-aware
techniques available in literature.

9.8.4 Setup

The experimental setup considered the reference system implementation de-
scribed in Sec. 9.8.1. All user interfaces were operated using the same precise

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 143

optical touch screen device using a multi-touch device mapping. IsoCam and
HoverCam used the same device mapping presented in Sec. 9.5. The Virtual
TrackBall was implemented by rigidly attaching the object to the user’s hand and
uses a typical RST approach: with one finger user generates 2-DOF rotations
on the model’s bounding sphere, while with two fingers (pinch) users perform
zoom in or out by increasing or reducing the distance between the fingers, or
pan the model by moving the fingers inside the workspace. As testing model,
we selected a 80M triangles Archer statue from the Mont’e Prama collection,
which has detailed carvings and is missing some parts: half bow, one hand and
half leg (see Fig. 9.13(a)). The reconstructed model is thus composed by two
disconnected parts (whole body and disconnected right foot), and presents many
sharp features, surface saddles peaks and valleys, whose exploration represents
a non-trivial task.

9.8.5 Tasks

The experiments consisted in letting users try the three di�erent manipulation
controllers (IsoCam, TrackBall [Henr 04], and HoverCam [Khan 05]) in the
context of a target-oriented interaction task [Mart 09]. We designed our task to
measure performance in the macro-structure and micro-structure inspections
tasks typical of cultural heritage model explorations. Participants were asked
to manipulate the model until reaching given specified global positions, and
perform local small-scale explorations of the model surface with the goal of
finding meaningful information. Targets were indicated by yellow patches lying
on the Mont’e Prama bowman model, and the goal was to reach them as quickly
as possible by starting from a fixed position and adequately manipulating the
model in order to adequately position the viewpoint over the indicated areas (see
Fig. 9.13(a)). When the target area was reached, the yellow patch area became an
exploring area (see Fig. 9.13(b)) and users had to search and identify a 5-letter
writing textured above the surface of the bowman (see Fig. 9.13(c)). Users had to
read correctly the writing by moving locally the model up to reach an adequate
orientation and scale, and identify it between 5 di�erent choices indicated in
buttons appearing under the touch area.

9.8.6 Participants

For the user analysis, 20 participants (17 males and 3 females, with ages ranging
from 17 to 65, mean 36.5± 12.5 years) were recruited between the participants
of the various exhibitions, CRS4 employees (including researchers, network
administrators and administrative sta�), and high school students. They were

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 144

subdivided in two groups according to their experience with 3D interfaces (12
novices and 8 experts).

9.8.7 Design

Each participant saw the three interfaces in randomized order. Users were first
allowed to become familiar with the controller by watching a brief video showing
how it works (part of the help system of the museum installation), trying it for two
minutes, and performing one task just for testing. After the training session, the
measured tests consisted of 5 trials, where targets were randomly selected from
a list of 15 potential candidates, as to avoid any bias due to a-priori knowledge
of target positions. For a complete testing session, users needed times ranging
from 15 to 20 minutes. A trial was considered aborted if the target area was not
reached within 40 seconds, or the inscription was not correctly identified within
40 seconds from reaching the target area. The times needed for reaching the
target areas (global positioning) and for identifying the correct writings (local
browsing) were measured and recorded. In summary, the complete test design
consisted of 20 participants, each one testing 3 camera controllers with 2 tasks
(positioning and identification) on 5 targets for a total of 600 time measurements.
At the end of the experiments, participants were also asked to fill a questionnaire
comparing the performance of the three controllers by indicating a score in a
5-point Likert scale with respect to the following characteristics: ease of learning,
ease of reaching desired positions, and perceived 3D exploring quality. Finally,
participants were asked to indicate their preferred controllers.

9.8.8 Performance evaluation

Before collecting the results, we expected that IsoCam would perform similarly to
HoverCam and TrackBall for global positioning, while we expected a significant
improvement in the local positioning task. We also expected that expert users
might have similar performances for all the three camera controllers, and signifi-
cant di�erences when the controllers are used by novice users. We performed an
analysis of task completion times for global positioning and identification, and
total times. Fig. 9.14 shows the boxplots of the task completion times, for novice
and expert users, as rendered by the R package [R Co 13]. The bottom and top
of each box are the first and third quartiles, the band inside the box is the second
quartile (the median), and the ends of the whiskers extending vertically from the
boxes represent the lowest datum still within 1.5 IQR (inter-quartile range) of the
lower quartile, and the highest datum still within 1.5 IQR of the upper quartile.
Outliers are indicated as small circles. An analysis of the boxplots in Fig. 9.14

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 145

IsoCam Trackball HoverCam

0
1
0

2
0

3
0

4
0

Reach time for novices

C
o
m

p
le

tio
n
 t
im

e
 (

se
c)

IsoCam Trackball HoverCam

0
1
0

2
0

3
0

4
0

Identification time for novices

C
o
m

p
le

tio
n
 t
im

e
 (

se
c)

IsoCam Trackball HoverCam

0
2
0

4
0

6
0

8
0

Total time for novices

C
o
m

p
le

tio
n
 t
im

e
 (

se
c)

IsoCam Trackball HoverCam

0
1
0

2
0

3
0

4
0

Reach time for experts

C
o
m

p
le

tio
n
 t
im

e
 (

se
c)

IsoCam Trackball HoverCam

0
1
0

2
0

3
0

4
0

Identification time for experts

C
o
m

p
le

tio
n
 t
im

e
 (

se
c)

IsoCam Trackball HoverCam

0
2
0

4
0

6
0

8
0

Total time for experts

C
o
m

p
le

tio
n
 t
im

e
 (

se
c)

Figure 9.14: Performance evaluation. The proposed IsoCam camera controller was compared
to the Virtual TrackBall [Henr 04] and HoverCam [Khan 05] with respect to performance and
perceived navigation quality during the exploration of a complex Mont’e Prama statue model. In
boxplots, red indicates IsoCam, yellow TrackBall, and blue HoverCam.

(bottom row) reveals that experts had similar performances with all interfaces,
even if they were slightly faster with IsoCam. Through direct observation of
expert users while performing the tasks, we noticed that the common strategy for
completing the global positioning tasks consisted of moving the model at macro-
scale before performing one zooming operation towards the target area. For the
identification tasks, most expert users zoomed out the area in order to recognize
the detail, and finally zoomed in to the target writing. In this way, for most
of the targets, performances were more or less similar independently from the
interface employed. However, for targets positioned in sharp areas of the model
or close to disconnected parts, a number of users experienced problems with
HoverCam and TrackBall. This explains the presence of some distant outliers in
the boxplot of identification times for HoverCam and TrackBall. On the other
hand, from top row in Fig. 9.14, it appears evident that novice users had better
performances and felt more comfortable with IsoCam, especially during the iden-
tification task. Direct observation of interaction during the tasks revealed that
naive participants did not follow any common strategy for completing the tasks,
but the movement was mostly instinctive, with a gradual usage of zooming and
the tendency of trying to slide along the surface when performing the exploration

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 146

and identification task. In most of the trials, independently from the position
of the target, novice users performed continuous motion corrections, especially
when using HoverCam and TrackBall, while with IsoCam they were able to keep
smooth trajectories. To this end, particularly interesting is the size of IQR for the
identification time (see second column of Fig. 9.14), from which it appears evi-
dent that both novices and experts had homogeneous performances during the
local browsing task with IsoCam, but not with HoverCam and TrackBall. These
results can be explained by considering that a direct surface orbiting technique
like HoverCam can su�er when dealing with sharp features and disconnections,
such as the ones contained the Mont’e Prama bowman model, while TrackBall
needs many mode switches between rotations, translations and zoom to be able
to inspect highly-detailed surface models while remaining at constant distance.

(a) Subjective comparison of camera controllers (b) Preferred camera controller

Figure 9.15: Qualitative evaluation. (a) Users were asked to evaluate the performance of the
three camera controllers by indicating a score in a 5-point Likert scale with respect to ease of
learning, ease of reaching desired positions, and perceived 3D exploring quality. (b) Users were
asked to indicate the preferred controller.

9.8.9 Qualitative evaluation

Fig. 9.15(a), showing histograms with error bars for qualitative results, provides
indication that users found the Virtual TrackBall easier to learn but not simple
to operate, since they perceived that with IsoCam they could more easily reach
targets, and they also felt more comfortable during exploration. The easy-to-learn
property of the TrackBall is in large part due to the fact that the technique is
(falsely) perceived as standardized, since most users have already been exposed
to it, at least in standard 2D RST interfaces. It appears also evident that IsoCam
revealed to be strongly appealing for users (see Fig. 9.15(b)). In addition, from
think-a-loud comments, we derived that the large majority of novice users noted
and appreciated the superior smoothness of the IsoCam camera controller with
respect to the HoverCam.

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 147

9.8.10 Exhibition

The system has been successfully employed in a large exhibition held during the
65th International Trade Fair of Sardinia, held from April 25th to May 6th 2013
(see Fig. 9.1). The Mont’e Prama restoration project was presented to the visitors,
together with virtual stands for interactively exploring the entire set of statues.
In that setting, visitors were presented with a simple touch interface to select the
statue to be explored. A gallery of models was shown on the multi-touch screen,
and specific information about the currently selected object was shown in the
projective screen. Sliding to left and right allowed the user to change the selected
model, while a click on the central image invokes the associated action: showing
the objects under the selected hierarchy group, or exploring the selected object.
Once the model to explore has been selected, the visualization application came
in, providing the user with an almost empty multi-touch screen (only the buttons
for help and going back were shown), and the high resolution model being
displayed in the projective screen, see Fig. 9.12(b). In order to interact with it,
user simply had to perform touch gestures on the multi-touch screen without any
visual feedback other than the visualization. Being these gestures relative to the
initial touch position, user simply had to associate their movement on the screen
surface with the behavior of the navigation, as would happen with a joystick,
for instance. A total of approximately 3500 visitors attended the exhibition, and
many of them interacted with the models using our interface (see accompanying
video). Typically, groups of people gathered in front of the interactive stations
and freely interacted with the system. The unobtrusive interface and setup was
very e�ective in this setting. Informal feedback received during the exhibition
was very positive. In particular, all users particularly appreciated the size of
projection, the interactivity of the navigation, and the fine details of the statues
provided by the multiresolution renderer.

A follow-up of this work is now the basis for permanent exhibitions on Mont’e
Prama statues at the National Archaeological Museum in Cagliari, Italy and at
the Civic Museum in Cabras, Italy. Each of these two installations employ a 7500
Lumen projector illuminating a 2.5m-high 16:10 screen positioned in portrait
mode. This configuration permits rendering the statues at full scale. By matching
projection parameters with the position of the viewer operating the console, we
can achieve a natural viewing experience.

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 148

9.9 Discussion

We have presented an interactive system for natural exploration of extremely
detailed surface models with indirect touch control in a room-sized workspace,
suitable for museums and exhibitions. Furthermore, a museum installation has
been set up and thousands of visitors had the possibility, during two weeks, of
browsing high resolution 3D laser scan models of the 38 restored statues of the
Mont’e Prama complex. We have presented a novel camera controller based on
distance field surfing, enriched with a dynamic selection of precomputed views
and point of interest, which does not require the visualization of hot-spots over
the model, but is able to dynamically identify the best views near the current user
position and to display connected information in overlay. The presented IsoCam
camera controller has been compared with other two consolidated approaches,
collecting quantitative and qualitative results from a series of tests involving 20
people. The camera controller appears to be intuitive enough even for casual
users who quickly understand how to browse statue models in a short trial period.
Our indirect control low-degree-of-freedom controller allows users to pan, rotate
and scale, with simple and natural gestures, massive models, while always facing
the model surface, without requiring precise pointing methods, and without
the monolithic surface limitation of previous orbiting and hovering techniques.
Moreover, we have shown how our camera controller can be exploited to enhance
3D rendering on light field displays. The resulting virtual environment, which
combines ease of use with high fidelity representation and low-cost setup, ap-
pears to be well suited for installations at museums and exhibition centers. Our
current work concentrates on improving interaction quality and on extending
the system for supporting bidirectional connection between multiple multimedia
types as well as narrative contents.

Advantages. The proposed setup is simple, low-cost and suitable for exhibitions
and museums; it supports large scale display surfaces where multiple users can
focus their attention and objects can be displayed at an imposing scale. The pro-
posed navigation technique, which can also be employed in other more standard
settings, lets inexperienced users inspect topologically complex 3D shapes at
various scales and without collisions, integrating panning, rotating, and zooming
controls into simple low-degree-of-freedom operations. Our approach, based on
distance-field isosurfaces, significantly improves over previous constrained orbit-
ing and proximal navigation methods [Khan 05, McCr 09, Moer 12, Mart 12b] by
better supporting disconnected components, more seamlessly transitioning be-
tween orbiting and proximal navigation, and providing smoother camera motion,

Chapter 9. IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on
Large Projection Setups 149

while being simpler to implement as it is based on a single unifying concept and
does not require complex algorithms (e.g., motion prediction) to handle special
cases. On-demand context-based selection of “nearby” points of interests is well
integrated with the IsoCam interface, reduces clutter, does not require a pointing
device for hot-spot selection, and supports overlaid information associated to
target views. Our scalable implementation supports giga-triangle-sized models
and hundreds of points-of-interest on commodity platforms.

Limitations. As for all current approaches, our approach has also limitations.
The presented approach targets the traditional non-immersive setting with 2D
screens and low-DOF input devices, and might be not suitable for more immer-
sive setups (e.g., CAVEs). In addition, we only target the problem of 3D model
exploration with image/text overlays. Using other associated multimedia infor-
mation and/or supporting narratives are orthogonal problems not treated in this
work. The proposed navigation technique achieves simplicity by constraining
camera/model motion. As for many other constrained navigation techniques,
not all view positions are thus achievable.

Scalability. The isosurface is computed on-the-fly by exploiting the underlying
e�cient data structures containing the geometry. This computation cost makes
this method not suited for platforms with limited performance (i.e., mid-range
mobile devices, or scripted environments such as Web browsers). In order to
overcome this limitation, a discrete set of pre-computed isosurface levels could
be used at the expense of considerable memory resources.

9.10 Bibliographical Notes

The major part of the content in this chapter is based on paper [Mart 14], where
we present a user interface for navigating highly detailed 3D models using
a object-aware camera controller and an interactive point-of-interest selector
providing the user with the ability to explore in detail the 3D object without
losing the focus and being able to query the system for information on close
details. The content related to “light field displays" is based on paper [Mart 12b].

C������

10 .

ExploreMaps: Ubiq-
uitous Exploration of
Panoramic View Graphs
of Complex 3D Environ-
ments

In previous chapters, we have already explored constrained mo-
tion control for supporting guided navigation. The proposed meth-
ods are object-aware, and use some knowledge of the displayed
scene to guide the user, by simply setting pivots for rotation, or
constraining the camera to follow the displayed object’s surface.

The approach presented in this chapter is focused, instead,
on supporting ubiquitous interactive exploration of scenes with
complex lighting. To achieve this, we rely on the approach pre-
sented in Chapter 7, which automatically constructs a graph of
panoramic views and paths. Since the possible space of positions
of the camera is extremely limited in this approach, it is reason-
able to precompute images from all possible viewpoints (using
maximum quality offline settings). The resulting camera-controller
is extremely constrained, as it must only implement a graph visit.

10.1 Introduction

I� current 3D repositories, such as Blend Swap, 3D Café or Archive3D, 3D
models available for download are mostly presented through a few user-
selected static images. Online exploration is limited to simple orbiting

and/or low-fidelity explorations of simplified models, since photo-realistic ren-
dering quality of complex synthetic environments is still hardly achievable within
the real-time constraints of interactive applications, especially on low-powered
mobile devices or script-based Internet browsers.

151

Chapter 10. ExploreMaps: Ubiquitous Exploration of Panoramic View Graphs of Complex
3D Environments 152

Moreover, navigating inside 3D environments, especially on the now pervasive
touch devices, is a non-trivial task, and usability is consistently improved by
employing assisted navigation controls [Chri 08].

Spatially indexed photographic imagery, popularized by Internet systems such
as Google StreetView and Bing Maps StreetSide, is, on the other hand, proving
to be an e�ective mean for generating compelling interactive virtual tours of real
locations. Designing such guided walk-throughs for synthetic 3D environments
manually is, however, a hard and time-consuming task.

In this work, we introduce an approach aimed at automatically providing a
richer experience in presenting 3D models on dedicated web sites. The method
exploits the ExploreMaps visualization technique presented in Chapter 7, which
provides a graph-based representation of the 3D scene, for designing a low
degrees-of-freedom navigation interface. During exploration, the user is able to
navigate between a series of predefined camera positions and inspect a panoramic
view of the scene from them. Usability and sense of presence are increased by
leaving orientation and field of view free when looking at the scene from a
probe position, and gently converging to the closest target “good orientation”
during transitions. Due to negligible CPU/GPU usage, real-time performance
is achieved on emerging WebGL environments even on low-powered mobile
devices

Figure 10.1: Mobile web-based exploration. The graph-based representation is exploited for
providing visual indexes for the 3D scene and for supporting, even on low-powered mobile
devices, interactive photo-realistic exploration based on precomputed imagery. On the left,
browsing the German Cottage model on a Nexus 4 phone; on the right browsing the National
Museum model on an Acer Iconia tablet.

10.2 Browsing Explore Maps

One of the main applications of ExploreMaps is supporting ubiquitous browsing
of complex illuminated models using minimal CPU/GPU resources on web-
based and mobile devices. We describe here the basic features of our reference
JavaScript/WebGL implementation, which can run on any WebGL-enabled web
browser, as shown in Fig. 10.1. The view graph is exploited both to provide a

Chapter 10. ExploreMaps: Ubiquitous Exploration of Panoramic View Graphs of Complex
3D Environments 153

visual index of the entire scene and to let users move within the environment. In
automatic mode, the viewer traverses the graph by random walk. In interactive
mode, the window is subdivided in three areas (see Fig. 10.3): the central area
shows the high-res spherical panorama from the current probe position, while
the right thumbnail bar (probe bar) shows all available probes, and the bottom
context-sensitive thumbnail bar (path bar) shows selected probes reachable from
the current position.

Probe Bar. Exploits a a linearization of the views-graph in order to present a list
of views where views which are close to each other are also close in the thumbnail
list. For this purpose, we compute a weighted minimum linear arrangement
(MLA) of the probes, i.e., a permutation ⇧ of the probes such that the cost
P

ij2E w
ij

|⇧(i)� ⇧(j)| is minimal, where w
ij

is the reciprocal of the length of
the path connecting probe i to probe j. Intuitively, this ordering will attempt to
cluster together the nodes that are close-by and connected by paths (see Fig. 10.2).
We use this ordering at run-time to present nodes in a thumbnail bar using a
logical exploration order. Since the MLA is known to be NP-hard, we heuristically
approximate the solution using a multilevel solver [Safr 06].

Original

Optimized

Figure 10.2: Graph optimization. Original and linearly arranged graphs. The optimized layout
(bottom) reorders probes in a more coherent manner, moving nearby probes that are closely
connected by short paths.

Path Bar. Panoramas in the path bar correspond to the target probes of the paths
leaving the current probe. They are ordered based on the angle between the
current view direction and the path direction, so as to always center the probe
bar on the path most aligned with the current view, see Fig. 10.3. Panoramas
are initially oriented towards their most preferential view direction. The user

Chapter 10. ExploreMaps: Ubiquitous Exploration of Panoramic View Graphs of Complex
3D Environments 154

is free to interactively change orientation with a dragging motion both in the
central panorama and in the small panoramas appearing in the thumbnail bars.
In addition, the central panorama is also zoomable. When a probe in one of the
bars is selected, the path leading to it, if available, is shown in the main viewport.
Clicking on the central viewport triggers a go-to action. When a non-directly
connected probe is selected in the probe bar, the new probe is downloaded, and
presented using a cross-dissolve transition. When going to a directly connected
probe, the panoramic video corresponding to the selected path is started. The
view direction is then interpolated over time, during video playback, between
the one at the time of clicking, which depends on the user, to the arrival one,
chosen among the best precomputed view directions. This improves the quality
of the experience, since transitions are not repeated exactly (unless the starting
position is exactly the same), and motion is consistent with the user-defined
current orientation. Using precomputed video transitions with a single view
direction would be too constraining, forcing the system to move the camera to
the starting orientation of the video before transition, and forcing the arrival to a
single fixed camera pose. Since we need a free viewpoint panoramic video, we
render it by remapping frame areas on the 6 faces of the cube around the current
point of view.

Figure 10.3: WebGL viewer. The central WebGL viewer area shows the currently selected probe,
while the right thumbnail bar visually indexes the scene, and the bottom thumbnail bar shows a
context-sensitive subset of reachable target position.

Chapter 10. ExploreMaps: Ubiquitous Exploration of Panoramic View Graphs of Complex
3D Environments 155

10.3 Implementation and Results

We have implemented a prototype hardware and software system based on the
design previously discussed in this chapter. The browsing application has been
written in JavaScript using WebGL and HTML5. It is able to deliver results in a
HTML5 canvas running in WebGL-enabled browsers (Chrome 30 was used for
tests in this work).

10.3.1 Test models

In order to evaluate our approach, we downloaded several models from public
repositories (Trimble 3D Warehouse, Archive3D). These websites show a few
views of each model so that users can judge if they are interested in downloading
it. Therefore, these sites are a perfect example of how the ExploreMaps could
be used for a higher quality browsing of 3D models. Samples from browsing
various of the models used in our tests can be seen in Fig. 10.4, which have
been selected to be representative of various model kinds, featuring complex
illumination and/or geometry.

Figure 10.4: Browsing results. Browsing samples from di�erent scene types. The whole scene can
be explored by either following probe connections, or selecting target probe from the thumbnail
bar.

10.3.2 Browsing

Our prototype client has been tested on a variety of devices, including a Nexus
4 phone (Qualcomm Snapdragon S4 Pro 4-core; 1280x768 screen) and an Acer

Chapter 10. ExploreMaps: Ubiquitous Exploration of Panoramic View Graphs of Complex
3D Environments 156

Iconia 500 tablet (AMD Fusion C-60 and Radeon HD6290; 1280x768 screen)
connected to a wireless network. Our tests demonstrate our ability to sustain
interactive performance on photo-realistic environments. During navigation, the
user can look around within a single probe, and move to distant ones without
losing the sense of location (see browsing samples from a variety of scenes in
Fig. 10.4). The frame rate during probe exploration typically exceeds 50 fps,
while the frame rate during video transitions drops down to about 20 fps due to
video decompression and texture updates. Even though our WebGL application
is not a full-fledged viewer, it shows the potential of this automated browsing
approach. While some of the models could be explorable on such a mobile device
in full 3D, this could definitely not be done while presenting the same quality
images (see, for instance, volumetric illumination e�ects in the Museum example
of Fig. 10.4). There is also a definite advantage on using thumbnails for quick
scene browsing and panoramic videos for transitions with free selection of both
the starting orientation and the arrival one.

10.4 Discussion

Our constrained navigation approach enables interactive exploration of scenes
with complex lighting on a wide range of platforms where it would be impossible
otherwise. Although our interface has the ability of exploring the whole scene
thanks to the graph-based description, there are many possible improvements.
In particular, there is no way to aim at a point of interest and move to the probe
that has a best view of it, which may be frustrating for the user. Moreover, the
view graphs should also be exploited to provide location awareness through the
automatic generation of overhead views.

There are many potential applications for the ExploreMaps. In particular,
we aim to open the way to a richer experience in presenting 3D models on
dedicated web sites, no more limited to few still images or very constrained
orbiting interfaces. Furthermore we can turn construction CAD into navigable
previews for presentation to stakeholders/potential owners.

Advantages. The proposed interface provides the user with simple point and click
navigation to neighboring points of view, as well as image-assisted navigation to
travel to a given scene point of view through a thumbnail scroll bar.

Limitations. The proposed user interface is very limited and thus can be extended
in many ways. Exploiting the transition videos connecting neighboring points of
view, the user could be allowed to control the displacement in the direction of

Chapter 10. ExploreMaps: Ubiquitous Exploration of Panoramic View Graphs of Complex
3D Environments 157

movement of the video while being able to explore the panorama available at any
frame. In this way, navigation could be extended to allow navigating through
the connecting paths, in addition to inspecting point of view panoramas.

Scalability. With the only requirement being correct panorama rendering, typ-
ically implemented on graphics platforms supporting textured polygons, this
technique is suitable for most platforms including web browsers running on
desktop and mobile systems. Web browsers APIs for image and video decoding
provide e�cient data streaming, which together with WebGL result in a portable
solution for a wide range of platforms.

10.5 Bibliographical Notes

Most of the contents of this chapter regarding is based on paper [Di B 14], where
we presented an approach for rendering complex 3D scenes with complex illu-
mination by computing a set of best views from the input model and letting the
user navigate a graph-based representation of the scene through precomputed
paths connecting an optimized set of camera positions. The approach presented
in this chapter corresponds to the navigation method we designed for exploiting
the visualization technique described in Chapter 7.

Part IV

Beyond Visual Replication

159

When exploring complex 3D models, information can be found at multiple
scales, i.e., global shape or very fine details on the model surface. The exploration
of this kind of 3D models requires guided navigation techniques in order to
provide an easy-to-use interface that allows the user to concentrate on the 3D
virtual object instead of the interaction itself. Moreover, 3D annotations are often
used to enhance and integrate the understanding of the visual information at
multiple scales by providing contextual information.

This last part focuses on navigation-oriented methods for the exploration of
complex annotated 3D models with unobtrusive guidance and contextual infor-
mation presentation without cluttering the visualization.

Type Approach Method Published
in Features

Navigation-
oriented

- Guided navigation
- Stochastic rec-

ommendation
system

See Chapter 11

EuroVis’15

- Unobtrusive guided navigation
- Non-cluttering information dis-

covery
- Non-linear information presenta-

tion
- Simple authoring

Table 10.1: Annotated 3D model exploration methods.

C������

11 .

Adaptive Recommenda-
tions for Enhanced non-
linear Exploration of An-
notated 3D Objects

While previous chapter have mostly focused on methods to com-
pactly represent 3D scenes, rapidly render them, and efficiently
explore them through camera controller, in this chapter we fo-
cus on the problem of letting casual viewers explore detailed
3D models integrated with structured spatially associated de-
scriptive information. The basic idea is to use a graph-based
representation of the information, encoding the preferred order
of presentation of information associated to particular views. At
run-time, we let users navigate inside the 3D scene, using one
of the object-aware controllers presented in previous chapters,
while adaptively receiving unobtrusive guidance towards interest-
ing viewpoints and history- and location-dependent suggestions
on important information, which is adaptively presented using 2D
overlays displayed over the 3D scene. By combining information
overlays with guided navigation we obtain an approach that meets
many of the requirements set up in Chapter 2.

11.1 Introduction

D������ multimedia content and presentations means are rapidly increas-
ing their sophistication and are now capable in many application
domains of describing detailed, complex, three dimensional represen-

tations of the physical world. Providing e�ective 3D content presentations is
particularly relevant when the goal is to allow people to appreciate, understand
and interact with intrinsically 3D virtual objects. Digital multimedia content
and presentations means are rapidly increasing their sophistication and are now

163

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 164

capable in many application domains of describing detailed representations of
the physical world. Providing e�ective 3D exploration experiences is particularly
relevant when the goal is to allow people to appreciate, understand and interact
with intrinsically 3D virtual objects. Cultural heritage (CH) valorization and
Cultural Tourism are among the sectors that benefit most from this evolution, as
multimedia technologies provide e�ective means to cover the pre-visit (documen-
tation), visit (immersion) and post-visit (emotional possession) phases [Econ 11].
In order to e�ectively support a rich, informative, and engaging experience for
the general public, 3D representations should, however, go beyond simple visual
replication, supporting information integration/linking, allow shape-related
analysis, and providing the necessary semantic information, be it textual or
visual, abstract or tangible. Much of this information requires spatial associa-
tion, as it describes, or can be related to, di�erent spatial contexts. For instance,
cultural artifacts are often very complex 3D objects, with subtle material and
shape details, presenting information at multiple scales and levels of abstractions
(e.g., global shape and carvings). Even the finest material micro-structure carries
valuable information (e.g., on the carving process or on the conservation status).

Until recently, the most widespread ways to present information around 3D
reconstructions have been through mostly passive visual presentation modalities,
such as videos or computer-generated animations. Interest is, however, now
shifting towards more flexible active modalities, which let users directly drive
exploration of 3D digital artifacts. These active approaches are known to engage
museum visitors and enhance the overall visit experience, which tends to be
personal, self-motivated, self-paced, and exploratory [Falk 00]. In general, visi-
tors do not want to be overloaded with instructional material, but to receive the
relevant information, learn, and have an overall interesting experience. To serve
this goal, user-friendly and flexible systems are needed, and many challenges
need to be addressed in parallel [Kufl 11]. Our work, motivated by a project
for the museum presentation of cultural heritage objects (see Sec. 11.2) deals
with the particular problem of letting casual viewers explore detailed 3D models
integrated with structured spatially associated descriptive information in form
of overlaid text and images.

Approach Our goal is to let users explore spatially annotated 3D models using
a walk-up-and-use user-interface that emphasizes the focus on the work of art.
Content preparation, done o�ine with a authoring tool, organizes descriptive
information in an information graph. It should be noted that this graph does not
provide a 3D scene description, as the usual scene graph, but is used to structure
annotations and relate them to the 3D scene.

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 165

Each node associates a subset of the 3D surface seen from a particular viewpoint
to the related descriptive annotation, together with its author-defined importance
and its user-determined and evolving popularity.

Graph edges describe, instead, the strength of the dependency relation between
information nodes, allowing content authors to describe the preferred order of
presentation of information.

At run-time, users navigate inside the 3D scene, while adaptively receiving
unobtrusive guidance towards interesting viewpoints and history- and location-
dependent suggestions on important information, which is adaptively presented
using 2D overlays displayed over the 3D scene. The approach is implemented
within a scalable system, supporting exploration of information graphs of hun-
dreds of viewpoints associated to massive 3D models, using a variety of GUI
setups, from large projection displays to smartphones.

Contribution Our approach, motivated by a real-world visual presentation project
in the CH domain, combines and extends state-of-the-art results in several areas.
Our main contribution is the flexible integration of stochastic adaptive recom-
mendation system based on a structured spatial information representation,
centered around annotated viewpoints, with a walk-up-and-use user interface
that provides guidance while being minimally intrusive.

11.2 Overview

Figure 11.1: System overview. At run-time, users navigate inside the 3D scene, while adap-
tively receiving unobtrusive guidance towards interesting viewpoints and history and location-
dependent suggestions on important information, which is adaptively presented using 2D overlays
displayed over the 3D scene.

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 166

Requirements R1–R13, as well as our analysis of related work presented in Chap-
ter 3, were used to drive our design process, which resulted in the definition of
an approach based on the following concepts:

• Information graph and authoring We use a graph of 3D views to represent
the various relations between annotations and their spatial position with
respect to the 3D model. Each node associates a subset of the 3D surface
(ROI) seen from a particular viewpoint to the related descriptive annotation
(R11), together with its author-defined importance. Graph edges describe,
instead, the strength of the dependency relation between information nodes,
allowing content authors to describe the preferred order of presentation of
information (R12). The information graph can be created o�-line by selecting
a reference view for each presented information, drawing an overlay image
using standard 2D tools (R13), and indicating dependencies by selecting
strong and weak predecessors for each view. This leads to a simple but e�ec-
tive procedure to create spatially relevant rich visual information in forms of
linked overlays. Authoring details are orthogonal to the proposed method
and are not detailed here. In practice, in this work, we used the exploration
system to select the views that are to be annotated, and store snapshots
as PNG images. Annotations are then created using a drawing system (li-
breo�ce draw), and exporting the overlays as PNG images. The graph is
then created with a simple image browser, that shows images+overlays and
defines dependencies by referencing other images, saving the result as an
XML file.

• Exploration In order to provide an engaging self-paced experience, we let
users freely explore 3D models using an interactive camera controller (R6),
with a user interface that presents in the main view only the 3D scene of
interest (R8). An adaptive recommendation engine based on a state machine
runs in parallel with user interaction, and identifies which are the current
most interesting information nodes, using a scoring system based on the pre-
vious history of visited nodes, the dependency graph and the current user
viewpoint (R11, R12, R13), see Fig. 11.1. A suggestion is then stochastically
identified among these candidate nodes, with a probability proportional to
the score (R12). The non-deterministic choice respects mandatory presen-
tation orders, supporting classic authored storytelling, while introducing
variations in the exploration experience providing non-linear information
presentation. If the selected information node’s view parameters are close
enough to the current view, the user is unobtrusively guided towards it by
smoothly interpolating camera parameters during interaction towards the

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 167

best view (see below). Otherwise, the proposal is visually presented for a
limited time to the user in a small inset viewport (R8). If the user accepts it, a
small animation is activated to bring the user to the selected target viewpoint.
When the user is aligned with the target view, the corresponding textual and
visual overlay is displayed on top of the 3D view (R8, R11). This approach
avoids the use of a series of hot-spots over the model, which require pointing
methods and/or produce clutter (R8). After a suggestion is taken or ignored.
the information graph is updated, and a new suggestion is selected based
on the new state. The so created story telling path is a non-linear dynamic
exploration of the information graph, which is able to provide content in a
consistent manner, but with di�erent flavors depending on the user attitude
to follow the proposed indications. This approach mimics the experience of
a tour with an expert which describes and highlights the parts of the model
on which the user is mostly interested.

• User-interface and device mapping The proposed approach poses little
constraints on the GUI, as it requires only means for controlling the camera
and accepting a suggestion (R9). In particular, we do not employ hot-spots
(R8) and can rely on incremental controls for camera navigation, as, in partic-
ular, we do not require 2D or 3D picking. This makes it possible to implement
the method in a variety of settings. In this work, we employ an approach that
decouples the devices for interaction and for rendering as to allow for large
projection surfaces and enable multiple users to watch the whole screen
without occlusion problems and staying at a suitable distance from it when
viewing large objects of imposing scale (R8,R9). The widespread di�usion
of touch devices, such as tablets or smartphones, has made people used
to touch-based user interfaces. While no real standard for 3D touch-based
interaction exists [Keef 13], touch surfaces are now so common that people
are encouraged to immediately start interacting with them, which is an im-
portant aspect of walk-up-and-use interfaces. Moreover, even if the mapping
between 2D and 3D motions is non-trivial and varies for a user interface to
the next, users are encouraged to learn by trial and error while interacting.
In this work, we use a 3D variation of the well-known 2D multi-touch RST
technique, that allows the simultaneous control of Rotations, Scaling, and
Translations from two finger inputs to control a modification of a virtual
trackball with auto centering capabilities [Bals 14a]), which provides auto-
matic pivot without requiring precise picking. Accepting a suggestion is
mapped to a long press, while rejection automatically occurs upon time-out.
The motion of the trackball, in addition, is modified so as to attract the view
towards the currently selected best view by applying a small nudge force in

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 168

the direction of the currently selected best view, but only use the component
which is orthogonal to the current direction of motion (see Sec. 11.4). This
helps gently guiding the user towards good viewpoints with associated
information.

11.3 The recommendation engine

At the core of our approach is a recommendation engine, running in parallel
with user navigation. It is based on a state machine (see Sec. 11.3.2) that evaluates
the node contributions and stochastically selects one node with a probability
proportional to a context-dependent score that depends on the current spatial
position and the navigation history (see Sec. 11.3.3).

11.3.1 Data representation

The information exploited by the recommendation engine are the 3D model, an
annotated view graph, the current viewpoint, and the interaction history. The first
two elements are static and provide the scene description, while the two latter
ones are dynamic and evolve during navigation.

The 3D model can be any kind of surface model with a renderable representa-
tion. In this work, we use multiresolution triangulated surfaces (see Sec. 11.5 for
scalability issues).

The view graph describes annotations in a structured form, as described in
Sec. 11.2). We denote as � 2 [0..1] the author-defined importance of each node
and as ! 2 [0..1] the dependency weight. Strict dependencies (! = 1) are useful
to model cases where prior information is mandatory (e.g., global introduction
is required before presenting some particular detail), while weak dependencies
(! < 1) enable a more adaptive navigation, and if ! = 0 no dependency exists.
The descriptive information associated to each node is a 2D overlay image (a
semitransparent bitmap or scalable vector graphics with the same aspect ratio of
the rendered 3D view). The 2D overlay contains drawings, images or even text
which is tightly attached to the object from the node’s viewpoint (e.g., imagine a
statue with a missing arm and a drawing proposing what could be the missing
part, see Fig.11.2). The 2D ROI consists of a bit-mask denoting the relevant part
of the view that contains the information referenced in the textual information.
We use this ROI in the ranking process, to identify the 3D region that participates
in view similarity computation. All this information is connected to a viewpoint
that is also stored in the node in the form of a view matrix. In order to speed-up

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 169

view-similarity computation (see Sec. 11.5), we also maintain with each node the
bounding box of the 3D points contained in the ROI.

In the course of the navigation, we collect data on the user interaction with
the system in order to extract aggregated information. This information is held
in nodes attributes that provide aggregated information on user preferences
like most visited nodes and the amount of time spent per node, providing new
relevance weights for each node which can provide better suggestions to the user
during navigation. This information is then exploited by the selection algorithm
in order to improve future suggestions (see below).

Figure 11.2: Overlaid information. Left: Drawing showing a possible reconstruction of the
missing parts of the object; Right: Textual information is presented without cluttering the region
of interest.

11.3.2 The recommendation state machine

The state machine (SM), see Fig. 11.3) runs in background while the user can
freely move around the scene. The SM proposes specific views depending on the
user behavior. On user acceptance the corresponding information is visualized.
The SM, using the node graph, is able to produce a sequence of contents which
tells a structured consistent story, according to user preferences. The SM states
(discover, attract, propose, go-to, show) are here described in detail:

• Discover: it is the start state. Here the SM lets elapse a few seconds to avoid
a continuous flow of suggestions, then it looks for a new node to propose
(see Sec. 11.3.3). Once the node is selected the state passes to attract.

• Attract: a hidden attraction force is active while the user explores the scene,
trying to drive her toward the active view (see Sec. 11.4). The machine can
exit this state after a timeout, and in this case the state changes to propose, or
if user gets close to the node, and in this case the state changes to go-to.

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 170

Figure 11.3: State Machine. State machine of the recommendation system.

• Propose: a thumbnail with a snapshot of the selected view is proposed to the
user. If the user accepts the proposal, the state changes to go-to. Otherwise,
if the proposed node is not accepted in a given time, the SM gets back to the
discover state.

• Go-to: a small animation is computed and the user is moved to the point
of interest associated to the node. After reaching the target point the state
changes to display.

• Display: the information related to the node is displayed. After a time
proportional to the length of the textual content is elapsed, or if the user
moves away from this position, the state returns to discover.

11.3.3 Next best view selection

The adaptive recommendation system aims to guide the user to a structured
exploration, taking into account either user movements and author preferences.
At given times, the system selects the next best view to be proposed, possibly in
the neighborhood of the area currently explored.

11.3.4 Selection algorithm

The selection is performed according to a ranking of all the visitable views in the
graph. First of all, the views are partitioned into two sets (visible and invisible),
based on view culling with respect to the current view position. At this point
each visible view i is compared to the current view, according to the similarity
measure described in next paragraph. If this measure is below a given threshold,
the view is added to the set of invisible views, otherwise a score is computed
according to the following equation:

S
i

= �
i

⇥D
i

⇥R
i

⇥ �
i

(11.1)

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 171

where �
i

is the author defined view relevance, D
i

the dependency weight, R
i

the
recent navigation weight, and �

i

is the view similarity weight. All the weights
appearing in Eq. 11.1 are inside the range [0..1]. The dependency weight D

i

is a
product among all the view dependencies, and it is computed as follows:

D
i

=

N

iY

j=1

(1� !
j

⇥ (1� vis
j

)) (11.2)

where N
i

the number of dependencies of view i, !
j

is the dependency weight of
view j with respect to view i and vis

j

is 1 if the view j has been already visited and
0 otherwise. The weight R

i

takes into account the user recent navigation: giving
lower priority to the views which have been recently displayed, or presented but
not accepted. This value is 1 for all not visited and not proposed nodes, otherwise
its value is computed by R

i

= min((�T

T

max

)

2, 1), where �T is the time elapsed
from the last event (propose or visualization), and T

max

is a time threshold. If at
least a view in the visible set has a positive score, the next best view is selected
randomly with a probability proportional to the score, otherwise the views inside
the invisible set need to be considered. In this case, the scores are computed
according to Eq. 11.1, but the view similarity weights employ a metric which is
robust to distance, which will be detailed in next paragraphs. At this point, the
next best view is selected among the ones with positive score, with a probability
proportional to the latter.

11.3.5 View similarity metric for close views

For comparing the current view with respect to visible annotated views, we
derived a metric based on the fact that two similar views would approximately
project the same 3D points to the same image pixels. Therefore, the normalized
squared sum of the distances of projected points provides an adequate distance
metric for deriving the similarity measure used in Eq. 11.1:

�
i

= 1�
⇠2(K �R) +

P
R

j=1 min
�
(PV

i

sj � PV
cur

sj)
2 , ⇠2

�

K⇠2
(11.3)

where, in the current stochastic sampling composed byK samples, sj = {s1,, sR}
is the set of R points inside the region of interest of view i, P is the current projec-
tion matrix, V

i

is the view matrix of the view i, V
cur

is the current observer view
matrix, and ⇠2 is the maximum squared distance between two visible points in
the normalized clipping cube.

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 172

11.3.6 View similarity metric for distant views

This above similarity measure is reliable when an adequate number of points are
visible in the region of interest of view i, but it is not applicable to views outside
the view frustum or with only few sample points in it. In these cases, similarity
should not be computed in the image plane. Just computing the distance between
view matrices, e.g., using L1 or Frobenius norms, is an applicable solution, but
would not take into account the distance from the camera to the (average) look-at
point. Thus, small variations in camera orientation, that could lead to large
variations in image space, would not be captured. This is why we combine in our
metric the motion of the viewpoint with motion of the look-at point, considering
the eye-target-twist parametrization of viewing transformation, as a quick way
to estimate the length of the path needed to reach the view V

i

from the current
view position V

cur

. Specifically, the similarity metric is computed in this way:

�
i

= 1� ke
i

� e
cur

k+ kt
i

� t
cur

k
2�

(11.4)

where � is the diagonal of the scene bounding box, e
i

, e
cur

are the eye positions
associated to view i and the current view, t

cur

is the center of visible points from
current view, and t

i

is computed as t
i

= e
i

+ kt
cur

� e
cur

kv
i

, with v
i

the viewing
direction of view i.

11.4 User interface

The recommendation engine can be integrated in a variety of settings, as, in
terms of input, it requires only means for controlling the camera and accepting a
suggestion, while, in terms of output, it requires only real-time 3D navigation,
suggestion display, and overlay display. In this work, we focus on a museum
setting that decouples input and output devices.

11.4.1 Setup and assisted camera control

3D models and associated information are presented on a large display (a back-
projection screen in this work), controlled by a touch-enabled surface placed
at a suitable distance in front of it. Note that we avoid using the touch-screen
to display content-related information, in order to encourage the user to focus
on the visualization screen instead of concentrating on the user interface, see
Fig. 11.4. An alternative to this setup would be to use 3D devices, e.g., Kinect or
Leap Motion, and gestures/posture recognition. Such an implementation, how-
ever, is less practical to deploy in crowded museum settings. Camera control is

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 173

Figure 11.4: Large projection setup. 3D models and associated information are presented on a
large display (a back-projection screen in this work), controlled by a touch-enabled surface placed
at a suitable distance in front of it. Only incremental controls, without picking, are employed in
the user-interface.

implemented through a multi-touch interface controlling the auto-centering vir-
tual trackball. In order to reduce training times, we considered RST multi-touch
gestures, as used for 2D actions in commodity products such as smartphones
or tablets, and mapped them to analogue 3D behaviors in our constrained con-
trollers. As we deal with statues, we use a fixed up-vector, and map two-finger
pinch to dolly-in and dolly-out, two-finger pan to camera panning, and one-finger
horizontal motion to orbiting. It should be noted that, similarly to Secord et al.
[Seco 11], we deform the motion of the trackball in order to be attracted towards
the currently selected view both during pan and rotate and during throwing (i.e.,
the small period of time after a release). We also add in a small friction force in
the neighborhood of the selected view, so as to slow down near good viewpoints,
and, when the view is su�ciently close, we snap it to the best view. A long press,
instead, is used to accept the displayed suggestion. Suggestion is also accepted
when the view similarity d is below a user-defined threshold. This means that
when the view is almost similar, the user is automatically moved to the selected
node’s position, and the related overlay is accepted.

11.4.2 Displaying suggestions

Each time a new view is selected by the state machine, and the user has not
moved close enough to trigger automatic acceptance within a small amount of
time, a suggestion is displayed to the user. It should be noted that this situation
does not occur very often, since the attraction force automatically drives the user

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 174

Figure 11.5: Suggestions and overlays. Top: Suggestions are presented in a small inset, using
animations to relate them to the spatial context. These suggestions appear only when the attraction
forces do not drive the user close enough to the current view. Bottom: when moving close to the
currently selected view or accepting a suggestion, annotations are overlaid to 3D view.

towards the currently selected view during interaction. In our current imple-
mentation, suggestions are presented in small inset images using animations
(see Fig. 11.5 top). First, the inset image fades in a corner of the main 3D view.
The initial image presented is a clone of the target view. Then, an animation
starts, showing a path from the current view to the target view. This animation
is employed to inform the user on the location of the target without cluttering
the main 3D view. The target image then remains fixed in the inset for a pre-
determined amount of time. If, within this time, the user does not accept it (by
moving close to the target or performing a long-press to trigger an automatic
go-to), the suggestion is considered ignored, the inset image fades out, and the
state machines starts looking for alternatives. In order to reduce distraction,
the suggestions appears smoothly, combining fade-in/fade-out animation with

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 175

incremental zooming. We plan in the future to investigate less obtrusive methods,
e.g., by using mechanisms for better exploiting change blindness events [Inti 02].

11.4.3 Visualizing overlays

When a target node is reached, the associated information is displayed in overlay
(see Fig. 11.5 bottom). The information remains visible until the user decides to
move to another position.

11.5 Scalability

Both the interactive inspection and the recommendation system require special-
ized spatial indexing and multiresolution structures and adaptive algorithms
to ensure real-time performance on large data-sets (billions of triangles and
hundreds of points of interest per scene). The most costly operations are 3D
rendering and recommendation computation.

When computing recommendations, the graph is first partitioned in a set of
feasible nodes, which are the ones for which predecessors are satisfied. Only
these nodes, typically a small subset of the total graph, are checked for similarity.
We associate to each node a bounding box, which contains all the points in its
ROI, and keep the bounding boxes of potentially visible nodes in a bounding
volume hierarchy (BVH). When ranking starts, the BVH is traversed, and nodes
are compared with the current view frustum, classifying potentially visible and
invisible ones. Potentially visible nodes are pushed in a priority queue, ordered
by inverse di�erence in projected ROI area between target view and current view.
Nodes are extracted from this queue one by one, starting with the nodes with
most similar projected ROI area, view similarity is computed, and nodes are
pushed in a queue sorted by recommendation score, until a small predefined
number of nodes is found or there are no more nodes to check. Any node for
which similarity is zero is pushed to the invisible set. If the set of nodes for which
a score has been computed is non-empty, we stochastically select the suggestion
by randomly picking from it with a selection probability proportional to the score.
Otherwise, a score is computed for the invisible node, using a linear scan and a
fast method that does not require view similarity computation. This approximate
technique keeps the number of view similarity computations low in order to
maintain interactivity.

View similarity computation is computed on top of the same adaptive mul-
tiresolution triangulation [Cign 04] used for rendering. A small random set of
3D points is extracted from the view-adapted tetrahedron graph. This is done

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 176

using a simple traversal of the graph leafs, selecting a few points per node. These
points are then projected using the view parameters both from the candidate
view and the user viewpoint, in order to calculate the average screen space dis-
tance between the two point sets and compare it according to Eq. 11.3. Note that
only the points falling within the ROI of the target view participate in the score.

11.6 Implementation and User Study

A reference system integrating all techniques described in this paper has been
implemented on Linux using OpenGL and Qt 4.7. The hardware setup for the
interactive stations was composed of a 2.5m-diagonal back-projection screen, a
3000 ANSI Lumen projectiondesign F20 SXGA+ projector, and a 27” Dell P2714T
optical multi-touch screen, both controlled by a PC with with Ubuntu Linux
14.10, a Intel Core i7-3820 @ 3.6Ghz, with 8GB of RAM and a NVIDIA GTX 680
GPU.

The system, illustrated in the accompanying video, has been tested in a variety
of settings. In this paper, we report on tests made using 8 representative models
from the Mont’e Prama collection [Bett 14a], for a total of 390M triangles, which
have been documented using a graph of 109 information nodes linked by 132
edges. Of these, 12 describe mandatory dependencies (! = 1), 36 strong depen-
dencies (! = 0.8), and the remaining weak dependencies (! = 0.2). The graph is
a hierarchical DAG with 5 levels, loosely ordered from general collection-level
information to micro-structure description.

In all tests, the models were adaptively rendered using a target resolution of
0.5 triangles/pixel, leading to an average 2.5M triangles/frame and maintaining
frame rates never going below 30Hz. The time required in the recommendation
engine to generate a new recommendation has been generally less than 5 ms,
leading to minimal interaction delays.

In order to assess the actual e�ectiveness of our approach for improving user sat-
isfaction and increase emotional possession during museum visits, we designed
and carried out a preliminary user study to try to quantify the performance,
the cognitive load and the satisfaction in comparison with other strategies for
associating information to visual exploration.

11.6.1 Goal

Our system is composed by a combination of narrative components [Sege 10]
together with a free customized 3D user interface, which make it di�cult to eval-
uate from a user perspective. In theory, for an adequate system evaluation, the

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 177

various parts should be considered separately in order to quantify their e�ects
over users [Scho 06]. In our case, we opted to design our user study with the
target to try to quantify the user satisfaction, in terms of fun and attractiveness,
and the user performance, in terms of e�ort, learning curve, and information
gathering [Diak 11]. To this end, we measured user performance during free
explorations together with a simplified version of NASA task load index ques-
tionnaire [Liu 13]. Furthermore, we gathered information from think-a-loud
comments.

11.6.2 Configurations

Various alternatives of the usage of the system were considered for the exper-
iments: a free exploration interface with adaptive recommendations, and two
versions in which the exploration is decorated with a thumbnail-based bar ex-
ploration interface [Mart 14]. In one of them the views are ordered according
to the authoring importance (weights and dependencies), while in the other
one the views are ordered according to the ranking of the recommendation
system (views similarity and authoring criteria). In any moment, users could
scroll the thumbnail-bar and decide to explore a specific view of the scene. The
experimental setup considered the reference system implementation described
in section 11.6. All exploration alternatives were operated using the same precise
optical touch screen device using a multi-touch device mapping.

11.6.3 Tasks

The experiments consisted in letting users try and enjoy the system using the
three di�erent exploration strategies (with adaptive suggestions, with importance
sorted thumbnails, and with rank sorted thumbnails) in the context of a free
interaction task. We designed our task to measure learning and satisfaction
performance in inspections tasks typical of cultural heritage model explorations.
Participants were asked to freely explore the model and follow the narrative
visualization with the goal of enjoying and acquiring as more useful information
as possible.

11.6.4 Participants

For the user analysis, 15 participants (11 males and 4 females, with ages ranging
from 28 to 53, mean 40.2±6.9 years) were recruited between employees (including
researchers, network administrators and administrative sta�).

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 178

11.6.5 Design

Each participant tested the three exploration systems in randomized order. Users
were first allowed to become familiar with the exploration systems by watching
a brief video showing how it works (part of the help system of the museum
installation). After the training session, the measured tests consisted of trying the
3 di�erent narrative exploration interfaces for 5 minutes each one. For a complete
testing session, users needed 15 minutes. In summary, the complete test design
consisted of 15 participants, each one testing the 3 exploration interfaces for a total
of 45 complete measurements. At the end of the experiments, participants were
also asked to fill a questionnaire comparing the performance of the three systems
by indicating a score in a 7-point Likert scale with respect to six factors: mental
demand, learning time, physical demand, performance, e�ort, and frustration
level. Since the objective of the tasks was to enjoy the models as to acquire
interesting information as much as possible, we asked subjects to quantify as
performance level their perception of satisfaction (how much they enjoyed the
scene exploration).

11.6.6 Performance evaluation

The following measures were recorded during explorations using the adaptive
recommendation system interface (ASI): number of nodes displayed, subdivided
in nodes reached through attraction (overlays appearing during exploration),
nodes reached through go-to animations, and nodes proposed and ignored
during exploration. The subjects visited an average of 20.5± 3.1 nodes, of which
4.9± 1.6 where refused, 10.2± 2.5 where reached during the attract state, and
5.5±2.3were reached by explicit accept through go-to animation. This means that
the adaptive recommendation system appeared to generally show appropriate
contents with respect to subjects curiosity, and that in many cases this content
appeared transparently during the navigation, without the need of additional
inputs which could distract users from interaction. In order to compare the
adaptive recommendation system with respect to the thumbnail-bar systems, we
also measured for all the interfaces the total number of nodes displayed, and the
time that subjects employed for observing overlay information (we assume it to be
proportional to the interest to the content displayed), the time that they employed
for 3D exploration of the scene, and the time that they employed for scrolling
the thumbnail-bars. The number of nodes visited for thumbnail-based interfaces
was 17.1± 2.9 for the interface with the authoring importance based thumbnail
(ITI), while it was 19.4± 2.4 for the interface with the ranking based thumbnail
(RTI). With respect of measured times, scrolling times were 96.7± 24.3 sec. for

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 179

ITI, and 86.3± 22.7 sec. for RTI, while overlay display times were 97.3± 11.5 sec.
for ITI, 93.9± 15.8 sec. for RTI, and 87.5± 14.9 sec. for the adaptive suggestion
interface (ASI), and finally 3D exploration times were 106 ± 24.5 sec. for ITI,
119.8 ± 31.5 sec. for RTI, and 212.5 ± 14.9 sec. for ASI. It appears evident that,
even if with thumbnail bar interfaces the subjects were able to visit a slightly
greater number of annotated views, the scrolling operation took approximately
one third of total time, and users often lost the main focus of the 3D exploration.

11.6.7 Work-load evaluation

ASI RTI ITI
Mental demand 1.93± 0.88 2.6± 0.82 3.0± 1.07

Physical demand 1.53± 0.64 2.13± 0.74 2.73± 1.28
Learning time 1.93± 1.16 2.87± 1.19 2.93± 1.1

Performance 6.33± 0.81 5.4± 1.05 5.4± 0.98
E�ort 2.2± 1.14 2.73± 0.8 2.93± 1.16

Frustration 2.33± 1.35 2.47± 1.36 3.07± 1.62

Table 11.1: Results of NASA task load index questionnaire.

All factors of the NASA task load index questionnaire were individually an-
alyzed in order to find di�erences between the three proposed interface. The
average values of Likert-scores for the factors are presented in Table 11.1. We
noticed a significant e�ect with respect to physical demand (p = 0.004 and
F (2, 42) = 6.23), and a slight e�ect with respect to performance (p = 0.01 and
F (2, 42) = 4.74) and mental demand(p = 0.01 and F (2, 42) = 4.35). We think that
subjects considered distracting and physically demanding the scrolling operation
on thumbnail bars, especially in the case of the importance based ordering. No
significant e�ects were found with respect the other factors, namely e�ort, learn-
ing time, and frustration, meaning that subjects considered all three interfaces
easy to learn and use.

11.6.8 Qualitative evaluation

We also gathered useful hints and suggestions also from think-a-loud comments
made by subjects during the tests. In general, users perceived as appealing the
overlays decorating the 3D models, and appreciated the transparent attraction
force driving them to interesting views, while giving them the chance to freely
explore the 3D scene. On the other side, few subjects considered intrusive the
attractive force, while others considered the animation inset distracting with
respect to 3D exploration. Finally, most users appreciated the adaptive suggestion
system, and we noticed that the non-linear graph lead to a significant variability

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 180

in node exploration (all subjects carried out di�erent paths and enjoyed di�erent
versions of the informative content). We plan to further explore this aspect in
future.

11.7 Discussion

We have presented a new method and a scalable representation for letting casual
users explore, at their own pace, spatially annotated 3D models. Our evaluation
shows that the method appears to be well received and intuitive enough for casual
users who quickly understand how to browse statue models in a short trial period.
The resulting virtual environment, which combines structured information with
a simple interface that does not require precise picking, appears to be well suited
both for installations at museums and for interaction on mobile devices. We are
currently focusing on improving the proof-of-concept prototype, and planning
to perform large-scale tests in museum setting. So far, we mostly focused on
the recommendation system, in order to provide meaningful navigation. Our
future work will concentrate on improving the assisted navigation subsystem, in
order to improve guidance towards interesting viewpoints during free navigation.
Since the current evaluation focuses mostly on user satisfaction, more work is
required to objectively assess the e�ectiveness of our user interface. Addressing
this would require cognitive measures that are beyond the scope of the paper, and
are an important avenue for future work. It will be also interesting to evaluate
whether the proposed approach, currently tuned to museum applications, can
be extended to more complex situation requiring specific tasks to be solved.

Advantages. Using a graph of views as a basis for information structuring has a
number of practical advantages for authors and viewers. In particular, authors
can use 2D tools for content preparation, leading to a simple but e�ective pro-
cedure to create spatially relevant rich visual information in forms of overlays,
and can use weak dependencies to smoothly transition from constrained sequen-
tial presentations (stories) to more flexible independent annotations. The user
interface, which automatically selects annotated views, suggesting them and
smoothly guiding users towards them, is engaging as it gives users full control
on navigation, while being unobtrusive and avoiding the requirements of precise
picking, as opposed to the more common hot-spot techniques.

Limitations. This work only targets the problem of 3D model exploration with
image/text overlays. Using other associated multimedia information (e.g., video)
and/or supporting very complex narratives are orthogonal problems not treated

Chapter 11. Adaptive Recommendations for Enhanced non-linear Exploration of Annotated
3D Objects 181

in this work. Moreover, while the proposed information presentation system is
of general use, the proposed camera navigation technique is tuned for object in-
spection rather than environment walk-throughs. Finally, the current evaluation
focuses mostly on user satisfaction. More work is required to objectively assess
the e�ectiveness of the user interface in a variety of settings. Addressing this
would require cognitive measures that are beyond the scope of the paper, and
are an important avenue for future work.

Scalability. Many components used in the system (i.e., Compact Adaptive Tetra-
Puzzles for rendering, HuMoRS camera controlling) have already been demon-
strated on desktop and mobile platforms. The computation cost introduced by
the recommendation engine together with the guiding component (i.e., attraction
force computation) do not represent a barrier for its use on low- and mid-end
systems such as mobile and web browser platforms. Nonetheless, recommen-
dation computation scales linearly with the number of visible nodes and thus
may impose some performance loss at very populated regions (i.e., hundreds of
visible/active information nodes) on limited systems.

11.8 Bibliographical Notes

Most of the content in this chapter is based on paper on paper [Bals 15], where
we presented an approach for free exploration of complex annotated 3D models
with unobtrusive guidance towards interesting viewpoints.

Part V

Conclusions

183

In previous chapters we have described the application domain, studied current
methods related to our problem domain, and proposed a number of solutions to
overcome current limitations.

In this last part, we will summarize and discuss our results, and present our
ideas for future work.

Chapter 5

 – Compact Adaptive TetraPuzzles

Chapter 8

 – Auto-centering Pivot

Chapter 6

 – Adaptive Quad Patches

Chapter 9

 – ISOCAM

Chapter 11

 – Adaptive Recommendations

Chapter 7, 10

 – Explore Maps

3D Model Constraints

C
a

m
e
r
a
 M

o
ti

o
n

 C
o

n
s
tr

a
in

ts

Table 11.2: Method classification. This chart classifies the methods presented in this thesis based
on constraints on the input 3D model, and constraints on camera motion.

C������

12 .

Summary and Conclu-
sions

This thesis has introduced scalable methods for distribution and
rendering of complex 3D models on modern 3D platforms, as well
as navigation techniques to aid the user during the exploration of
those models at multiple scales. In addition, we have proposed
methods for improving understanding of complex annotated 3D
models exploiting guided navigation on top of a recommendation
engine. This final chapter summarizes the results obtained and
briefly discusses future work.

12.1 Conclusions

H����� detailed 3D models are becoming increasingly common and
represent a very useful tool for many application domains, both as
a communication tool, enabling public access to vast amounts of in-

formation, and as a tool for experts, by providing means to classify, store, and
analyze highly detailed 3D representations of real objects. However, the visualiza-
tion of highly detailed 3D objects is a complex problem, requiring simulation of
lighting conditions, non-trivial materials, and complex geometry, just to mention
some relevant issues that would need to be addressed. There is no single scheme
that can cope with all those requirements due to current 3D platform limitations,
specially on mobile/Web platforms.

Several approaches in the literature propose solutions to tackle this limitations
by introducing constraints, such as limiting camera freedom. These constraints
allow for precomputation of a number of parameters that can be exploited during
the visualization for providing real-time exploration. One typical constraint is
considering objects to be static, which enables the utilization of e�cient precom-
puted spatial subdivision and multiresolution approaches. The work presented
in this thesis belongs to this group.

187

Chapter 12. Summary and Conclusions 188

In this thesis, we impose constraints on the input geometry, in order to design
compact data structures for improving scalability for distribution and rendering.
We also introduce constraints on the camera to develop navigation methods for
aiding the user during the exploration of complex 3D models.

With respect to constraints on the input 3D model, we have exploited scene
characteristics to design specific algorithms and data representations aiming
to address limitations on current 3D platforms. In Chapter 5, we presented a
compact GPU-friendly representation for general dense 3D meshes, combining
CPU and GPU compression technology for supporting e�cient distribution and
rendering of extremely detailed models on hardware-constrained mobile devices.
In the pursue of better compression, we consider topologically simple 3D models,
which can be parametrized into a quad-based domain. Then, exploiting this quad
parametrization, in Chapter 6, we produce a fully regular compact image-based
multiresolution representation, which relies on standard image algorithms for
network distribution and CPU decoding, while most of the work for rendering
is moved into the GPU, overcoming CPU performance limitations on scripted
environments (i.e., Web browsers).

In Chapter 7, we impose tight constraints on the camera, limiting camera posi-
tions to a fixed set of optimized view positions, with associated panoramic views.
This approach allows us to exploit image-based rendering by pre-computing
all the possible panoramic views using o�-line photo-realistic renderers. Thus,
enabling interactive exploration of scenes with complex lighting on common 3D
platforms.

Imposing constraints on the camera allows us to limit user freedom, in this case,
aiming to help the user during the exploration. In Chapter 8, we introduced a free
TrackBall camera with automatic pivot computation, simplifying the navigation
by reducing the number of gestures required. This approach performed well,
specially for expert users, but it is too free for novice users which get easily “lost-
in-space”. We tackle this problem, in Chapter 9, by introducing an object-aware
approach that provides both smooth transitioning between orbital inspection
and proximal surface hovering, while always ensuring “good views”.

In order to provide unobtrusive information exploration, by avoiding cluttering
the interface with indications, in Chapter 11, we paired the free Trackball with
automatic pivot with an adaptive recommendation system. We further constrain
the camera by applying an attraction force towards nearby information, selected
by the recommendation engine, thus helping the user in finding contextual
information which is presented when the camera gets close to its associated view
position.

Chapter 12. Summary and Conclusions 189

In Chapter 10, we presented a very constrained image-based navigation sys-
tem relying on the graph-based representation from Chapter 7. This approach
provides a very simple exploration interface, but also limited to the fixed set of
view positions and the existing interconnections among them.

The results arisen from our tests proved good both in terms of performance and
usability. Using our compact data representation from Chapter 5, we were able
to explore 1GTriangle models (i.e., David Statue by Michelangelo) on iPhone
devices and also on Android devices, with an average rendering throughput
of 30Mtriangle/s on a 3rd generation iPad and 20Mtriangle/s on an Nexus 4.
For data streaming, during navigation we reached peaks of 3.3Mbps on UMT-
S/HSPA connection, and 4.8Mbps under Wifi network. Using our approach
from Chapter 6, we were able to explore 3D models between 8.4Mtriangles and
94.4Mtriangles, on an Acer Iconia Tab W501, with an average frame rate of 37fps
and a throughput of 34.2Mtriangles/s, with peaks of 2.8Mbps for data fetching.
Thus, both approaches provide interactive exploration of large 3D models on
platforms with constrained hardware. The image-based rendering approach
from Chapter 7 paired with graph-based navigation from Chapter 10 imposes no
problems on current 3D platforms typically exceeding 50fps during navigation
and 20fps during video transitions, due to video decoding, both on desktop and
mobile platforms.

Our user tests on constrained camera motion controllers also showed interesting
results. Typically, expert users prefer the freedom provided with our approach
from Chapter 8, while inexperienced users tend to easily get “lost-in-space” thus
preferring the more constrained approach from Chapter 9. Also our recom-
mendation system proved well, with users appreciating the free exploration
together with the attraction towards nearby information, in particular, thanks to
our recommendation engine providing coherent contextual information.

Part of the work presented in this thesis has been integrated in various Museum
and exhibition installations having thousands of visitors during the past year
(see paper [Mart 14, Gobb 15]).

12.2 Future Work

The approaches presented in this thesis provide a suitable framework for dis-
tributing and exploring highly detailed 3D models on current 3D platforms.
Our main objective in this thesis was to achieve ubiquitous exploration of com-
plex 3D models, providing solutions to cover most of the wide range of system
configurations which can be of use in the application domains.

Chapter 12. Summary and Conclusions 190

From the distribution and rendering perspective, there is room for improvement
on the compression side. Besides that, we consider that our approaches for
compact data representation have proved e�cient both in terms of data streaming
and real-time rendering, running on desktop and mobile/Web platforms.

Our solution for supporting interactive exploration of scenes with photo-
realistic quality is quite constrained. We would like to study wider interconnec-
tion between view nodes, and new path definitions to cover more parts of the
scene, in order to provide a more flexible representation of the 3D model.

With respect to guided navigation, the free trackball with automatic pivot
proved a good solution for experienced users, which appreciated the automatic
pivot, while novice users had little problems with the multi-scale navigation.
On the contrary, the isosurface navigation camera controller proved to help
novice users having a good exploration experience, while experienced users
felt too constrained. We plan to study an intermediate approach more similar
to the one presented for information discovery, where we use a free trackball
with automatic pivot while an attraction force is applied to the camera towards
nearby information. Thus, the concept of having a “guidance field” in order to
guide camera motion, both to provide good orientations and to attract towards
interesting view points, seems a good avenue for future work. Exploiting the
constrained camera motion controller for enhancing rendering on light field
displays also proved good results, thus we do not plan further research in this
direction.

Regarding our approach for graph-based exploration, our current implementa-
tion is too constrained. We plan to extend the approach to support more flexible
exploration of the scene exploiting the panoramic transition videos and interpo-
lations between neighboring panoramic views. For this, we would benefit from
a richer input providing more redundant scene coverage.

Our approach for information discovery and presentation, on the other side, is
quite limited and provides a starting point for further research. On this topic,
we plan to study more flexible classifications of the information with respect to
the spatial constraints, in order to widen the range of information that can be
presented during exploration. We also plan to extend our semantic representation
to include more flexible dependencies between nodes in order to provide better
control on the course of the narration.

12.3 Bibliographical Notes

The scientific results obtained during this PhD work also appeared in related
publications, listed below:

Chapter 12. Summary and Conclusions 191

• E. Gobbetti, R. Pintus, F. Bettio, F. Marton, M. Agus, and M. Balsa Rodriguez.
“Digital Mont’e Prama: dalla digitalizzazione accurata alla valorizzazione di
uno straordinario complesso statuario”. Archeomatica, 2015. To appear

• M. Balsa Rodríguez, M. Agus, F. Marton, and E. Gobbetti. “Adaptive Recom-
mendations for Enhanced non-linear Exploration of Annotated 3D Objects”.
Computer Graphics Forum, May 2015. Conditionally accepted to EuroVis 2015

• M. Di Benedetto, F. Ganovelli, M. Balsa Rodríguez, A. Jaspe Villanueva,
R. Scopigno, and E. Gobbetti. “ExploreMaps: E�cient Construction and
Ubiquitous Exploration of Panoramic View Graphs of Complex 3D Environ-
ments”. Computer Graphics Forum, Vol. 33, No. 2, pp. 459–468, 2014. Proc.
Eurographics 2014

• F. Marton, M. Balsa Rodríguez, F. Bettio, M. Agus, A. Jaspe Villanueva, and
E. Gobbetti. “IsoCam: Interactive Visual Exploration of Massive Cultural
Heritage Models on Large Projection Setups”. ACM Journal on Computing
and Cultural Heritage, Vol. 7, No. 2, p. Article 12, June 2014

• F. Marton, M. Agus, E. Gobbetti, G. Pintore, and M. Balsa Rodríguez. “Nat-
ural exploration of 3D massive models on large-scale light field displays
using the FOX proximal navigation technique”. Computers & Graphics, Vol. 36,
No. 8, pp. 893–903, December 2012

• M. Balsa Rodríguez, M. Agus, F. Marton, and E. Gobbetti. “HuMoRS: Huge
models Mobile Rendering System”. In: Proc. ACM Web3D International Sym-
posium, ACM Press, New York, NY, USA, August 2014

• M. Balsa Rodríguez, E. Gobbetti, F. Marton, and A. Tinti. “Coarse-grained
Multiresolution Structures for Mobile Exploration of Gigantic Surface Mod-
els”. In: Proc. SIGGRAPH Asia Symposium on Mobile Graphics and Interactive
Applications, pp. 4:1–4:6, ACM, November 2013

• M. Balsa Rodríguez, E. Gobbetti, F. Marton, and A. Tinti. “Compression-
domain Seamless Multiresolution Visualization of Gigantic Meshes on Mo-
bile Devices”. In: Proc. ACM Web3D International Symposium, pp. 99–107,
ACM Press, June 2013

• E. Gobbetti, F. Marton, M. Balsa Rodríguez, F. Ganovelli, and M. Di Benedetto.
“Adaptive Quad Patches: an Adaptive Regular Structure for Web Distribution
and Adaptive Rendering of 3D Models”. In: Proc. ACM Web3D International
Symposium, pp. 9–16, ACM Press, New York, NY, USA, August 2012. (Best
Long Paper Award)

Bibliography

[Agus 08] M. Agus, E. Gobbetti, J. A. I. Guitián, F. Marton, and G. Pintore.
“GPU Accelerated Direct Volume Rendering on an Interactive Light
Field Display”. Computer Graphics Forum, Vol. 27, No. 2, pp. 231–240,
2008.

[Andu 07] C. Andujar, J. Boo, P. Brunet, M. Fairén, I. Navazo, P. Vázquez, and
A. Vinacua. “Omni-directional Relief Impostors”. Computer Graphics
Forum, Vol. 26, No. 3, pp. 553–560, Sep. 2007.

[Andu 12] C. Andujar, A. Chica, and P. Brunet. “Cultural Heritage: User-
interface design for the Ripoll Monastery exhibition at the National
Art Museum of Catalonia”. Computers and Graphics, Vol. 36, No. 1,
pp. 28–37, 2012.

[Babo 06] L. Baboud and X. Décoret. “Rendering geometry with relief textures”.
In: C. Gutwin and S. Mann, Eds., Graphics Interface, pp. 195–201, 2006.

[Bade 05] R. Bade, F. Ritter, and B. Preim. “Usability comparison of mouse-
based interaction techniques for predictable 3d rotation”. In: Proc.
Smart Graphics, pp. 138–150, Springer, 2005.

[Bals 12a] M. Balsa Rodríguez, E. Gobbetti, F. Marton, R. Pintus, G. Pintore, and
A. Tinti. “Interactive Exploration of Gigantic Point Clouds on Mobile
Devices”. In: D. Arnold, J. Kaminski, F. Niccolucci, and A. Stork,
Eds., VAST: International Symposium on Virtual Reality, Archaeology
and Intelligent Cultural Heritage, The Eurographics Association, 2012.

[Bals 12b] M. Balsa Rodríguez and P. Vazquez Alcocer. “Practical Volume
Rendering in mobile devices”. In: Proc. International Symposium on
Visual Computing, pp. 708–718, Springer Verlag, 2012.

[Bals 13a] M. Balsa Rodríguez, E. Gobbetti, J. Iglesias Guitián, M. Makhinya,
F. Marton, R. Pajarola, and S. Suter. “A Survey of Compressed GPU-
based Direct Volume Rendering”. In: Eurographics State-of-the-art
Report, pp. 117–136, May 2013.

193

Bibliography 194

[Bals 13b] M. Balsa Rodríguez, E. Gobbetti, F. Marton, and A. Tinti. “Coarse-
grained Multiresolution Structures for Mobile Exploration of Gigan-
tic Surface Models”. In: Proc. SIGGRAPH Asia Symposium on Mobile
Graphics and Interactive Applications, pp. 4:1–4:6, ACM, November
2013.

[Bals 13c] M. Balsa Rodríguez, E. Gobbetti, F. Marton, and A. Tinti.
“Compression-domain Seamless Multiresolution Visualization of
Gigantic Meshes on Mobile Devices”. In: Proc. ACM Web3D Interna-
tional Symposium, pp. 99–107, ACM Press, June 2013.

[Bals 14a] M. Balsa Rodríguez, M. Agus, F. Marton, and E. Gobbetti. “HuMoRS:
Huge models Mobile Rendering System”. In: Proc. ACM Web3D
International Symposium, ACM Press, New York, NY, USA, August
2014.

[Bals 14b] M. Balsa Rodríguez, E. Gobbetti, J. Iglesias Guitián, M. Makhinya,
F. Marton, R. Pajarola, and S. Suter. “State-of-the-art in Compressed
GPU-Based Direct Volume Rendering”. Computer Graphics Forum,
Vol. 33, No. 6, pp. 77–100, September 2014.

[Bals 15] M. Balsa Rodríguez, M. Agus, F. Marton, and E. Gobbetti. “Adaptive
Recommendations for Enhanced non-linear Exploration of Anno-
tated 3D Objects”. Computer Graphics Forum, May 2015. Conditionally
accepted to EuroVis 2015.

[Beso 08] I. Besora, P. Brunet, M. Callieri, A. Chica, M. Corsini, M. Dellepiane,
D. Morales, J. Moyés, G. Ranzuglia, and R. Scopigno. “Portalada: A
Virtual Reconstruction of the Entrance of the Ripoll Monastery”. In:
Proc. 3DPVT, pp. 89–96, June 2008.

[Bett 13] F. Bettio, E. Gobbetti, E. Merella, and R. Pintus. “Improving the digiti-
zation of shape and color of 3D artworks in a cluttered environment”.
In: Proc. Digital Heritage, October 2013. To appear.

[Bett 14a] F. Bettio, A. Jaspe Villanueva, E. Merella, F. Marton, E. Gobbetti, and
R. Pintus. “Mont’e Scan: E�ective Shape and Color Digitization of
Cluttered 3D Artworks”. ACM JOCCH, Vol. 8, No. 1, p. Article 4,
2014.

[Bett 14b] F. Bettio, A. Jaspe Villanueva, E. Merella, R. Pintus, F. Marton, and
E. Gobbetti. “Mont’e Scan: E�ective shape and color digitization of
cluttered 3D artworks”. Submittted for publication, 2014.

Bibliography 195

[Blum 11] A. Blume, W. Chun, D. Kogan, V. Kokkevis, N. Weber, R. Petterson,
and R. Zeiger. “Google Body: 3D human anatomy in the browser”.
In: ACM SIGGRAPH 2011 Talks, p. 19, ACM, 2011.

[Bolc 07] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca.
“A Data-oriented Survey of Context Models”. SIGMOD Rec., Vol. 36,
No. 4, pp. 19–26, Dec. 2007.

[Borg 05] L. Borgeat, G. Godin, F. Blais, P. Massicotte, and C. Lahanier. “GoLD:
interactive display of huge colored and textured models”. ACM
Trans. Graph., Vol. 24, No. 3, pp. 869–877, 2005.

[Boub 05] T. Boubekeur and C. Schlick. “Generic Mesh Refinement on GPU”.
In: Graphics Hardware 2005, pp. 99–104, July 2005.

[Boub 08] T. Boubekeur and C. Schlick. “A Flexible Kernel for Adaptive Mesh
Refinement on GPU”. Computer Graphics Forum, Vol. 27, No. 1,
pp. 102–114, 2008.

[Bowm 03] D. A. Bowman, C. North, J. Chen, N. F. Polys, P. S. Pyla, and U. Yilmaz.
“Information-rich virtual environments: theory, tools, and research
agenda”. In: Proc. ACM VRST, pp. 81–90, ACM, 2003.

[Burt 02] N. Burtnyk, A. Khan, G. Fitzmaurice, R. Balakrishnan, and G. Kurten-
bach. “StyleCam: interactive stylized 3D navigation using integrated
spatial andtemporal controls”. In: Proc. ACM UIST, pp. 101–110,
ACM, 2002.

[Burt 06] N. Burtnyk, A. Khan, G. Fitzmaurice, and G. Kurtenbach. “ShowMo-
tion: camera motion based 3D design review”. In: Proc. ACM I3D,
pp. 167–174, ACM, 2006.

[Butk 11] T. Butkiewicz and C. Ware. “Multi-touch 3D exploratory analysis of
ocean flow models”. In: Proc. IEEE Oceans, IEEE, 2011.

[Call 08] M. Callieri, F. Ponchio, P. Cignoni, and R. Scopigno. “Virtual in-
spector: A flexible visualizer for dense 3D scanned models”. IEEE
Computer Graphics and Applications, Vol. 28, No. 1, pp. 44–54, 2008.

[Call 13] M. Callieri, C. Leoni, M. Dellepiane, and R. Scopigno. “Artworks
narrating a story: a modular framework for the integrated presen-
tation of three-dimensional and textual contents”. In: Proc. ACM
Web3D, pp. 167–175, ACM Press, June 2013.

[Calv 02] D. Calver. “Vertex decompression in a shader”. ShaderX: Vertex and
Pixel Shader Tips and Tricks, pp. 172–187, 2002.

Bibliography 196

[Capi 08] T. Capin, K. Pulli, and T. Akenine-Moller. “The state of the art in
mobile graphics research”. IEEE Computer Graphics and Applications,
Vol. 28, No. 4, pp. 74–84, 2008.

[Chen 88] M. Chen, S. J. Mountford, and A. Sellen. “A study in interactive 3-D
rotation using 2-D control devices”. In: Proc. SIGGRAPH, pp. 121–
129, ACM, 1988.

[Chen 95] S. Chen. “Quicktime VR: An image-based approach to virtual envi-
ronment navigation”. In: Proc. SIGGRAPH, pp. 29–38, 1995.

[Chhu 07] J. Chhugani and S. Kumar. “Geometry engine optimization: cache
friendly compressed representation of geometry”. In: Proceedings
of the 2007 symposium on Interactive 3D graphics and games, pp. 9–16,
ACM, New York, NY, USA, 2007.

[Chri 08] M. Christie, P. Olivier, and J.-M. Normand. “Camera Control in
Computer Graphics”. Computer Graphics Forum, Vol. 27, No. 8, 2008.

[Chri 09] M. Christie and P. Olivier. “Camera control in computer graphics:
models, techniques and applications”. In: ACM SIGGRAPH ASIA
Courses, pp. 3:1–3:197, ACM, 2009.

[Cign 04] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. “Adaptive tetrapuzzles: e�cient out-of-core construc-
tion and visualization of gigantic multiresolution polygonal models”.
ACM Transactions on Graphics, Vol. 23, No. 3, pp. 796–803, 2004.

[Cign 05] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. “Batched Multi Triangulation”. In: Proc. IEEE Visual-
ization, pp. 207–214, 2005.

[Cign 07] P. Cignoni, M. Di Benedetto, F. Ganovelli, E. Gobbetti, F. Marton, and
R. Scopigno. “Ray-Casted BlockMaps for Large Urban Visualization”.
Computer Graphics Forum, Vol. 26, No. 3, Sept. 2007.

[Co� 12] D. Co�ey, N. Malbraaten, T. B. Le, I. Borazjani, F. Sotiropoulos, A. G.
Erdman, and D. F. Keefe. “Interactive Slice WIM: Navigating and
Interrogating Volume Data Sets Using a Multisurface, Multitouch VR
Interface”. IEEE Transactions on Visualization and Computer Graphics,
Vol. 18, No. 10, pp. 1614–1626, 2012.

[Coma 02] D. Comaniciu and P. Meer. “Mean shift: A robust approach toward
feature space analysis”. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 24,
No. 5, pp. 603–619, 2002.

Bibliography 197

[Cram 09] M. Crampes, J. de Oliveira-Kumar, S. Ranwez, and J. Villerd. “Vi-
sualizing Social Photos on a Hasse Diagram for Eliciting Relations
and Indexing New Photos”. IEEE Transactions on Visualization and
Computer Graphics, Vol. 15, No. 6, pp. 985–992, Nov. 2009.

[Decl 09] F. Decle and M. Hachet. “A study of direct versus planned 3d camera
manipulation on touch-based mobile phones”. In: Proc. MobileHCI,
pp. 32–35, ACM, 2009.

[Di B 10] M. Di Benedetto, F. Ponchio, F. Ganovelli, and R. Scopigno. “Spi-
derGL: A JavaScript 3D Graphics Library for Next-Generation
WWW”. In: Web3D 2010. 15th Conference on 3D Web technology, 2010.

[Di B 14] M. Di Benedetto, F. Ganovelli, M. Balsa Rodríguez, A. Jaspe Vil-
lanueva, R. Scopigno, and E. Gobbetti. “ExploreMaps: E�cient Con-
struction and Ubiquitous Exploration of Panoramic View Graphs
of Complex 3D Environments”. Computer Graphics Forum, Vol. 33,
No. 2, pp. 459–468, 2014. Proc. Eurographics 2014.

[Diak 11] N. Diakopoulos. “Design Challenges in Playable Data”. In: CHI
Workshop on Gamification, 2011.

[Dyke 09] C. Dyken, M. Reimers, and J. Seland. “Semi-Uniform Adaptive Patch
Tessellation”. Computer Graphics Forum, Vol. 28, No. 8, pp. 2255–2263,
Dec. 2009.

[Econ 11] M. Economou and E. Meintani. “Promising beginnings? Evaluating
museum mobile phone apps”. In: Proc. Rethinking Technology in
Museums Conference, pp. 26–27, 2011.

[Epsh 07] B. Epshtein, E. Ofek, Y. Wexler, and P. Zhang. “Hierarchical photo
organization using geo-relevance”. In: Proc. ACM GIS, pp. 18:1–18:7,
ACM, 2007.

[Falk 00] H. J. Falk and L. D. Dierking. Learning from Museums: Visitor Experi-
ence and the Making of Meaning. Rowman & Littlefield, 2000.

[Fara 97] P. Faraday and A. Sutcli�e. “Designing e�ective multimedia presen-
tations”. In: Proc. ACM SIGCHI, pp. 272–278, ACM, 1997.

[Fili 11] S. Filippini-Fantoni, S. McDaid, and M. Cock. “Mobile devices for
orientation and way finding: the case of the British Museum multi-
media guide”. In: Proc. Museums and the Web, 2011.

[Fitz 08] G. Fitzmaurice, J. Matejka, I. Mordatch, A. Khan, and G. Kurtenbach.
“Safe 3D navigation”. In: Proc. ACM I3D, pp. 7–15, ACM, 2008.

Bibliography 198

[Flei 00] S. Fleishman, D. Cohen-Or, and D. Lischinski. “Automatic Camera
Placement for Image-Based Modeling”. Computer Graphics Forum,
Vol. 19, No. 2, pp. 101–110, 2000.

[Floa 05] M. S. Floater and K. Hormann. “Surface Parameterization: a Tutorial
and Survey”. In: Adv. in Multires. for Geom. Model., pp. 157–186,
Springer, 2005.

[Fu 08] H. Fu, D. Cohen-Or, G. Dror, and A. She�er. “Upright orientation of
man-made objects”. In: ACM Trans. Graph., p. 42, 2008.

[Fu 10] C.-W. Fu, W.-B. Goh, and J. A. Ng. “Multi-touch techniques for
exploring large-scale 3D astrophysical simulations”. In: Proc. ACM
SIGCHI, pp. 2213–2222, ACM Press, 2010.

[Girg 09] A. Girgensohn, F. Shipman, L. Wilcox, T. Turner, and M. Cooper.
“MediaGLOW: organizing photos in a graph-based workspace”. In:
Proc. ACM IUI, pp. 419–424, ACM, 2009.

[Gobb 04a] E. Gobbetti and F. Marton. “Layered Point Clouds”. In: Proc. Euro-
graphics Symposium on Point Based Graphics, pp. 113–120,227, 2004.

[Gobb 04b] E. Gobbetti and F. Marton. “Layered Point Clouds: A Simple and
E�cient Multiresolution Structure for Distributing and Rendering
Gigantic Point-Sampled Models”. Computers & Graphics, Vol. 28,
No. 1, pp. 815–826, 2004.

[Gobb 12] E. Gobbetti, F. Marton, M. Balsa Rodríguez, F. Ganovelli, and M. Di
Benedetto. “Adaptive Quad Patches: an Adaptive Regular Structure
for Web Distribution and Adaptive Rendering of 3D Models”. In:
Proc. ACM Web3D International Symposium, pp. 9–16, ACM Press,
New York, NY, USA, August 2012. (Best Long Paper Award).

[Gobb 15] E. Gobbetti, R. Pintus, F. Bettio, F. Marton, M. Agus, and M. Balsa Ro-
driguez. “Digital Mont’e Prama: dalla digitalizzazione accurata alla
valorizzazione di uno straordinario complesso statuario”. Archeo-
matica, 2015. To appear.

[Gosw 13] P. Goswami, F. Erol, R. Mukhi, R. Pajarola, and E. Gobbetti. “An
E�cient Multi-resolution Framework for High Quality Interactive
Rendering of Massive Point Clouds using Multi-way kd-Trees”. The
Visual Computer, Vol. 29, No. 1, pp. 69–83, 2013.

Bibliography 199

[Gotz 07] T. Götzelmann, P.-P. Vázquez, K. Hartmann, A. Nürnberger, and
T. Strothotte. “Correlating Text and Images: Concept and Evalua-
tion”. In: Proc. Smart Graphics, pp. 97–109, Springer-Verlag, Berlin,
Heidelberg, 2007.

[Gu 02] X. Gu, S. J. Gortler, and H. Hoppe. “Geometry images”. ACM Trans.
Graph., Vol. 21, No. 3, pp. 355–361, 2002.

[Guth 05] M. Guthe, A. Balázs, and R. Klein. “GPU-based trimming and tes-
sellation of NURBS and T-Spline surfaces”. ACM Transactions on
Graphics, Vol. 24, No. 3, pp. 1016–1023, Aug. 2005.

[Hach 13] M. Hachet, J.-B. de la Rivière, J. Laviole, A. CohÃ�, and S. Cursan.
“Touch-Based Interfaces for Interacting with 3D Content in Public
Exhibitions”. IEEE Computer Graphics and Applications, Vol. 33, No. 2,
pp. 80–85, March 2013.

[Hanc 07] M. Hancock, S. Carpendale, and A. Cockburn. “Shallow-depth 3D
interaction: design and evaluation of one-, two- and three-touch
techniques”. In: Proc. ACM SIGCHI, pp. 1147–1156, ACM, 2007.

[Hanc 09] M. Hancock, O. Hilliges, C. Collins, D. Baur, and S. Carpendale.
“Exploring tangible and direct touch interfaces for manipulating 2D
and 3D information on a digital table”. In: Proc. ITS, pp. 77–84, ACM,
2009.

[Hans 97] A. J. Hanson and E. A. Wernert. “Constrained 3D navigation with 2D
controllers”. In: Proc. IEEE Visualization, pp. 175–182, IEEE Computer
Society Press, 1997.

[Hega 11] M. Hegarty. “The Cognitive Science of Visual-Spatial Displays: Impli-
cations for Design”. Topics in Cognitive Science, Vol. 3, No. 3, pp. 446–
474, 2011.

[Henr 04] K. Henriksen, J. Sporring, and K. Hornbæk. “Virtual Trackballs
Revisited”. IEEE Transactions on Visualization and Computer Graphics,
Vol. 10, No. 2, pp. 206–216, March 2004.

[Hopp 97] H. Hoppe. “View-dependent refinement of progressive meshes”. In:
Proc. ACM SIGGRAPH, pp. 189–198, 1997.

[Hu 10] L. Hu, P. Sander, and H. Hoppe. “Parallel view-dependent level-of-
detail control”. IEEE Trans. on Visualization and Computer Graphic,
2010.

Bibliography 200

[Inti 02] S. S. Intille. “Change blind information display for ubiquitous com-
puting environments”. In: Proc. UbiComp, pp. 91–106, Springer-
Verlag Berlin Heidelberg, 2002.

[Isen 12] T. Isenberg and M. Hancock. “Gestures vs. Postures: Gestural Touch
Interaction in 3D Environments”. In: Proc. 3DCHI, pp. 53–61, 2012.

[ISTI 12] ISTI-CNR Visual Computing Lab. “MeshLab for iOS: A
powerful easy-to-use 3D mesh viewer for iPad and iPhone”.
www.meshpad.org, 2012.

[Jang 09] C. Jang, T. Yoon, and H.-G. Cho. “A smart clustering algorithm for
photo set obtained from multiple digital cameras”. In: Proc. ACM
SAC, pp. 1784–1791, ACM, 2009.

[Jank 10] J. Jankowski, K. Samp, I. Irzynska, M. Jozwowicz, and S. Decker.
“Integrating Text with Video and 3D Graphics: The E�ects of Text
Drawing Styles on Text Readability”. In: Proc. ACM SIGCHI, pp. 1321–
1330, ACM, 2010.

[Jank 12] J. Jankowski and S. Decker. “A dual-mode user interface for accessing
3D content on the world wide web”. In: Proc. WWW, pp. 1047–1056,
ACM, 2012.

[Jank 13] J. Jankowski and M. Hachet. “A Survey of Interaction Techniques
for Interactive 3D Environments”. In: Eurographics STAR, 2013.

[Jin 12] Y. Jin, Q. Wu, and L. Liu. “Unsupervised upright orientation of
man-made models”. Graphical Models, 2012.

[Jone 07] A. Jones, I. McDowall, H. Yamada, M. T. Bolas, and P. E. Debevec.
“Rendering for an interactive 360 degree light field display”. ACM
Trans. Graph, Vol. 26, No. 3, pp. 40–40, 2007.

[Jova 08] B. Jovanova, M. Preda, and F. Preteux. “MPEG-4 Part 25: A Generic
Model for 3D Graphics Compression”. In: Proc. 3DTV, pp. 101–104,
IEEE, 2008.

[Jova 09] B. Jovanova, M. Preda, and F. Preteux. “MPEG-4 Part 25: A graphics
compression framework for XML-based scene graph formats”. Image
Commun., Vol. 24, No. 1-2, pp. 101–114, 2009.

[Kazh 06] M. Kazhdan, M. Bolitho, and H. Hoppe. “Poisson surface recon-
struction”. In: Proc. SGP, pp. 61–70, 2006.

Bibliography 201

[Keef 13] D. Keefe and T. Isenberg. “Reimagining the Scientific Visualization
Interaction Paradigm”. Computer, Vol. 46, No. 5, pp. 51–57, May 2013.

[Khan 05] A. Khan, B. Komalo, J. Stam, G. Fitzmaurice, and G. Kurtenbach.
“HoverCam: interactive 3D navigation for proximal object inspec-
tion”. In: Proc. I3D, pp. 73–80, ACM, 2005.

[Khod 03] A. Khodakovsky, N. Litke, and P. Schröder. “Globally smooth pa-
rameterizations with low distortion”. ACM Trans. Graph., Vol. 22,
No. 3, pp. 350–357, 2003.

[Kimb 01] D. Kimber, J. Foote, and S. Lertsithichai. “Flyabout: spatially indexed
panoramic video”. In: Proc. ACM Multimedia, pp. 339–347, 2001.

[Klei 12] T. Klein, F. Guéniat, L. Pastur, F. Vernier, and T. Isenberg. “A De-
sign Study of Direct-Touch Interaction for Exploratory 3D Scientific
Visualization”. Computer Graphics Forum, Vol. 31, pp. 1225–1234,
2012.

[Knoe 11] S. Knoedel and M. Hachet. “Multi-touch RST in 2D and 3D spaces:
Studying the impact of directness on user performance”. In: Proc.
ACM 3DUI, pp. 75–78, ACM, 2011.

[Kopf 10] J. Kopf, B. Chen, R. Szeliski, and M. Cohen. “Street slide: browsing
street level imagery”. In: Proc. SIGGRAPH, pp. 96:1–96:8, 2010.

[Krae 04] V. Kraevoy and A. She�er. “Cross-parameterization and compatible
remeshing of 3D models”. ACM Trans. Graph., Vol. 23, No. 3, pp. 861–
869, 2004.

[Krat 10] S. Kratz and M. Rohs. “Extending the virtual trackball metaphor to
rear touch input”. In: Proc. IEEE 3DUI, pp. 111–114, IEEE, 2010.

[Kufl 11] T. Kuflik, O. Stock, M. Zancanaro, A. Gorfinkel, S. Jbara, S. Kats,
J. Sheidin, and N. Kashtan. “A visitor’s guide in an active museum:
Presentations, communications, and reflection”. Journal on Com-
puting and Cultural Heritage (JOCCH), Vol. 3, No. 3, pp. 11:1–11:25,
2011.

[Kurt 97] G. Kurtenbach, G. Fitzmaurice, T. Baudel, and B. Buxton. “The design
of a GUI paradigm based on tablets, two-hands, and transparency”.
In: Proc. ACM SIGCHI, pp. 35–42, ACM, ACM, 1997.

[Lab 09] L. Lab. “1 Billion Hours, 1 Billion Dollars Served: Second Life Cele-
brates Major Milestones for Virtual Worlds”. http://lindenlab.

http://lindenlab.com/pressroom/releases/22_09_09
http://lindenlab.com/pressroom/releases/22_09_09
http://lindenlab.com/pressroom/releases/22_09_09

Bibliography 202

com/pressroom/releases/22_09_09, 2009. Retrieved on 15 Sep.
2010.

[Laut 07] C. Lauterbach, S.-E. Yoon, and D. Manocha. “Ray-Strips: A Compact
Mesh Representation for Interactive Ray Tracing”. In: Proc. IEEE/EG
Symposium on Interactive Ray Tracing, pp. 19–26, IEEE Computer Soci-
ety, 2007.

[Lee 09] H. Lee, G. Lavoué, and F. Dupont. “Adaptive Coarse-to-Fine Quanti-
zation for Optimizing Rate-distortion of Progressive Mesh Compres-
sion”. In: Proc. VMV, pp. 73–82, 2009.

[Lee 10] J. Lee, S. Choe, and S. Lee. “Compression of 3D Mesh Geometry and
Vertex Attributes for Mobile Graphics”. Journal of Computing Science
and Engineering, Vol. 4, No. 3, pp. 207–224, 2010.

[Lee 98] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin.
“MAPS: Multiresolution Adaptive Parameterization of Surfaces”.
Comp. Graph. Proc., pp. 95–104, 1998.

[Lipp 80] A. Lippman. “Movie-maps: An application of the optical videodisc
to computer graphics”. Proc. SIGGRAPH, Vol. 14, pp. 32–42, July
1980.

[Liu 13] Y. Liu, S. Barlowe, Y. Feng, J. Yang, and M. Jiang. “Evaluating ex-
ploratory visualization systems: A user study on how clustering-
based visualization systems support information seeking from large
document collections”. Information Visualization, Vol. 12, No. 1, pp. 25–
43, 2013.

[Liu 14] S. Liu, W. Cui, Y. Wu, and M. Liu. “A survey on information visual-
ization: recent advances and challenges”. The Visual Computer, Jan.
2014.

[Lloy 82] S. Lloyd. “Least squares quantization in PCM”. IEEE Trans. Inf.
Theory, Vol. 28, No. 2, pp. 129 – 137, mar 1982.

[Lueb 97] D. Luebke and C. Erikson. “View-dependent simplification of arbi-
trary polygonal environments”. In: Proc. ACM SIGGRAPH, pp. 199–
208, 1997.

[Lund 11] C. Lundstrom, T. Rydell, C. Forsell, A. Persson, and A. Ynnerman.
“Multi-Touch Table System for Medical Visualization: Application
to Orthopedic Surgery Planning”. IEEE Transactions on Visualization
and Computer Graphics, Vol. 17, No. 12, pp. 1775–1784, Dec. 2011.

http://lindenlab.com/pressroom/releases/22_09_09
http://lindenlab.com/pressroom/releases/22_09_09
http://lindenlab.com/pressroom/releases/22_09_09

Bibliography 203

[Magl 10] A. Maglo, H. Lee, G. Lavoué, C. Mouton, C. Hudelot, and F. Dupont.
“Remote scientific visualization of progressive 3D meshes with X3D”.
In: Proc. Web3D, pp. 109–116, 2010.

[Malv 08] H. S. Malvar, G. J. Sullivan, and S. Srinivasan. “Lifting-Based Re-
versible Color Transformations for Image Compression”. In: SPIE
Applications of Digital Image Processing, International Society for Opti-
cal Engineering, August 2008.

[Manu 05] F. P. Manuel M.Oliveira. “An E�cient Representation for Surface
Details”. Tech. Rep. RP 351, Universidade Federal do Rio Grande,
January 2005.

[Mari 12] P. Marion. “Point Cloud Streaming to Mobile Devices with Real-time
Visualization”. www.pointclouds.org, 2012.

[Mart 09] A. Martinet, G. Casiez, and L. Grisoni. “3D positioning techniques
for multi-touch displays”. In: Proc. ACM VRST, pp. 227–228, ACM
Press, 2009.

[Mart 12a] A. Martinet, G. Casiez, and L. Grisoni. “Integrality and Separability
of Multitouch Interaction Techniques in 3D Manipulation Tasks”.
IEEE Transactions on Visualization and Computer Graphics, Vol. 18, No. 3,
pp. 369–380, March 2012.

[Mart 12b] F. Marton, M. Agus, E. Gobbetti, G. Pintore, and M. Balsa Rodríguez.
“Natural exploration of 3D massive models on large-scale light field
displays using the FOX proximal navigation technique”. Computers
& Graphics, Vol. 36, No. 8, pp. 893–903, December 2012.

[Mart 14] F. Marton, M. Balsa Rodríguez, F. Bettio, M. Agus, A. Jaspe Vil-
lanueva, and E. Gobbetti. “IsoCam: Interactive Visual Exploration of
Massive Cultural Heritage Models on Large Projection Setups”. ACM
Journal on Computing and Cultural Heritage, Vol. 7, No. 2, p. Article 12,
June 2014.

[Mart 79] G. N. N. Martin. “Range encoding: an algorithm for removing
redundancy from a digitised message”. In: Video and Data Recording
Conference, 1979.

[McCr 09] J. McCrae, I. Mordatch, M. Glueck, and A. Khan. “Multiscale 3D
navigation”. In: Proc. I3D, pp. 7–14, ACM, 2009.

[Meye 10] Q. Meyer, J. Suessmuth, G. Sussner, M. Stamminger, and G. Greiner.
“On Floating-Point Normal Vectors.”. Computer Graphics Forum,
Vol. 29, No. 4, pp. 1405–1409, 2010.

Bibliography 204

[Meye 12] Q. Meyer, B. Keinert, G. Sussner, and M. Stamminger. “Data-Parallel
Decompression of Triangle Mesh Topology”. Computer Graphics
Forum, Vol. 31, No. 8, pp. 2541–2553, Dec. 2012.

[Moer 12] C. Moerman, D. Marchal, and L. Grisoni. “Drag’n Go: Simple and
fast navigation in virtual environment”. In: Proc 3DUI, pp. 15–18,
IEEE Computer Society, 2012.

[Mosc 08] T. Moscovich and J. F. Hughes. “Indirect mappings of multi-touch
input using one and two hands”. In: Proc. ACM SIGCHI, pp. 1275–
1284, ACM, 2008.

[Mota 08] J. a. Mota, M. J. Fonseca, D. Gonçalves, and J. A. Jorge. “Agrafo: a
visual interface for grouping and browsing digital photos”. In: Proc.
ACM AVI, pp. 494–495, ACM, 2008.

[Nieb 10] F. Niebling, A. Kopecki, and M. Becker. “Collaborative steering
and post-processing of simulations on HPC resources: Everyone,
anytime, anywhere”. In: Proceedings of the 15th International Conference
on Web 3D Technology, pp. 101–108, ACM, 2010.

[Oliv 00] M. M. Oliveira, G. Bishop, and D. McAllister. “Relief Texture Map-
ping”. In: S. Ho�meyer, Ed., Proceedings of the Computer Graphics
Conference 2000 (SIGGRAPH-00), pp. 359–368, ACMPress, New York,
July 23–28 2000.

[Piet 10] N. Pietroni, M. Tarini, and P. Cignoni. “Almost Isometric Mesh
Parameterization through Abstract Domains”. IEEE Transactions on
Visualization and Computer Graphics, Vol. 16, No. 4, pp. 621–635, 2010.

[Pint 11] R. Pintus, E. Gobbetti, and M. Callieri. “Fast Low-Memory Seamless
Photo Blending on Massive Point Clouds using a Streaming Frame-
work”. ACM Journal on Computing and Cultural Heritage, Vol. 4, No. 2,
p. Article 6, 2011.

[Poli 05] F. Policarpo, M. M. Oliveira, and J. L. D. Comba. “Real-time relief
mapping on arbitrary polygonal surfaces”. ACM Trans. Graph, Vol. 24,
No. 3, p. 935, 2005.

[Poly 11] N. F. Polys, D. A. Bowman, and C. North. “The role of Depth and
Gestalt cues in information-rich virtual environments”. International
Journal of Human-Computer Studies, Vol. 69, No. 1-2, pp. 30–51, Jan.
2011.

Bibliography 205

[Prau 03] E. Praun and H. Hoppe. “Spherical parametrization and remeshing”.
ACM Trans. Graph., Vol. 22, No. 3, pp. 340–349, 2003.

[Purn 05] B. Purnomo, J. Bilodeau, J. D. Cohen, and S. Kumar. “Hardware-
compatible vertex compression using quantization and simplifica-
tion”. In: Proc. ACM Graphics Hardware, pp. 53–61, 2005.

[R Co 13] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2013.

[Rapp 98] D. Rappoport. “Image-Based Rendering for Non-Di�use Synthetic
Scenes”. In: Proc. Rendering techniques, p. 301, 1998.

[Reis 09] J. L. Reisman, P. L. Davidson, and J. Y. Han. “A screen-space for-
mulation for 2D and 3D direct manipulation”. In: Proc. ACM UIST,
pp. 69–78, ACM, 2009.

[Ried 06] M. O. Riedl and R. M. Young. “From linear story generation to
branching story graphs”. IEEE Computer Graphics and Applications,
Vol. 26, No. 3, pp. 23–31, 2006.

[Rivi 08] J.-B. de la Rivière, C. Kervégant, E. Orvain, and N. Dittlo. “CubTile:
a multi-touch cubic interface”. In: Proc. ACM VRST, pp. 69–72, ACM,
2008.

[Rodr 12] K. Rodriguez-Echavarria, J. Kaminski, and D. B. Arnold. “3D Her-
itage on Mobile Devices: Scenarios and Opportunities”. In: Eu-
roMed’12, pp. 149–158, 2012.

[Ross 01] J. Rossignac. “3D Compression Made Simple: Edgebreaker with
Zip&Wrap on a Corner-Table”. In: Proceedings of the International
Conference on Shape Modeling & Applications, pp. 278–, IEEE Computer
Society, Washington, DC, USA, 2001.

[Rubi 13] I. Rubino, J. Xhembulla, A. Martina, A. Bottino, and G. Malnati.
“MusA: Using Indoor Positioning and Navigation to Enhance Cul-
tural Experiences in a Museum”. Sensors, Vol. 13, No. 12, pp. 17445–
17471, 2013.

[Ryu 10] D.-S. Ryu, W.-K. Chung, and H.-G. Cho. “PHOTOLAND: a new
image layout system using spatio-temporal information in digital
photos”. In: Proc. ACM SAC, pp. 1884–1891, ACM Press, 2010.

[Safr 06] I. Safro, D. Ron, and A. Brandt. “Graph minimum linear arrangement
by multilevel weighted edge contractions”. Journal of Algorithms,
Vol. 60, No. 1, pp. 24–41, 2006.

Bibliography 206

[Sand 03] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. “Multi-
Chart Geometry Images”. In: Eurographics Symposium on Geometry
Processing, pp. 146–155, June 2003.

[Sank 12] A. Sankar and S. Seitz. “Capturing indoor scenes with smartphones”.
In: Proc. UIST, pp. 403–412, 2012.

[Scho 06] J. Scholtz. “Beyond usability: Evaluation aspects of visual analytic
environments”. In: Visual Analytics Science And Technology, 2006 IEEE
Symposium On, pp. 145–150, 2006.

[Schr 04] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe. “Inter-surface
mapping”. ACM Trans. Graph., Vol. 23, No. 3, pp. 870–877, 2004.

[Scot 03] W. R. Scott, G. Roth, and J.-F. Rivest. “View planning for automated
three-dimensional object reconstruction and inspection”. ACM Com-
put. Surv., Vol. 35, No. 1, pp. 64–96, March 2003.

[Seco 11] A. Secord, J. Lu, A. Finkelstein, M. Singh, and A. Nealen. “Perceptual
Models of Viewpoint Preference”. ACM TOG, Vol. 30, No. 5, pp. 109:1–
109:12, Oct. 2011.

[Sege 10] E. Segel and J. Heer. “Narrative visualization: Telling stories with
data”. IEEE TVCG, Vol. 16, No. 6, pp. 1139–1148, 2010.

[Sene 04] J. G. Senecal, P. Lindstrom, M. A. Duchaineau, and K. I. Joy. “An
improved N-bit to N-bit reversible Haar-like transform”. In: 12th
Pacific Conference on Computer Graphics and Applications, pp. 371–380,
Oct. 2004.

[Shef 06] A. She�er, E. Praun, and K. Rose. “Mesh Parameterization Methods
and Their Applications”. Foundations and Trends in Computer Graphics
and Vision, Vol. 2, No. 2, pp. 105–171, 2006.

[Shiu 05] L.-J. Shiue, I. Jones, and J. Peters. “A realtime GPU subdivision
kernel”. ACM Transactions on Graphics, Vol. 24, No. 3, pp. 1010–1015,
Aug. 2005.

[Shoe 92] K. Shoemake. “ARCBALL: a user interface for specifying three-
dimensional orientation using a mouse”. In: Proc. SIGGRAPH,
pp. 151–156, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1992.

[Shum 07] H. Shum, S. Chan, and S. B. Kang. Image-based rendering. Springer,
2007.

Bibliography 207

[Shur 11] D. Shuralyov and W. Stuerzlinger. “A 3D Desktop Puzzle Assembly
System”. In: Proc. 3DUI, pp. 139–140, IEEE Computer Society, 2011.

[Sinh 12] S. Sinha, J. Kopf, M. Goesele, D. Scharstein, and R. Szeliski. “Image-
based rendering for scenes with reflections”. ACM Trans. Graph.,
Vol. 31, No. 4, p. 100, 2012.

[Snav 06] N. Snavely, S. M. Seitz, and R. Szeliski. “Photo tourism: exploring
photo collections in 3D”. In: Proc. SIGGRAPH, pp. 835–846, 2006.

[Sonn 05] H. Sonnet, S. Carpendale, and T. Strothotte. “Integration of 3D Data
and Text: The E�ects of Text Positioning, Connectivity, and Visual
Hints on Comprehension”. In: M. Costabile and F. PaternÃö, Eds.,
Human-Computer Interaction - INTERACT 2005, pp. 615–628, Springer
Berlin Heidelberg, 2005.

[Stre 06] M. Strengert, M. Kraus, and T. E. Ertl. “Pyramid methods in gpu-
based image processing”. In: Proc. VMV, pp. 169–176, 2006.

[Taub 98a] G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. “Progressive forest
split compression”. In: Proc. ACM SIGGRAPH, pp. 123–132, New
York, NY, USA, 1998.

[Taub 98b] G. Taubin and J. Rossignac. “Geometric compression through topo-
logical surgery”. ACM Trans. Graph., Vol. 17, No. 2, pp. 84–115, 1998.

[Tomp 12] J. Tompkin, K. I. Kim, J. Kautz, and C. Theobalt. “Videoscapes:
exploring sparse, unstructured video collections”. ACM Trans. Graph.,
Vol. 31, No. 4, p. 68, 2012.

[Trin 11] D. R. Trindade and A. B. Raposo. “Improving 3d navigation in
multiscale environments using cubemap-based techniques”. In:
Proc. SAC, pp. 1215–1221, ACM, 2011.

[Van 08] S. Van Dongen. “Graph Clustering Via a Discrete Uncoupling Pro-
cess”. SIAM Journal on Matrix Analysis and Applications, Vol. 30, No. 1,
pp. 121–141, 2008.

[Vazq 02] P.-P. Vazquez, M. Feixas, M. Sbert, and W. Heidrich. “Image-Based
Modeling Using Viewpoint Entropy”. In: Proc. CGI, 2002.

[Vinc 07] L. Vincent. “Taking Online Maps Down to Street Level”. Computer,
Vol. 40, pp. 118–120, December 2007.

[Wang 03] L. Wang, X. Wang, X. Tong, S. Lin, S.-M. Hu, B. Guo, and H.-Y.
Shum. “View-dependent displacement mapping.”. ACM Trans.
Graph., Vol. 22, No. 3, pp. 334–339, 2003.

Bibliography 208

[Wang 04] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum. “Generalized
Displacement Maps”. In: D. Fellner and S. Spencer, Eds., Proceed-
ings of the 2004 Eurographics Symposium on Rendering, pp. 227–234,
Eurographics Association, June 2004.

[Weis 10a] K. Weiss and L. De Floriani. “Simplex and diamond hierarchies:
Models and applications”. In: Eurographics 2010 - State of the Art
Reports, pp. 113–136, 2010.

[Weis 10b] M. Weiss, S. Voelker, C. Sutter, and J. Borchers. “BendDesk: dragging
across the curve”. In: Proc. ACM International Conference on Interactive
Tabletops and Surfaces, pp. 1–10, ACM, 2010.

[Wils 03] A. Wilson and D. Manocha. “Simplifying complex environments us-
ing incremental textured depth meshes”. ACM Trans. Graph., Vol. 22,
No. 3, pp. 678–688, 2003.

[Wimm 10] R. Wimmer, F. Hennecke, F. Schulz, S. Boring, A. Butz, and H. Huss-
mann. “Curve: revisiting the digital desk”. In: Proc, NordiCHI,
pp. 561–570, ACM, 2010.

[Wu 02] J. Wu and L. Kobbelt. “Fast mesh decimation by multiple-choice
techniques”. In: Proceedings of 7th International Fall Workshop on Vision,
Modeling, and Visualization, pp. 241–248, 2002.

[Xia 96] J. Xia and A. Varshney. “Dynamic View-dependent simplification for
polygonal models”. In: Proc. IEEE Visualization, pp. 327–334, 1996.

[Yoon 04] S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha. “Quick-VDR:
Interactive View-Dependent Rendering of Massive Models”. In: Proc.
IEEE Visualization, pp. 131–138, Washington, DC, USA, 2004.

[Yoon 08] S. Yoon, E. Gobbetti, D. Kasik, and D. Manocha. Real-time Massive
Model Rendering. Vol. 2 of Synthesis Lectures on Computer Graphics and
Animation, Morgan and Claypool, August 2008.

[Yu 10] L. Yu, P. Svetachov, P. Isenberg, M. H. Everts, and T. Isenberg. “FI3D:
Direct-Touch Interaction for the Exploration of 3D Scientific Visu-
alization Spaces”. IEEE Transactions on Visualization and Computer
Graphics, Vol. 16, No. 6, pp. 1613–1622, Nov. 2010.

[Zele 99] R. Zeleznik and A. Forsberg. “UniCam: 2D Gestural Camera Con-
trols for 3D Environments”. In: Proc. Symposium on Interactive 3D
Graphics, pp. 169–173, ACM, 1999.

Bibliography 209

[Zhao 11] Y. J. Zhao, D. Shuralyov, and W. Stuerzlinger. “Comparison of mul-
tiple 3d rotation methods”. In: Proc. IEEE VECIMS, pp. 1–5, IEEE,
2011.

Curriculum Vitae

Marcos Balsa studied Computer Science at the Polytechnic Uni-
versity of Catalonia (UPC) in Spain, where he received his M.Sc.
degree in September 2011. In 2002, he started working as re-
search assistant at the IRI (Institut de Robòtica i Informàtica
Industrial) of the UPC, working in projects related to Virtual Real-
ity and medical image visualization. During 2007-2010 he worked
in GEOvirtual, a company focused on 3D GIS, designing and
developing a 3D Virtual Globe. In 2012, he was awarded with
a Marie Curie Research Grant and hired as an Early Stage Re-
searcher in the ViC group of CRS4 in Sardinia. His research is
focused on massive model rendering. In particular, efficient and
scalable methods for the interactive visualization of very large
mesh models in constrained environments and mobile devices.
His research interests cover real-time rendering, massive model
rendering, parallel programming, volume rendering and mobile
programming.

Contact Information

Name Marcos Balsa Rodríguez
Address CRS4, POLARIS Edificio 1, 09010 Pula (CA),

Italy
Phone +39 0709250283
E-mail marbarod@gmail.com
Website http://www.crs4.it/people

Personal Details

Date of Birth April 18th, 1981.
Place of Birth Barcelona, Spain
Citizenship Spanish
Languages Spanish (native), Catalan (native), Italian

(fluent), English (fluent), Galician (fluent)
Professional A�lia-
tions

Eurographics (since 2012) - ACM (since
2012)

mailto:marbarod@gmail.com
http://www.crs4.it/crs4/peopledetails/people/390/Marcos_Balsa_Rodriguez

Curriculum Vitae 212

Education

since Jan. 2012 PhD Program in Computer Science, University of Cagliari, Italy.
Working on the dissertation Scalable Rendering of Highly Detailed
3D models at the School of Mathematics and Computer Science.
Tutor: Prof. Riccardo Scateni. Research Advisor: Dr. E. Gobbetti
(CRS4).

2006/07 - 2010/11 Master Studies in Computing, Polytechnic University of Catalo-
nia (UPC), Spain. Successfully completed the master’s thesis titled
Volume visualization on mobile devices, with 10/10. Advisor: Prof.
Pere-Pau Vázquez Alcocer.

Sept. 1999 - Feb. 2006 Engineering Degree in Computer Science, Polytechnic Univer-
sity of Catalonia (UPC), Spain. Successfully completed the thesis
on Falling leaves simulation on the GPU, with 10/10. Advisor: Pere-
Pau Vázquez Alcocer.

Employment History

since January 2015 Consultant Researcher at the Visual Computing group of CRS4.

January 2012 - Jan-
uary 2015

Marie Curie Early Stage Researcher at the Visual Computing
group of CRS4 (Center for Advanced Studies, Research and De-
velopment in Sardinia).

May 2010 - Dec. 2010 IT Consultant. Grup de Tecnologies Interactives (GTI)
Universitat Pompeu Fabra, Barcelona, Spain. Development of
Flash-based client-server technologies for tracking of the Barcelona
World Race event.

Feb. 2007 - April 2010 Computer Graphics developer. GEOVirtual. Barcelona, Spain.
Research and development of a 3D Virtual Globe for geo-
referenced information.

Dec. 2002 - Jan. 2007 Research assistant. Institut de Robotica i Informatica Indus-
trial. Polytechnic University of Catalonia, Barcelona, Spain.
Research in Virtual Reality projects, Volume Rendering and
GPGPU techniques.

Curriculum Vitae 213

Software projects involved

2012-2014 Mont’e Prama project - 3D interactive visualization of highly de-
tailed cultural heritage models (mobile and large display systems),
and interaction methods adapted to the various setups.

2010 Flash-based 2D GIS tracking system for Barcelona World Race,
including tracking of the various ships and dynamic weather
forecast.

2007-2010 3D Virtual Globe with raster and vector (including 3D models)
information. Also various web plugins enabling integration of the
3D globe in the web using Javascript.

2006 Visible Male - Out-of-core visualization and gradient precompu-
tation of data from the Visible Human project.

2003-2005 ViHAP3D (http://www.vihap3d.org/news.html) - 3D museum
builder, and museum viewer with 3D stereo capabilities and
trigger-based multimedia events.

2002-2005 PVPC - Building Prototyping application. Qt GUI integrating
modules for 2D sketch recognition, 3D model reconstruction from
2D (DXF), texturing, sunlight simulation, and 3D stereo visualiza-
tion.

Scientific Talks, Tutorials and Lectures

Web3D 2014 HuMoRS: Huge models Mobile Rendering Sys-
tem. Vancouver, Canada. August, 2014

Master Game Day 2014 Huge surface model visualization on mobile de-
vices. Universita’ di Verona, Italy. May, 2014

Mobile Graphics & Inter-
active Applications 2013

Coarse-grained Multiresolution Structures for
Mobile Exploration of Gigantic Surface Models.
Hong Kong, China. November, 2013

Web3D 2013 Compression-domain Seamless Multiresolution
Visualization of Gigantic Meshes on Mobile de-
vices. San Sebastian, Spain. June, 2013

EuroGraphics 2013 A Survey of Compressed GPU-based Direct Vol-
ume Rendering. May 2013

ISVC 2012 Practical Volume Rendering in mobile devices.
Rethymnos, Greece. July, 2012

Curriculum Vitae 214

Thesis Publications

Journal Articles

1. E. Gobbetti, R. Pintus, F. Bettio, F. Marton, M. Agus, and M. Balsa Rodriguez.
“Digital Mont’e Prama: dalla digitalizzazione accurata alla valorizzazione di
uno straordinario complesso statuario”. Archeomatica, 2015. To appear

2. M. Balsa Rodríguez, M. Agus, F. Marton, and E. Gobbetti. “Adaptive Recom-
mendations for Enhanced non-linear Exploration of Annotated 3D Objects”.
Computer Graphics Forum, May 2015. Conditionally accepted to EuroVis 2015

3. M. Di Benedetto, F. Ganovelli, M. Balsa Rodríguez, A. Jaspe Villanueva,
R. Scopigno, and E. Gobbetti. “ExploreMaps: E�cient Construction and
Ubiquitous Exploration of Panoramic View Graphs of Complex 3D Environ-
ments”. Computer Graphics Forum, Vol. 33, No. 2, pp. 459–468, 2014. Proc.
Eurographics 2014

4. F. Marton, M. Balsa Rodríguez, F. Bettio, M. Agus, A. Jaspe Villanueva, and
E. Gobbetti. “IsoCam: Interactive Visual Exploration of Massive Cultural
Heritage Models on Large Projection Setups”. ACM Journal on Computing
and Cultural Heritage, Vol. 7, No. 2, p. Article 12, June 2014

5. F. Marton, M. Agus, E. Gobbetti, G. Pintore, and M. Balsa Rodríguez. “Nat-
ural exploration of 3D massive models on large-scale light field displays
using the FOX proximal navigation technique”. Computers & Graphics, Vol. 36,
No. 8, pp. 893–903, December 2012

Conference Papers (based on full paper peer reviewing)

1. M. Balsa Rodríguez, M. Agus, F. Marton, and E. Gobbetti. “HuMoRS: Huge
models Mobile Rendering System”. In: Proc. ACM Web3D International Sym-
posium, ACM Press, New York, NY, USA, August 2014

2. M. Balsa Rodríguez, E. Gobbetti, F. Marton, and A. Tinti. “Coarse-grained
Multiresolution Structures for Mobile Exploration of Gigantic Surface Mod-
els”. In: Proc. SIGGRAPH Asia Symposium on Mobile Graphics and Interactive
Applications, pp. 4:1–4:6, ACM, November 2013

3. M. Balsa Rodríguez, E. Gobbetti, F. Marton, and A. Tinti. “Compression-
domain Seamless Multiresolution Visualization of Gigantic Meshes on Mo-
bile Devices”. In: Proc. ACM Web3D International Symposium, pp. 99–107,

Curriculum Vitae 215

ACM Press, June 2013

4. E. Gobbetti, F. Marton, M. Balsa Rodríguez, F. Ganovelli, and M. Di Benedetto.
“Adaptive Quad Patches: an Adaptive Regular Structure for Web Distribution
and Adaptive Rendering of 3D Models”. In: Proc. ACM Web3D International
Symposium, pp. 9–16, ACM Press, New York, NY, USA, August 2012. (Best
Long Paper Award)

Other Publications

Journal Articles

1. M. Balsa Rodríguez, E. Gobbetti, J. Iglesias Guitián, M. Makhinya, F. Marton,
R. Pajarola, and S. Suter. “State-of-the-art in Compressed GPU-Based Direct
Volume Rendering”. Computer Graphics Forum, Vol. 33, No. 6, pp. 77–100,
September 2014

Conference Papers (based on full paper peer reviewing)

1. M. Balsa Rodríguez, E. Gobbetti, J. Iglesias Guitián, M. Makhinya, F. Mar-
ton, R. Pajarola, and S. Suter. “A Survey of Compressed GPU-based Direct
Volume Rendering”. In: Eurographics State-of-the-art Report, pp. 117–136, May
2013

2. M. Balsa Rodríguez, E. Gobbetti, F. Marton, R. Pintus, G. Pintore, and A. Tinti.
“Interactive Exploration of Gigantic Point Clouds on Mobile Devices”. In:
D. Arnold, J. Kaminski, F. Niccolucci, and A. Stork, Eds., VAST: International
Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage, The
Eurographics Association, 2012

Book contributions

1. M. Balsa Rodríguez and P. Vazquez Alcocer. “Practical Volume Rendering
in mobile devices”. In: Proc. International Symposium on Visual Computing,
pp. 708–718, Springer Verlag, 2012

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Preface
	1 Introduction
	1.1 Background and Motivation
	1.2 Objectives
	1.3 Achievements
	1.4 Organization

	I Background and Motivation
	2 Application Domain
	2.1 Introduction
	2.2 Requirements
	2.3 Discussion
	2.4 Bibliographical Notes

	3 Previous Work
	3.1 Introduction
	3.2 Scalable Visualization of Complex 3D Models
	3.3 Interactive Exploration of Complex 3D Models
	3.4 Information Discovery on Complex 3D Models
	3.5 Discussion
	3.6 Bibliographical Notes

	4 Work Plan
	4.1 Research Goals
	4.2 Our approach

	II Compact Representations for Complex 3D Models
	5 Compression-domain Seamless Multiresolution Visualization of Gigantic Meshes on Mobile Devices
	5.1 Introduction
	5.2 Method Overview
	5.3 Building the multiresolution structure
	5.4 Server
	5.5 Client architecture description
	5.6 Implementation and Results
	5.7 Discussion
	5.8 Bibliographical Notes

	6 Adaptive Quad Patches: An Adaptive Regular Structure for Web Distribution and Adaptive Rendering of 3D Models
	6.1 Introduction
	6.2 Method Overview
	6.3 Surface Reconstruction, Parametrization and Quad Re-meshing
	6.4 Quad-based Multiresolution Structure
	6.5 Implementation and Results
	6.6 Discussion
	6.7 Bibliographical Notes

	7 ExploreMaps: Efficient Construction of Panoramic View Graphs of Complex 3D Environments
	7.1 Introduction
	7.2 Creating the ExploreMaps graph
	7.3 Efficient GPU Implementation
	7.4 Implementation and Results
	7.5 Discussion
	7.6 Bibliographical Notes

	III Assisted Exploration of Complex 3D Models
	8 HuMoRS: Huge models Mobile Rendering System
	8.1 Introduction
	8.2 System overview
	8.3 User interaction
	8.4 Implementation and Results
	8.5 Discussion
	8.6 Bibliographical Notes

	9 IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on Large Projection Setups
	9.1 Introduction
	9.2 Overview
	9.3 Camera control
	9.4 Image-based navigation and points of interest
	9.5 Device mapping
	9.6 Extending support to light field displays
	9.7 Scalability
	9.8 Implementation and Results
	9.9 Discussion
	9.10 Bibliographical Notes

	10 ExploreMaps: Ubiquitous Exploration of Panoramic View Graphs of Complex 3D Environments
	10.1 Introduction
	10.2 Browsing Explore Maps
	10.3 Implementation and Results
	10.4 Discussion
	10.5 Bibliographical Notes

	IV Beyond Visual Replication
	11 Adaptive Recommendations for Enhanced non-linear Exploration of Annotated 3D Objects
	11.1 Introduction
	11.2 Overview
	11.3 The recommendation engine
	11.4 User interface
	11.5 Scalability
	11.6 Implementation and User Study
	11.7 Discussion
	11.8 Bibliographical Notes

	V Conclusions
	12 Summary and Conclusions
	12.1 Conclusions
	12.2 Future Work
	12.3 Bibliographical Notes

	Bibliography
	Curriculum Vitae

