
Looking at Workstation Architectures
from the Viewpoint of Interaction

Detlef Kromker

Technical University of Darmstadt, Graphical Interactive Systems Group
Alexanderstr. 24, D-6100 Darmstadt

Introduction

Today's design of sophisticated graphics workstations may be characte­
r ized by the terms 3D-system, user driven, object-oriented user interface
and multiple-windows system with the challenge to create high level
interfaces for the application programmers. All these properties require
a great amount of computing power, especially if we look at 3D-systems
with high images quality. On the other hand it is well-known that speed,
which means system response time, is the most important aspect of
interactive systems. More than any other attributes, speed decides
whether a new system or technique is acceptable or not. "Not only did
the speed make the user happier, but productivity went up." /Brad-85/
This will be the first point of discussion treated in this article followed by
a preview of current architectures, a short analysis of interaction, an
observation of implementation techniques and finally pointing out a new
hardware approach for the implementation of very fast interactive sys­
tems.

Response Time Requirements for Interactive Workstations

The following reftections base on studies done within IBM /Brad-85/.
They indicate that one of the prime parameters of productivity, while
using an interactive computing system, is the response time. One of the
key questions in workstation design from the economic point of view is:
Does a minimal system response time exist, so that further investments
in hardware or software make no more sense, because they will not
increase the productivity of the users? And if it exists, what is it's
magnitude?

http://www.eg.org
http://diglib.eg.org

28

The answers are very interesting. To the first question, measurements
showed a very substantial increase of productivity when response time
decreases to below 1 second and even more if it goes down to 0.3
seconds. Fig. 1 shows the relationships. By using cognitive studies Brady
made productivity projections for response times lower than 0 .3 seconds
(Fig. 2).

p 9

r a
0
d 7
u 6
c 5

! 4
I

v 3

i 2
t
y

.5 1 1.5
System Response Time- [sec]

Fig. 1: The productivity of
interactive engineering
users in a high-function
graphics application as a
function of system response
time /Brad-85/.

64
p

r 32
0
d
u 16
c
t

8
v
i 4
t
y

2
ET

.ZS see
z.o see

------ lt.O sec

.1 .2 .3 .4 .5

System Response Time - [sec]

Fig. 2: Productivity projections as a
function of response time and
transaction entry time (ET) /Brad-
85/.

As the second important parameter of productivity the transaction entry
time was exposed. Out of the results we conclude:

29

- decreasing system response time down to 0.1 seconds (or even
lower) seems to be most economically,

- the interactive system has to give as much assistance as possible
to the user, to reduce the entry time.

Comparing these requirements with today's systems we have to make an
important note: the typical response time of a CGI-System (Computer­
Generated-Imagery) in simulator enviroments is 0.1 seconds. Such a sys­
tem with the performance of several thousands of faces and an image
resolution of one million pixels needs about 100 Mips for symbolic com­
putation tasks (scene managing and geometric processing) and about
10,000 Mips for pixel computation (raster scan, color computation and
hidden surface removal) /Yan-85/ . The symbolic computation rate
depends mostly on the number of primitives, while the pixel computation
rate depends on the type of primitives, the image resolution and the
quality requirements. This high processing rate will keep the pixel com­
putation part of CGI-Systems in the domain of special purposes hardware
for the forseeable future /Yan-85/ .

Even with the support of very fast development of new VLSI technologies,
we will not be able to bring such a computing power to a commonly used
workstations in the near future. This forces the following questions: Are
there different requirements for CGJ-Bystems and (editing-) worksta­
tions? furthermore, are future system architectures both the same for
CGJ-Bystems and workstations or not?

A Preview of Current Architectures

For further discussion on architectural concepts, we must keep in mind
the enormous difference between the costs of symbolic and the costs of
pixel processing. Fig. 3 shows a primitive model of interactive graphics
systems. The most time consuming processes in these systems are raster
scan process, illumination process, and hidden surfaces removal process.
They are located at the raster scan processor. For realtime generation of
moving images the raster scan processor needs more than 95% of the
overall computing power. This leads to the use of highly specialized pro­
cessors for only a few and simple primitives. Contrary to early CGI­
Systems, nowadays there is the trend frame buffer based systems /Yan-
85 I . The main reason is the possibility of better balancing the multiple
scan processors and therefore less bad images with the same computing

30

graphics part
of application

geometric
transformation

clipping

perspective
transformation

raster scan
processor

raster op
processor

video
processor

application

0
User

D processing unit

() storage unit

0

Fig. 3: Model of a interactive graphics system.

application
mod ell

structure file
segment file
display file

frame buffer

device driver

31

power. Due to the frame buffer, one can generate high quality images
with antialiased edges, transparency and textures using quite simple
frame buffer algorithms.

One has to note that the most important lack of all realtime approaches
which avoid the use of a frame buffer is the limited complexity of displa­
yable images. This fact , and the few primitives supported in such sys­
tems, make a frame buffer approach necessary for general and limited
purpose workstations (see also /Engl-86/).

Therefore, frame buffer is the lowest representation level of the model in
Fig . 3. A medium representation level is a structure file, and/or a seg­
ment file, and/or a display file. In advanced systems, there are often
more than one storage units as medium representations, which will
extend the pipeline only and will not change the principles as shown.

A short Analysis of Interaction

Ten Hagen, Kuijk and Trienekens /THKT-87/ gave a very good inventory
of changes required in editing applications which were discussed on the
Hardware Workshop EG 86 . They identified three major characteristics of
interaction: incremental, locality and single aspect .

These attributes of interactive changes must be seen with respect to a
given representation level and the implementation of this level. E.g., in
the 2D-case deleting of an object is incremental to a structured display
file but not incremental to a normal frame buffer if this object was writ­
ten in REPLACE-Mode . But of course it is incremental to the frame buffer
if the object was written in EXOR-Mode . If a change is not incremental to
a given representation, it is necessary to reconstruct this representation
completely from the next higher level, which is called update . Depending
on the processing task between these two representation levels this may
require very high computational costs, e.g. if this is a update of the
frame buffer from a symbolic display file.

From the implementer's point of view, it is very useful to add an addi­
tional characterization. We may distinguish between three types of
changes. One type has a temporary nature and will not affect the appli­
cation model. These are changes like moving of cursors (maybe with rub­
berbanding etc .), highlighting of objects, dragging of objects, popping
up/down menu fields etc .. Another type of changes has a persistant

32

nature . A temporary change may be seen as an intermediate state within
a user transaction, whereas a persistant change marks the end of a user
transaction with a change in the application model. A third group of
changes are assistance Junctions, i.e . grids, scales, arrangement of
different views (windows), etc ., which have great power to reduce the
entry time.

By using the attributes of interaction mentioned above we are able to
identify the main differences beetween CGI-Systems and editing worksta­
tions: Most interactions in CGI-Systems change multiple aspects, forc ing
global changes of the image which are not incremental to the lowest
representation level (the frame buffer), and have a persistant nature .
For editing applications, a general characterization as above is impos­
sible. but there are important differences compared with CGI-Systems.
Nearly all inputs change single aspects, the requested changes are often
local. A lot of inputs force changes with temporary nature or request
assistance functions, and some are incremental to the frame buffer.

To answer the first question noted above, we found that the requirements
for CGI-Systems and editing workstations are not the same . To answer
the second question we must concentrate on the attribute incremental ,
especially with respect to the frame buffer. (Because the raster scan pro­
cess needs the highest computing power.)

Implementation Techniques

Up to now many techniques have been developed to assist a quick update
of the frame buffer. We cannot discuss them in full details but we will
identify their main benefits and disadvantages. There are two main
approaches:

• making more updates incremental to the frame buffer and

• using the video processor to manipulate the video output
stream.

Typical implementations of the first approach are :

Information Conserving Write Modes, i.e. EXOR. ADD/SUBTRACT,
etc . Since these operations are reversible, a selective erase of
objects is possible . They are useful e.g . for highlighting, but in
general, only if the backround is wellknown, otherwise their uses
may cause bad color effects.

33

- Independent Bit-Planes: They allow writing to the frame buffer
without effecting others than the enabled planes. This technique
is very useful for displaying a restricted number of objects with
limited colors, e .g . for temporal changes (echo planes).

- Raster Ops (BitBlts,PixBlts): They are known as the implementa­
tion technique used commonly for multiple windows systems. If
there is enough free space (i .e. parts of the frame buffer which
are not visible on the sreen), the use of raster ops allows virtu­
ally an incremental update of the frame buffer (with a save and
reload of the affected part) almost in realtime. Additionally they
allow quick generation of a limited set of symbols, e .g . text or
icons, but no free graphics. They are often used with information
conserving write modes having the same disadvantages as men­
tioned above .

Typical for the second main approach are techniques like Hardware
Windowing (e .g . INTEL 82786), sprites (Commodore C64, AMIGA, Atari
VCS /WiER-85/), color lookup tables, realtime cross hair, etc. All these
functions are usefull to implement realtime response, but they are
restricted to very few system response types and they are not able to
solve the general problem.

By this short survey of implementation. techniques we find:

- All techniques are restricted to special tasks and they do not
generally solve the problem, although we have combinations of
different techniques.

Especially for 3D-systems they only allow a very few persistant
changes incremental to the frame buffer.

None of these techniques assist the important function of pick­
ing identification of objects.

The main disadvantage of the frame buffer is the unstructured storage of
information. This leads to an approach, in which structure information is
added to the frame buffer.

34

Structure Storage Approach

Fig. 4 shows the basic idea. Parallel to the frame buffer (and in case 3D­
systems to the z-buffer, too), we have one additional storage element for
every pixel. the so-called structure storage. It stores the combination of
objects covering the corresponding pixel. The content may be inter­
preted as structure information, then the background frame buffer holds
the image information, or directly as additional image buffer which holds
an overlay image to the backround frame buffer. In this case we need an
additional lookup table which is controlled by the structure storage .

,---------1
I z-buffer 1

bockoround iiiOQe buffer

atructure storage

I
I
I .----

--f--£>11ook-upl _j L tab~_r---c

Fig. 4: Basic approach of a structure storage.

The basic operations on a structure storage are

- write (an object) with id x.

- erase an (object) with id x,

- output of the id's of objects which are affected during the last
write I erase operations,

35

- output the id's of objects covering a given pixel.

The main problem of this approach is the amount of required bits for
each pixel. This amount will be shown by the following analysis.

Assuming the priority sequence of objects is fixed (2*D-case) or there is
no priority attached. Tab. 1 shows the number of combinations to be
stored in the worst case. The number of bits to represent any of these
cases is ld (72) = n. This leads to a natural coding N, which requires one

bit for each object:

1: object covers the pixel

0: object does not cover the pixel.

For the 3D-case, where the priority of objects may change the complexity

is 73 = n · 2".

n Objects

0 Objects(transparent)

1 Object

2 Objects

n Objects

72 =

number of Combinations

1

n

[2)

~)

Tab. 1: Complexity of the potential covering of objects.

The number of bits to represent any existing case is too high to use a
direct (e .g. the natural) coding. Normally, the number of objects covering
a given pixel is much smaller than I' · Therefore, we use a hash function to
compute an index I which is stored in the structure storage. The key for
the hash function H is the natural code N. A useful hash function is the
division by a polynom P(x).

36

H(N) : I = N mod P(z) .

The minimal storage costs for some implementations are as follows .

structure storage

B bits

16 bits

16 bits

Conclusion

hash table

256 x 24 bits

65K X 48 bits

65K X 128 bits

max. number of
objects

32

64

142

The architectures of editing workstations and CGI-Systems are not neces­
sarily the same, even both ·systems have the same response time require­
ments. These results are from different interaction requirements which
are typical for these applications. Future research has to realize these
differences in the development of new architectures for editing purposes.
(As it was the introduction of raster ops some years ago .) The proposed
method is able to support a system to achieve a very short response
time for most interaction steps. This promises a higher reduction of
costs than it is given by the common approaches to speed up the output
pipeline.

37

References

/Brad-86/ J .T. Brady, A Theory of Productivity in the Creative Process
in: Proceedings of the 1st International Conference on Com­
puter Workstations; San Jose, CA; Nov. 1985
reprinted in: IEEE Computer Graphics & Applications; Vol.6,
No .5, pp. 25-34; 1986

/Engl-86/ N. England, A Graphics System Architecture for Interactive
Application-Specific Display FUnctions
in: IEEE Computer Graphics & Applications; Vol.6, No .1, pp.
60-70; 1986

ITHKT-86/ P .J.W. ten Hagen, A.A.M. Kuijk, C. G. Trienekens, Display Archi­
tecture for VLSJ-based Graphics Workstations
Within this book.

/WiER-86/ G. Williams, J. Edwards, P. Robinson, The AMIGA Personal Com­
puter
in: BYTE; August 1985;pp. 83-100

/Yan-85/ J .K. Yan, Advances in Computer Generated imagery for Flight
Simulation
in: IEEE Computer Graphics & Applications; Vol.5, No.8, pp.
37-51; 1986

