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Abstract
We present a computational framework to optimize the pants decomposition of surfaces with non-trivial topology.
A pants decomposition segments a surface into a set of sub-patches each of which is genus-0 with 3 boundaries.
A given surface usually admits infinitely-many pants decompositions that are topologically inequivalent. Given
some pre-determined geometric criteria, our algorithm enumerates different classes of pants decompositions and
search for the optimal one. The proposed framework is general, and can be used to generate different suitable
segmentations according to different applications. We also generalize our algorithm for consistent decomposition
of multiple surfaces. This algorithm can be used in constructing compatible cross-surface mapping, and facilitate
many computer graphics tasks.
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1. Introduction

Surface segmentation is ubiquitous in geometric modeling.
When the shape has complicated geometry or topology, par-
titioning it into several solvable sub-patches is effective for
divide-and-conquer. To process multiple surfaces together, a
consistent decomposition is usually needed. A consistent de-
composition of two surfaces, for example, is two sets of sub-
patches sharing a coherent adjacency relationship, namely,
their dual graphs are isomorphic. Direct graphics applica-
tions of consistent decomposition include cross-surface pa-
rameterization, morphing, animation transfer/synthesis, and
many others [KZW11, KS04, LBG∗08, LGQ09]

Many existing surface segmentation algorithms (see the
survey paper [Sha08]) are guided by local geometry and pay-
ing less attention to global shape topology and the topolo-
gy of resultant decomposition. Local-geometry guided ap-
proaches can not easily provide uniform decomposition for
shapes with complex topology; also, they often can not be
easily generalized to consistently segment multiple surfaces.

Consistent segmentation of multiple objects has been s-
tudied for partitioning multiple objects into similar salien-
t parts. A popular scheme is to partition the surfaces into
sets of topological-disks [KZW11, KS04, NGH04] by trac-
ing shortest paths between feature points. This scheme has
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been effectively used in cross-surface mapping, where well-
studied topological-disk parameterization can be computed
and used to compose the global mapping. However, manual
marker labeling is required, which is laborious and potential-
ly unreliable. Part analogies [SSSCo08] segments each mod-
el into parts independently and then creates a distance mea-
sure between parts that takes into account both local shape
signatures and the context of the parts within a hierarchi-
cal decomposition. A consistent segmentation is then creat-
ed based on this catalog of parts with inter-part distances.
Golovinskiy and Funkhouser [GF09] create segments and
correspondences between objects simultaneously, so that it
can better identify salient segments that are shared across
the set of objects. Kraevoy et al. [VDA07] develop a mod-
eling tool that partition two meshes into sub-patches con-
sistently, these sub-patches are one-to-one corresponded and
hence can be transplanted from one model onto the other.
Unlike [GF09] that allows outlier segments, this algorithm
rigorously partitions different models consistently. This co-
herency is necessary for applications such as cross-surface
mapping, where outliers should not be allowed.

1.1. Pants Decomposition for Consistent Segmentation

Our algorithm is based on the computation of pants de-
composition (PD) [VL07, HS94]. PD provides us an elegant
topological tool to study the segmentation (and consistent
segmentation) of high-genus surfaces systematically.

Definitions. A pants decomposition (PD) is a set of curve
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(a) (b) (c)

Figure 1: A Pants Patch and Pants Decomposition. (a) A pants
patch; (b) A pants decomposition on the two-torus. (c) Its corre-
sponding PD-Graph.

cycles that partitions a surface into disjoint pants patches.
Each pants patch is a topological sphere with three bound-
aries (one “waist” and two “legs”, see Fig. 1 for examples of
a pants patch and pants decomposition).

A genus-g surface patch with b boundaries is said to be
of the type (g,b). A maximal cut system of M is a set C of
simple and pairwise disjoint cycles {ci} that partitions M
into sub-patches of type-(0,3).

A surface M admits infinitely many pants decompositions.
Two PDs are homotopic to each other if the cycles of the
first decomposition can deform to the cycles of the second,
without leaving the surface. We aim to develop an algorithm
to traverse among different topological equivalence classes
to search for the optimal pants decomposition.

1.2. Main Contributions
The main contributions of this work include:
(1) We develop a computation framework to traverse the
homotopy classes of the pants decomposition for searching
specific locally optimal PD.
(2) We demonstrates this PD computation framework by
showing the integration of several useful geometric criteri-
a in order obtain nice geometry-awareness.
(3) Based on the above tools, we design a reliable consis-
tent PD framework for multiple surfaces. After 2g+b initial
cycles are indexed, a unique, locally-optimal, consistent PD
across multiple objects can be obtained. This consistent de-
composition can be used for inter-surface mapping.

Compared with our previous PD algorithm [LGQ09] (in
which only one pants decomposition is computed following
an predetermined tracing order and is often not geometrical-
ly desirable), a key improvement of this work is that we can
now traverse among different topological equivalence class-
es to search for the optimal pants decomposition.

2. Topology Operations for PD Computation
2.1. Pants Decomposition Graph

To analyze homotopy classes of pants decompositions,
we define the following Pants Decomposition Graph (PD-
graph). A PD-graph G is a dual graph of the pants decom-
position. We create a node for each pants patch. Each pants
patch has 3 boundaries; if two pants patches p and q share
one or more boundary, we say p and q are adjacent. Then we
create an edge in G for each pair of adjacent pants patches.

Figure 2: (a) Computing Initial Pants Decomposition. (b)
Computing the Homotopic Cycle.

Hence each edge corresponds to a cycle shared by two adja-
cent pants patches. On such a PD-graph, we can enumerate
topologically inequivalent pants decompositions. Fig. 1(b,c)
illustrate the PD and corresponding PD-graph on the genus-
2 eight model. Note that a node can be adjacent to itself if
two of its boundaries share a common cycle; gluing along
this cycle we will get a (1,1)-typed patch.
2.2. Computing Initial Pants Decomposition

Before optimization, we shall compute an initial pants de-
composition on a given surface M. Existing pants decompo-
sition method such as [LGQ09] can be used. Here we present
a general algorithm which is more efficient and reliable.

The homology basis of a genus-g surface M consists of
2g cycles. We can use the homology basis formed by the
handle and tunnel cycles [DLSCS08]. From this homology
basis, we can pick a subset B composed of g simple and
pairwise disjoint cycles {b1,b2, . . . ,bg}. For a type-(g,b)
surface, slicing all cycles in their B will lead to a type-
(0,2g + b) surface M̂. We denote these 2g + b boundaries
as W = {w1,w2, . . . ,w2g+b}, and then iteratively, pick two
boundaries wi and w j from W and compute a new simple
cycle w′ to bound them, i.e., w′ homotopic to wi ◦w j. Then,
wi, w j and w′ form a pants patch Mk. We remove this Mk
from M̂; the left patch M̂′ ← M̂\Pk, M̂′ is still genus-0 but
its boundary number reduces by 1 (with two cycles wi and
w j removed, one new cycle w′ inserted). This is iteratively
performed until |W | = 3. This idea is formulated in Algo-
rithm 1 and illustrated in Fig 2(a).

Algorithm 1. Initial PD computation.
In: A type-(g,b) surface M, B(M) = {b1, . . . ,bg};
Out: Its PD {M1,M2, . . . ,M2g+b−2}, where M =

∪
Mi.

1). Cut M open all cycles in B and get a type-(0,2g+b) sur-
face M̂ with boundaries W = {w1,w2...,w2g+b}.
2). Pick two cycles in W , compute a shortest cycle w′ homo-
topic to wi ◦w j.
3). {wi,w j,w′} bound a pant patch Mk; remove Mk from M̂,
remove wi,w j from W and add w′ into W .
4). If the remaining surface M̂← M̂\Mk is not a pants patch,
go to STEP 2, otherwise STOP.

2.3. Homotopic Cycle Computation

In Algorithm 1 and in the following sections, we need a basic
operation that traces a cycle w′ homotopic to cycle wi ◦w j .
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Given a surface M with boundaries wi,(i = 1,2, . . . ,n), the
following algorithm elaborates the computation of a cycle w′

homotopic to the cycle wi ◦w j:

1). Trace a shortest path on M to connect wi and w j; then
connect all other boundaries together using shortest paths
(red curves in Fig. 2(b)).
2). Slice computed shortest paths apart; M becomes a topo-
logical cylinder.
3). Connect the two boundaries of the cylinder using a short-
est path γ (the green curve in Fig. 2(b)).
4). Slice γ apart: each point pk on γ splits into a pair (pk, p̃k),
trace a shortest path to connect them. Among all shortest
paths connecting (pk, p̃k), pick the one that has the minimal
length, and this is cycle w′ (blue cycle in Fig 2(b)).
2.4. Enumerating Pants Decompositions

Figure 3: A-Move and S-Move. (a) shows an S-move conducted on
a handle patch, whose corresponding PD-graph is a self-connected
node (c); (b) shows an A-move, whose PD graph and its local mod-
ification are shown in (d).

We need to search a desirable pants decomposition from
different homotopic classes. We perform this enumeration
using two topological operations, denoted as Associativity
Move (A-Move) and Simple Move (S-Move) [HLS00]. As
illustrated in Fig. 3, take a cycle c and its corresponding edge
e on the PD-graph: If e links two different nodes p ̸= q, then
gluing pants patches p and q along c will lead to a patch
whose type is (0,4) where we can do an A-move. If e links
a node to itself p = q, then gluing p and q along c will lead
to a patch of type (1,1), where we can do an S-move. By
sequentially applying one of these two operations, any two
topologically different PDs can transform to each other and
the entire topological space of PDs can be enumerated.

2.4.1. Computing the A-Move

Consider two adjacent pants patches p,q; let Γ1,Γ2,Γ3 be
3 boundaries of p and γ1,γ2,γ3 be 3 boundaries of q, and
Γ3 and γ3 be the same boundary Γ3 = γ3 ∈ C. An A-Move
will glue Γ3 = γ3 and generate a new cycle Γ4 = γ4 with
a different homotopy type; and C will be updated: C′ ←
C\{Γ3}

∪
{Γ4}. Fig 4 illustrates this process, which is also

elaborated in Algorithm 2.

Algorithm 2. Computing an A-Move.
In: Adjacent patches p,q, and their ordered boundaries
(Γ1,Γ2,Γ3)⊂ p, (γ1,γ2,γ3)⊂ q, Γ3 = γ3.

(a) (b) (c) (d) (e)

Figure 4: Computing the A-Move. (a) The adjacent pants patches
p (bounded by Γ1,Γ2, Γ3) and q (bounded by γ1,γ2, γ3 = Γ3). (b)
Glue p, q and get a type-(0,4) patch. The shortest paths c1 and c2
connect corresponding pairs of boundaries. (c) The shortest path c3
connects c1 and c2. (d) Find the point pair with minimal length of
shortest path Γ4. (e) If q’s boundary order is given as γ2,γ1, γ3 = Γ3,
the A-Move result is different.

Out: Γ4 = γ4 and updated maximal cuts.
1). Glue p and q along Γ3(γ3).
2). Compute the shortest path c1 connecting Γ1 and γ1 and
the shortest path c2 connecting Γ2 and γ2.
3). Compute the shortest path c3 connecting c1 and c2.
4). Slice c3 apart: each point tk ∈ c3 splits to a pair of points
(Tk, T̃k). Compute the shortest paths sk connecting each pair
of Tk and T̃k), pick the shortest path that has the minimal
length. This path is the corresponding cycle Γ4.
5). Update the maximal cut system C′←C\{Γ3}

∪
{Γ4}.

All the traced shortest pathes are enforced to circumvent
c1, c2 (in step 3), boundaries, and all the cycles in C (similar
to the homotopic cycle computation discussed in the pre-
vious section). This guarantees the resulting Γ4 is simple,
non-trivial, and not homotopic to any other boundaries. The
computed c1,c2,c3 and the result Γ4 are shown in blue in
Fig. 4 (b,c,d). Note that the indices of boundary cycles mat-
ter: if the input boundaries of q becomes (γ2,γ1,γ3), then the
result is shown in Fig. 4 (e).

2.4.2. Computing the S-Move

(a) (b)

Figure 5: Computing the S-Move. (a) The initial pants patch p
with boundaries Γ2 = Γ3; (b) After slicing Γ2(Γ3) open, each point
splits into two corresponding points, the pair that has the shortest
path connecting each other is selected and the path is denoted as
the new cutting boundary Γ4.

Consider a pants patch p with 3 boundaries Γ1,Γ2,Γ3
(suppose Γ2 = Γ3 are the same boundaries). To perform an
S-move, we first slice Γ2 open. For each point t ∈ Γ2, af-
ter the split it has a corresponding point t̃ ∈ Γ3. We trace
the shortest path Path(t, t̃) between t and t̃. Since Γ2 is cut
open, the path will go around the handle (or tunnel). We
trace shortest paths between all the point pair (t, t̃) from
(Γ2,Γ3), and pick the pair t′, t̃′, whose Path(t′, t̃′) has the
shortest length. This shortest path is a new cycle Γ4 with a
different homotopy type. C should be updated accordingly:
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C′ ← C\{Γ3}
∪
{Γ4}. Fig 5 illustrates the process of com-

puting S-move.

3. Geometrically Optimizing Pants Decomposition

The previous section introduces topological operations to
enumerate pants decompositions of different homotopy
types. We can integrate different geometric criteria to guide
the PD optimization. All the tracing of cutting cycles are
from Dijkstra’s algorithm conducted on the weighted trian-
gle meshes. These criteria can therefore be integrated into
the weight of each triangle edge. The favored edges will have
a smaller weights so that traced cycles will more likely go
through them. We perform a breadth-first search on the PD-
Graph and pick the decomposition whose cost is minimal.

Shortest Length. Shortest cutting cycles discretely ap-
proximate the geodesics and are simply desirable in most
scenarios. One can minimize the total length of all the cy-
cles in the maximal cut system: on edge e = (vi,v j), simply
take the Euclidean distance, σl(e) = |vi − v j|2, between t-
wo vertices as its weight for the Dijkstra tracing. Then the
optimized PD has the minimal total cutting cycle length.

Minima Rule. Human perception often cuts the sur-
faces along concave regions, which is known as the minima
rule [LLS∗05]. One may want to trace the cutting boundaries
along the concave regions, i.e., the regions with salient neg-
ative minimal curvature. We can integrate the minima rules
into our PD computation: (1) compute the minimal curvature
κ(v) for each vertex on the surface; (2) normalize the mini-
mal curvature by r(v) = (κ(v)− µ)/α, where µ is the mean
and α is the standard deviation of κ(v) over all vertices of
the surface; then (3) further normalize r(v) into range (0,1).
The minima-rule weight of an edge e = (vi,v j) is then de-

fined as: σm(e) =
r(vi)+r(v j)

2 . Here l(e) denotes the length of
the edge and c(e) is the average of the normalized minimal
curvature of its two endpoints.

Symmetry. Many models have intrinsic symmetric pat-
terns. One may prefer to cut the surface along its symme-
try plane. We can define a scalar value on each vertex d(v)
using its distance to the symmetry plane; we can set the
edge weight: σs(e) =

d(vi)+d(v j)
2 . Fig. 7 shows an example of

symmetry-guided decomposition. Edge weights can be com-
bined to guide different PD optimization:

σ(e) = σl(e) · (σm(e))αm · (σs(e))αs , (1)

where weights αm,αs indicate importance of different terms.
4. Consistent Decomposition of Multiple Models

We generalize the above PD optimization framework from
one surface to multiple surfaces. We elaborate the idea on
two models M1 and M2, whose generalization to more sur-
faces is straightforward.
4.1. Initial Consistent PD Computation

We can compute the consistent decomposition of M1 and
M2 using the algorithm in Section 3. The correspondence

(a) (b) (c)

Figure 6: PDs of the Hand model using different criteria. (a) PD
cycles traced via shortest lengths; (b) the minimal curvature field
and (c) PD cycles traced via minima rule.

(a) (b) (c)

Figure 7: PD of the Mechanical part. (a) PD with shortest path,
(b) the symmetry plane, (c) PD guided by symmetry.

between pants decompositions of surfaces is uniquely deter-
mined by the indexing of our starting 2g+ b boundaries W
of each surface. An unique indexing given to these 2g+ b
boundaries determines a valid topological type of the ini-
tial PD. The correspondence between 2g+b boundaries can
be specified by user, or computed using heuristic methods
such as [LGQ09] (by spatially matching the mass centers of
handle loops). Now, given an arbitrary indexing of W (M1)
and W (M2), say, T1, . . . ,T2g+b and T ′

1 , . . . ,T
′

2g+b, respective-
ly. We follow the same consistent order to compute the parti-
tioning cycles, i.e., trace w′ ∼ wT ′

i
◦wT ′

j
in M2 if and only if

we trace cycle w∼ wTi ◦wTj in M1. The correspondence be-
tween these two maximal cut system will be preserved and
we can obtain a consistent PD on both M1 and M2.

4.2. Consistently Optimizing Multiple Decompositions

Using a similar aforementioned greedy searching scheme,
we simultaneously optimize both decompositions on PD-
Graphs G0(M1) and G0(M2). The same S-Move or A-Move
should be applied on both the cycle ci ∈C(M1) and its cor-
responding cycle c′i ∈ C(M2). Then we will obtain the new
PD-Graphs Gi(M1) and Gi(M2), isomorphic to each other.
During this searching, we consider weights on each edge to
be the sum of the weights defined on Gi(M1) and Gi(M2).
Note that each initial topological correspondence indicates a
homotopy type of consistent PD of M1 and M2. If geomet-
rically or semantically, some specific homotopy type is pre-
ferred, we can also simply adopt a preprocessing (using e.g.
RANSAC or spectral matching) to modify the correspon-
dence before applying this above simultaneous optimization.
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Figure 8: Enumerating PD of the David model, with both
the decomposition and corresponding PD-graph illustrated.
This figure shows part of the enumeration space. The first
row indicates a path to a PD with the shortest total length.

Figure 9: Consistent PD, cross-surface map, and morphing. The
source and target models are decomposed consistently; the cross-
surface map is computed and used to generate the linear interpola-
tion. The original, 50% morphed, and the target models are shown.

5. Experimental Results

The computational complexity to compute the initial pants
decomposition is O(gn3/2 logn) where g is the genus and
n is the number of vertices, while it takes O(gn3/2 logn) to
finish one ring search.

Fig. 8 shows our enumeration of different PDs (and cor-
responding PD-graphs) of the genus-3 Michelangelo-David
model. On every state, both the maximal cut system and cor-
responding PD-graph are illustrated.

Fig. 9 shows some examples of consistent PD on multiple
objects (a) genus-3 part and 3-torus; (b) genus-2 Feline and
genus-1 dragon. The cross-surface mappings are then com-
puted, and the results are visualized using the inter-shape
morphing computed by the simple linear interpolation (see
the accompanied video). In (a), consistent PDs are comput-
ed using αm = 0 and αs = 0; surface mapping are computed

automatically with no user involvement. In (b), an addition-
al pair of surgery points are placed on the tail of the dragon
corresponding to the blue handle of Feline. We set αm = 1
and αs = 0. The handle opens up during its morphing to the
dragon’s tail.

6. Conclusion

We propose a computational framework to search for the
pants decomposition of different topological classes. Com-
pared with other consistent segmentation methods, PD de-
composition has a key advantage that its topological struc-
ture (the dual graph of the decomposition) is simple and
canonical: each sub-patch is topologically uniform (type-
(3,0)) and shares 3 simple boundary cycles with adjacent
patches. Sub-patches can therefore be modeled using a u-
nified algorithm.

A limitation of this work is that two PDs that are not
homotopic to each may have the same corresponding PD-
graph. This means, to enumerate all the PDs, we need to
(re)visit all the generated PD-graph. To track the enumer-
ation without ambiguity, we will explore a new descriptor
to characterize PD’s topology (e.g. by further encoding the
precise homotopy information of each cycle on the corre-
sponding edge of PD graph).
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