Browsing by Author "Lensch, Hendrik P. A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item At‐Most‐Hexa Meshes(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Bukenberger, Dennis R.; Tarini, Marco; Lensch, Hendrik P. A.; Hauser, Helwig and Alliez, PierreVolumetric polyhedral meshes are required in many applications, especially for solving partial differential equations on finite element simulations. Still, their construction bears several additional challenges compared to boundary‐based representations. Tetrahedral meshes and (pure) hex‐meshes are two popular formats in scenarios like CAD applications, offering opposite advantages and disadvantages. Hex‐meshes are more intricate to construct due to the global structure of the meshing, but feature much better regularity, alignment, are more expressive, and offer the same simulation accuracy with fewer elements. Hex‐dominant meshes, where most but not all cell elements have a hexahedral structure, constitute an attractive compromise, potentially unlocking benefits from both structures, but their generality makes their employment in downstream applications difficult. In this work, we introduce a strict subset of general hex‐dominant meshes, which we term ‘at‐most‐hexa meshes’, in which most cells are still hexahedral, but no cell has more than six boundary faces, and no face has more than four sides. We exemplify the ease of construction of at‐most‐hexa meshes by proposing a frugal and straightforward method to generate high‐quality meshes of this kind, starting directly from hulls or point clouds, for example, from a 3D scan. In contrast to existing methods for (pure) hexahedral meshing, ours does not require an intermediate parameterization of other costly pre‐computations and can start directly from surfaces or samples. We leverage a Lloyd relaxation process to exploit the synergistic effects of aligning an orientation field in a modified 3D Voronoi diagram using the norm for cubical cells. The extracted geometry incorporates regularity as well as feature alignment, following sharp edges and curved boundary surfaces. We introduce specialized operations on the three‐dimensional graph structure to enforce consistency during the relaxation. The resulting algorithm allows for an efficient evaluation with parallel algorithms on GPU hardware and completes even large reconstructions within minutes.Item EMCA: Explorer of Monte Carlo based Algorithms(The Eurographics Association, 2021) Ruppert, Lukas; Kreisl, Christoph; Blank, Nils; Herholz, Sebastian; Lensch, Hendrik P. A.; Andres, Bjoern and Campen, Marcel and Sedlmair, MichaelDebugging or analyzing the performance of global illumination algorithms is a challenging task due to the complex path-scene interaction and numerous places where errors and programming bugs can occur. We present a novel, lightweight visualization tool to aid in the understanding of global illumination and the debugging of rendering frameworks. The tool provides detailed information about intersections and light transport paths. Users can add arbitrary data of their choosing to each intersection, based on their specific demands. Aggregate plots allow users to quickly discover and select outliers for further inspection across the globally linked visualization views. That information is further coupled with 3D visualization of the scene where additional aggregated information on the surfaces can be inspected in false colors. These include 3D heat maps such as the density of intersections as well as more advanced colorings such as a diffuse transport approximation computed from local irradiance samples and diffuse material approximations. The necessary data for the 3D coloring is collected as a side-product of quickly rendering the image at low sample counts without significantly slowing down the rendering process. It requires almost no precomputation and very little storage compared to point cloud-based approaches. We present several use cases of how novices and advanced rendering researchers can leverage the presented tool to speed up their research.Item Local Attention Guided Joint Depth Upsampling(The Eurographics Association, 2022) Mallick, Arijit; Engelhardt, Andreas; Braun, Raphael; Lensch, Hendrik P. A.; Bender, Jan; Botsch, Mario; Keim, Daniel A.Image super resolution is a classical computer vision problem. A branch of super resolution tasks deals with guided depth super resolution as objective. Here, the goal is to accurately upsample a given low resolution depth map with the help of features aggregated from the high resolution color image of that particular scene. Recently, the development of transformers has improved performance for general image processing tasks credited to self-attention. Unlike previous methods for guided joint depth upsampling which rely mostly on CNNs, we efficiently compute self-attention with the help of local image attention which avoids the quadratic growth typically found in self-attention layers. Our work combines CNNs and transformers to analyze the two input modalities and employs a cross-modal fusion network in order to predict both a weighted per-pixel filter kernel and a residual for the depth estimation. To further enhance the final output, we integrate a differentiable and a trainable deep guided filtering network which provides an additional depth prior. An ablation study and empirical trials demonstrate the importance of each proposed module. Our method shows comparable as well as state-of-the-art performance on the guided depth upsampling task.Item Stereo‐Consistent Contours in Object Space(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Bukenberger, Dennis R.; Schwarz, Katharina; Lensch, Hendrik P. A.; Chen, Min and Benes, BedrichNotebook scribbles, art or technical illustrations—line drawings are a simplistic method to visually communicate information. Automated line drawings often originate from virtual 3D models, but one cannot trivially experience their three‐dimensionality. This paper introduces a novel concept to produce stereo‐consistent line drawings of virtual 3D objects. Some contour lines do not only depend on an objects geometry, but also on the position of the observer. To accomplish consistency between multiple view positions, our approach exploits geometrical characteristics of 3D surfaces in object space. Established techniques for stereo‐consistent line drawings operate on rendered pixel images. In contrast, our pipeline operates in object space using vector geometry, which yields many advantages: The position of the final viewpoint(s) is flexible within a certain window even after the contour generation, e.g. a stereoscopic image pair is only one possible application. Such windows can be concatenated to simulate contours observed from an arbitrary camera path. Various types of popular contour generators can be handled equivalently, occlusions are natively supported and stylization based on geometry characteristics is also easily possible.Notebook scribbles, art or technical illustrations—line drawings are a simplistic method to visually communicate information. Automated line drawings often originate from virtual 3D models, but one cannot trivially experience their three‐dimensionality. This paper introduces a novel concept to produce stereo‐consistent line drawings of virtual 3D objects. Some contour lines do not only depend on an objects geometry, but also on the position of the observer. To accomplish consistency between multiple view positions, our approach exploits geometrical characteristics of 3D surfaces in object space. Established techniques for stereo‐consistent line drawings operate on rendered pixel images. In contrast, our pipeline operates in object space using vector geometry, which yields many advantages: The position of the final viewpoint(s) is flexible within a certain window even after the contour generation, e.g. a stereoscopic image pair is only one possible application.