Browsing by Author "Zheng, Youyi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Automatic Mechanism Modeling from a Single Image with CNNs(The Eurographics Association and John Wiley & Sons Ltd., 2018) Lin, Minmin; Shao, Tianjia; Zheng, Youyi; Ren, Zhong; Weng, Yanlin; Yang, Yin; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesThis paper presents a novel system that enables a fully automatic modeling of both 3D geometry and functionality of a mechanism assembly from a single RGB image. The resulting 3D mechanism model highly resembles the one in the input image with the geometry, mechanical attributes, connectivity, and functionality of all the mechanical parts prescribed in a physically valid way. This challenging task is realized by combining various deep convolutional neural networks to provide high-quality and automatic part detection, segmentation, camera pose estimation and mechanical attributes retrieval for each individual part component. On the top of this, we use a local/global optimization algorithm to establish geometric interdependencies among all the parts while retaining their desired spatial arrangement. We use an interaction graph to abstract the inter-part connection in the resulting mechanism system. If an isolated component is identified in the graph, our system enumerates all the possible solutions to restore the graph connectivity, and outputs the one with the smallest residual error. We have extensively tested our system with a wide range of classic mechanism photos, and experimental results show that the proposed system is able to build high-quality 3D mechanism models without user guidance.Item Controlling Stroke Size in Fast Style Transfer with Recurrent Convolutional Neural Network(The Eurographics Association and John Wiley & Sons Ltd., 2018) Yang, Lingchen; Yang, Lumin; Zhao, Mingbo; Zheng, Youyi; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesControlling stroke size in Fast Style Transfer remains a difficult task. So far, only a few attempts have been made towards it, and they still exhibit several deficiencies regarding efficiency, flexibility, and diversity. In this paper, we aim to tackle these problems and propose a recurrent convolutional neural subnetwork, which we call recurrent stroke-pyramid, to control the stroke size in Fast Style Transfer. Compared to the state-of-the-art methods, our method not only achieves competitive results with much fewer parameters but provides more flexibility and efficiency for generalizing to unseen larger stroke size and being able to produce a wide range of stroke sizes with only one residual unit. We further embed the recurrent stroke-pyramid into the Multi-Styles and the Arbitrary-Style models, achieving both style and stroke-size control in an entirely feed-forward manner with two novel run-time control strategies.