Browsing by Author "Xie, X."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Robust and Flexible Puzzle Solving with Corner-based Cycle Consistent Correspondences(The Eurographics Association, 2019) Wang, T.; Vladimirov, K.; Goh, S.; Lai, Y.-K.; Xie, X.; Tam, G. K. L.; Vidal, Franck P. and Tam, Gary K. L. and Roberts, Jonathan C.Solving jigsaw puzzles is a classic problem in computer vision with various applications. Over the past decades, many useful approaches have been introduced. Most existing works use edge-wise similarity measures for assembling puzzles with square pieces of the same size, and recent work innovates to use the loop constraint to improve efficiency and accuracy. We observe that most existing techniques cannot be easily extended to puzzles with rectangular pieces of arbitrary sizes, and no existing loop constraints can be used to model such challenging scenarios. In this paper, we propose a new corner-wise matching approach, modelled using the MatchLift framework to solve square puzzles with cycle consistency. We further show one exciting example illustrating how puzzles with rectangular pieces of arbitrary sizes would be solved by our technique.Item A Study of the Effect of Doughnut Chart Parameters on Proportion Estimation Accuracy(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Cai, X.; Efstathiou, K.; Xie, X.; Wu, Y.; Shi, Y.; Yu, L.; Chen, Min and Benes, BedrichPie and doughnut charts nicely convey the part–whole relationship and they have become the most recognizable chart types for representing proportions in business and data statistics. Many experiments have been carried out to study human perception of the pie chart, while the corresponding aspects of the doughnut chart have seldom been tested, even though the doughnut chart and the pie chart share several similarities. In this paper, we report on a series of experiments in which we explored the effect of a few fundamental design parameters of doughnut charts, and additional visual cues, on the accuracy of such charts for proportion estimates. Since mobile devices are becoming the primary devices for casual reading, we performed all our experiments on such device. Moreover, the screen size of mobile devices is limited and it is therefore important to know how such size constraint affects the proportion accuracy. For this reason, in our first experiment we tested the chart size and we found that it has no significant effect on proportion accuracy. In our second experiment, we focused on the effect of the doughnut chart inner radius and we found that the proportion accuracy is insensitive to the inner radius, except the case of the thinnest doughnut chart. In the third experiment, we studied the effect of visual cues and found that marking the centre of the doughnut chart or adding tick marks at 25% intervals improves the proportion accuracy. Based on the results of the three experiments, we discuss the design of doughnut charts and offer suggestions for improving the accuracy of proportion estimates.Pie and doughnut charts nicely convey the part–whole relationship and they have become the most recognizable chart types for representing proportions in business and data statistics. Many experiments have been carried out to study human perception of the pie chart, while the corresponding aspects of the doughnut chart have seldom been tested, even though the doughnut chart and the pie chart share several similarities. In this paper, we report on a series of experiments in which we explored the effect of a few fundamental design parameters of doughnut charts, and additional visual cues, on the accuracy of such charts for proportion estimates. Since mobile devices are becoming the primary devices for casual reading, we performed all our experiments on such device. Moreover, the screen size of mobile devices is limited and it is therefore important to know how such size constraint affects the proportion accuracy. For this reason, in our first experiment we tested the chart size and we found that it has no significant effect on proportion accuracy.