Browsing by Author "Su, Zhuo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item FashionGAN: Display your fashion design using Conditional Generative Adversarial Nets(The Eurographics Association and John Wiley & Sons Ltd., 2018) Cui, Yi Rui; Liu, Qi; Gao, Cheng Ying; Su, Zhuo; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesVirtual garment display plays an important role in fashion design for it can directly show the design effect of the garment without having to make a sample garment like traditional clothing industry. In this paper, we propose an end-to-end virtual garment display method based on Conditional Generative Adversarial Networks. Different from existing 3D virtual garment methods which need complex interactions and domain-specific user knowledge, our method only need users to input a desired fashion sketch and a specified fabric image then the image of the virtual garment whose shape and texture are consistent with the input fashion sketch and fabric image can be shown out quickly and automatically. Moreover, it can also be extended to contour images and garment images, which further improves the reuse rate of fashion design. Compared with the existing image-to-image methods, the quality of images generated by our method is better in terms of color and shape.Item PencilArt: A Chromatic Penciling Style Generation Framework(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Gao, Chengying; Tang, Mengyue; Liang, Xiangguo; Su, Zhuo; Zou, Changqing; Chen, Min and Benes, BedrichNon‐photorealistic rendering has been an active area of research for decades whereas few of them concentrate on rendering chromatic penciling style. In this paper, we present a framework named as PencilArt for the chromatic penciling style generation from wild photographs. The structural outline and textured map for composing the chromatic pencil drawing are generated, respectively. First, we take advantage of deep neural network to produce the structural outline with proper intensity variation and conciseness. Next, for the textured map, we follow the painting process of artists to adjust the tone of input images to match the luminance histogram and pencil textures of real drawings. Eventually, we evaluate PencilArt via a series of comparisons to previous work, showing that our results better capture the main features of real chromatic pencil drawings and have an improved visual appearance.Non‐photorealistic rendering has been an active area of research for decades whereas few of them concentrate on rendering chromatic penciling style. In this paper, we present a framework named as PencilArt for the chromatic penciling style generation from wild photographs. The structural outline and textured map for composing the chromatic pencil drawing are generated, respectively. First, we take advantage of deep neural network to produce the structural outline with proper intensity variation and conciseness. Next, for the textured map, we follow the painting process of artists to adjust the tone of input images to match the luminance histogram and pencil textures of real drawings. Eventually, we evaluate PencilArt via a series of comparisons to previous work, showing that our results better capture the main features of real chromatic pencil drawings and have an improved visual appearance.