Browsing by Author "Um, Kiwon"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Exploring Physical Latent Spaces for High-Resolution Flow Restoration(The Eurographics Association, 2023) Paliard, Chloé; Thuerey, Nils; Um, Kiwon; Guthe, Michael; Grosch, ThorstenWe explore training deep neural network models in conjunction with physics simulations via partial differential equations (PDEs), using the simulated degrees of freedom as latent space for a neural network. In contrast to previous work, this paper treats the degrees of freedom of the simulated space purely as tools to be used by the neural network. We demonstrate this concept for learning reduced representations, as it is extremely challenging to faithfully preserve correct solutions over long time-spans with traditional reduced representations, particularly for solutions with large amounts of small scale features. This work focuses on the use of such physical, reduced latent space for the restoration of fine simulations, by training models that can modify the content of the reduced physical states as much as needed to best satisfy the learning objective. This autonomy allows the neural networks to discover alternate dynamics that significantly improve the performance in the given tasks. We demonstrate this concept for various fluid flows ranging from different turbulence scenarios to rising smoke plumes.Item An Optimization-based SPH Solver for Simulation of Hyperelastic Solids(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kee, Min Hyung; Um, Kiwon; Kang, HyunMo; Han, JungHyun; Myszkowski, Karol; Niessner, MatthiasThis paper proposes a novel method for simulating hyperelastic solids with Smoothed Particle Hydrodynamics (SPH). The proposed method extends the coverage of the state-of-the-art elastic SPH solid method to include different types of hyperelastic materials, such as the Neo-Hookean and the St. Venant-Kirchoff models. To this end, we reformulate an implicit integration scheme for SPH elastic solids into an optimization problem and solve the problem using a general-purpose quasi-Newton method. Our experiments show that the Limited-memory BFGS (L-BFGS) algorithm can be employed to efficiently solve our optimization problem in the SPH framework and demonstrate its stable and efficient simulations for complex materials in the SPH framework. Thanks to the nature of our unified representation for both solids and fluids, the SPH formulation simplifies coupling between different materials and handling collisions.