Browsing by Author "Pasewaldt, Sebastian"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Approaches for Local Artistic Control of Mobile Neural Style Transfer(ACM, 2018) Reimann, Max; Klingbeil, Mandy; Pasewaldt, Sebastian; Semmo, Amir; Döllner, Jürgen; Trapp, Matthias; Aydın, Tunç and Sýkora, DanielThis work presents enhancements to state-of-the-art adaptive neural style transfer techniques, thereby providing a generalized user interface with creativity tool support for lower-level local control to facilitate the demanding interactive editing on mobile devices. The approaches are implemented in a mobile app that is designed for orchestration of three neural style transfer techniques using iterative, multi-style generative and adaptive neural networks that can be locally controlled by on-screen painting metaphors to perform location-based filtering and direct the composition. Based on first user tests, we conclude with insights, showing different levels of satisfaction for the implemented techniques and user interaction design, pointing out directions for future research.Item Consistent Filtering of Videos and Dense Light-Fields Without Optic-Flow(The Eurographics Association, 2019) Shekhar, Sumit; Semmo, Amir; Trapp, Matthias; Tursun, Okan; Pasewaldt, Sebastian; Myszkowski, Karol; Döllner, Jürgen; Schulz, Hans-Jörg and Teschner, Matthias and Wimmer, MichaelA convenient post-production video processing approach is to apply image filters on a per-frame basis. This allows the flexibility of extending image filters-originally designed for still images-to videos. However, per-image filtering may lead to temporal inconsistencies perceived as unpleasant flickering artifacts, which is also the case for dense light-fields due to angular inconsistencies. In this work, we present a method for consistent filtering of videos and dense light-fields that addresses these problems. Our assumption is that inconsistencies-due to per-image filtering-are represented as noise across the image sequence. We thus perform denoising across the filtered image sequence and combine per-image filtered results with their denoised versions. At this, we use saliency based optimization weights to produce a consistent output while preserving the details simultaneously. To control the degree-of-consistency in the final output, we implemented our approach in an interactive real-time processing framework. Unlike state-of-the-art inconsistency removal techniques, our approach does not rely on optic-flow for enforcing coherence. Comparisons and a qualitative evaluation indicate that our method provides better results over state-of-the-art approaches for certain types of filters and applications.Item Interactive Photo Editing on Smartphones via Intrinsic Decomposition(The Eurographics Association and John Wiley & Sons Ltd., 2021) Shekhar, Sumit; Reimann, Max; Mayer, Maximilian; Semmo, Amir; Pasewaldt, Sebastian; Döllner, Jürgen; Trapp, Matthias; Mitra, Niloy and Viola, IvanIntrinsic decomposition refers to the problem of estimating scene characteristics, such as albedo and shading, when one view or multiple views of a scene are provided. The inverse problem setting, where multiple unknowns are solved given a single known pixel-value, is highly under-constrained. When provided with correlating image and depth data, intrinsic scene decomposition can be facilitated using depth-based priors, which nowadays is easy to acquire with high-end smartphones by utilizing their depth sensors. In this work, we present a system for intrinsic decomposition of RGB-D images on smartphones and the algorithmic as well as design choices therein. Unlike state-of-the-art methods that assume only diffuse reflectance, we consider both diffuse and specular pixels. For this purpose, we present a novel specularity extraction algorithm based on a multi-scale intensity decomposition and chroma inpainting. At this, the diffuse component is further decomposed into albedo and shading components. We use an inertial proximal algorithm for non-convex optimization (iPiano) to ensure albedo sparsity. Our GPUbased visual processing is implemented on iOS via the Metal API and enables interactive performance on an iPhone 11 Pro. Further, a qualitative evaluation shows that we are able to obtain high-quality outputs. Furthermore, our proposed approach for specularity removal outperforms state-of-the-art approaches for real-world images, while our albedo and shading layer decomposition is faster than the prior work at a comparable output quality. Manifold applications such as recoloring, retexturing, relighting, appearance editing, and stylization are shown, each using the intrinsic layers obtained with our method and/or the corresponding depth data.Item Teaching Data-driven Video Processing via Crowdsourced Data Collection(The Eurographics Association, 2021) Reimann, Max; Wegen, Ole; Pasewaldt, Sebastian; Semmo, Amir; Döllner, Jürgen; Trapp, Matthias; Sousa Santos, Beatriz and Domik, GittaThis paper presents the concept and experience of teaching an undergraduate course on data-driven image and video processing. When designing visual effects that make use of Machine Learning (ML) models for image-based analysis or processing, the availability of training data typically represents a key limitation when it comes to feasibility and effect quality. The goal of our course is to enable students to implement new kinds of visual effects by acquiring training datasets via crowdsourcing that are used to train ML models as part of a video processing pipeline. First, we propose our course structure and best practices that are involved with crowdsourced data acquisitions. We then discuss the key insights we gathered from an exceptional undergraduate seminar project that tackles the challenging domain of video annotation and learning. In particular, we focus on how to practically develop annotation tools and collect high-quality datasets using Amazon Mechanical Turk (MTurk) in the budget- and time-constrained classroom environment. We observe that implementing the full acquisition and learning pipeline is entirely feasible for a seminar project, imparts hands-on problem solving skills, and promotes undergraduate research.