Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Spjut, Josef"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Post-RenderWarp with Late Input Sampling Improves Aiming Under High Latency Conditions
    (ACM, 2020) Kim, Joohwan; Knowles, Pyarelal; Spjut, Josef; Boudaoud, Ben; Mcguire, Morgan; Yuksel, Cem and Membarth, Richard and Zordan, Victor
    End-to-end latency in remote-rendering systems can reduce user task performance. This notably includes aiming tasks on game streaming services, which are presently below the standards of competitive first-person desktop gaming.We evaluate the latency-induced penalty on task completion time in a controlled environment and show that it can be significantly mitigated by adopting and modifying image and simulation-warping techniques from virtual reality, eliminating up to 80% of the penalty from 80 ms of added latency. This has potential to enable remote rendering for esports and increase the effectiveness of remote-rendered content creation and robotic teleoperation. We provide full experimental methodology, analysis, implementation details, and source code.
  • Loading...
    Thumbnail Image
    Item
    Temporally Dense Ray Tracing
    (The Eurographics Association, 2019) Andersson, Pontus; Nilsson, Jim; Salvi, Marco; Spjut, Josef; Akenine-Möller, Tomas; Steinberger, Markus and Foley, Tim
    We present a technique for real-time ray tracing with the goal of reaching 240 frames per second or more. The core idea is to trade spatial resolution for faster temporal updates in such a way that the display and human visual system aid in integrating high-quality images. We use a combination of frameless and interleaved rendering concepts together with ideas from temporal antialiasing algorithms and novel building blocks-the major one being adaptive selection of pixel orderings within tiles, which reduces spatiotemporal aliasing significantly. The image quality is verified with a user study. Our work can be used for esports or any kind of rendering where higher frame rates are needed.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback