Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wang, Hui"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A CNN-based Flow Correction Method for Fast Preview
    (The Eurographics Association and John Wiley & Sons Ltd., 2019) Xiao, Xiangyun; Wang, Hui; Yang, Xubo; Alliez, Pierre and Pellacini, Fabio
    Eulerian-based smoke simulations are sensitive to the initial parameters and grid resolutions. Due to the numerical dissipation on different levels of the grid and the nonlinearity of the governing equations, the differences in simulation resolutions will result in different results. This makes it challenging for artists to preview the animation results based on low-resolution simulations. In this paper, we propose a learning-based flow correction method for fast previewing based on low-resolution smoke simulations. The main components of our approach lie in a deep convolutional neural network, a grid-layer feature vector and a special loss function. We provide a novel matching model to represent the relationship between low-resolution and high-resolution smoke simulations and correct the overall shape of a low-resolution simulation to closely follow the shape of a high-resolution down-sampled version. We introduce the grid-layer concept to effectively represent the 3D fluid shape, which can also reduce the input and output dimensions. We design a special loss function for the fluid divergence-free constraint in the neural network training process. We have demonstrated the efficacy and the generality of our approach by simulating a diversity of animations deviating from the original training set. In addition, we have integrated our approach into an existing fluid simulation framework to showcase its wide applications.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback