Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ren, Bo"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    GPU-Based Contact-Aware Trajectory Optimization Using A Smooth Force Model
    (ACM, 2019) Pan, Zherong; Ren, Bo; Manocha, Dinesh; Batty, Christopher and Huang, Jin
    We present a new formulation of trajectory optimization for articulated bodies. Our approach uses a fully differentiable dynamic model of the articulated body, and a smooth force model that approximates all kinds of internal/external forces as a smooth function of the articulated body's kinematic state. Our formulation is contact-aware and its complexity is not dependent on the contact positions or the number of contacts. Furthermore, we exploit the block-tridiagonal structure of the Hessian matrix and present a highly parallel Newton-type trajectory optimizer that maps well to GPU architectures. Moreover, we use a Markovian regularization term to overcome the local minima problems in the optimization formulation. We highlight the performance of our approach using a set of locomotion tasks performed by characters with 15 − 35 DOFs. In practice, our GPU-based algorithm running on a NVIDIA TITAN-X GPU provides more than 30× speedup over a multi-core CPU-based implementation running on Intel Xeon E5-1620 CPU. In addition, we demonstrate applications of our method on various applications such as contact-rich motion planning, receding-horizon control, and motion graph construction.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback