Browsing by Author "Bruder, Valentin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Visually Comparing Rendering Performance from Multiple Perspectives(The Eurographics Association, 2022) Tarner, Hagen; Bruder, Valentin; Frey, Steffen; Ertl, Thomas; Beck, Fabian; Bender, Jan; Botsch, Mario; Keim, Daniel A.Evaluation of rendering performance is crucial when selecting or developing algorithms, but challenging as performance can largely differ across a set of selected scenarios. Despite this, performance metrics are often reported and compared in a highly aggregated way. In this paper we suggest a more fine-grained approach for the evaluation of rendering performance, taking into account multiple perspectives on the scenario: camera position and orientation along different paths, rendering algorithms, image resolution, and hardware. The approach comprises a visual analysis system that shows and contrasts the data from these perspectives. The users can explore combinations of perspectives and gain insight into the performance characteristics of several rendering algorithms. A stylized representation of the camera path provides a base layout for arranging the multivariate performance data as radar charts, each comparing the same set of rendering algorithms while linking the performance data with the rendered images. To showcase our approach, we analyze two types of scientific visualization benchmarks.Item Voronoi-Based Foveated Volume Rendering(The Eurographics Association, 2019) Bruder, Valentin; Schulz, Christoph; Bauer, Ruben; Frey, Steffen; Weiskopf, Daniel; Ertl, Thomas; Johansson, Jimmy and Sadlo, Filip and Marai, G. ElisabetaFoveal vision is located in the center of the field of view with a rich impression of detail and color, whereas peripheral vision occurs on the side with more fuzzy and colorless perception. This visual acuity fall-off can be used to achieve higher frame rates by adapting rendering quality to the human visual system. Volume raycasting has unique characteristics, preventing a direct transfer of many traditional foveated rendering techniques. We present an approach that utilizes the visual acuity fall-off to accelerate volume rendering based on Linde-Buzo-Gray sampling and natural neighbor interpolation. First, we measure gaze using a stationary 1200 Hz eye-tracking system. Then, we adapt our sampling and reconstruction strategy to that gaze. Finally, we apply a temporal smoothing filter to attenuate undersampling artifacts since peripheral vision is particularly sensitive to contrast changes and movement. Our approach substantially improves rendering performance with barely perceptible changes in visual quality. We demonstrate the usefulness of our approach through performance measurements on various data sets.