Browsing by Author "Hotz, Ingrid"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Feature Exploration using Local Frequency Distributions in Computed Tomography Data(The Eurographics Association, 2020) Falk, Martin; Ljung, Patric; Lundström, Claes; Ynnerman, Anders; Hotz, Ingrid; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaFrequency distributions (FD) are an important instrument when analyzing and investigating scientific data. In volumetric visualization, for example, frequency distributions visualized as histograms, often assist the user in the process of designing transfer function (TF) primitives. Yet a single point in the distribution can correspond to multiple features in the data, particularly in low-dimensional TFs that dominate time-critical domains such as health care. In this paper, we propose contributions to the area of medical volume data exploration, in particular Computed Tomography (CT) data, based on the decomposition of local frequency distributions (LFD). By considering the local neighborhood utilizing LFDs we can incorporate a measure for neighborhood similarity to differentiate features thereby enhancing the classification abilities of existing methods. This also allows us to link the attribute space of the histogram with the spatial properties of the data to improve the user experience and simplify the exploration step. We propose three approaches for data exploration which we illustrate with several visualization cases highlighting distinct features that are not identifiable when considering only the global frequency distribution. We demonstrate the power of the method on selected datasets.Item pyParaOcean: A System for Visual Analysis of Ocean Data(The Eurographics Association, 2023) Jain, Toshit; Singh, Varun; Boda, Vijay Kumar; Singh, Upkar; Hotz, Ingrid; Vinayachandran, P.N.; Natarajan, Vijay; Dutta, Soumya; Feige, Kathrin; Rink, Karsten; Zeckzer, DirkVisual analysis is well adopted within the field of oceanography for the analysis of model simulations, detection of different phenomena and events, and tracking of dynamic processes. With increasing data sizes and the availability of multivariate dynamic data, there is a growing need for scalable and extensible tools for visualization and interactive exploration.We describe pyParaOcean, a visualization system that supports several tasks routinely used in the visual analysis of ocean data. The system is available as a plugin to Paraview and is hence able to leverage its distributed computing capabilities and its rich set of generic analysis and visualization functionalities. pyParaOcean provides modules to support different visual analysis tasks specific to ocean data, such as eddy identification and salinity movement tracking. These modules are available as Paraview filters and this seamless integration results in a system that is easy to install and use. A case study on the Bay of Bengal illustrates the utility of the system for the study of ocean phenomena and processes.Item Robust Extraction and Simplification of 2D Symmetric Tensor Field Topology(The Eurographics Association and John Wiley & Sons Ltd., 2019) Jankowai, Jochen; Wang, Bei; Hotz, Ingrid; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn this work, we propose a controlled simplification strategy for degenerated points in symmetric 2D tensor fields that is based on the topological notion of robustness. Robustness measures the structural stability of the degenerate points with respect to variation in the underlying field. We consider an entire pipeline for generating a hierarchical set of degenerate points based on their robustness values. Such a pipeline includes the following steps: the stable extraction and classification of degenerate points using an edge labeling algorithm, the computation and assignment of robustness values to the degenerate points, and the construction of a simplification hierarchy. We also discuss the challenges that arise from the discretization and interpolation of real world data.Item Scalar Field Comparison with Topological Descriptors: Properties and Applications for Scientific Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2021) Yan, Lin; Masood, Talha Bin; Sridharamurthy, Raghavendra; Rasheed, Farhan; Natarajan, Vijay; Hotz, Ingrid; Wang, Bei; Smit, Noeska and Vrotsou, Katerina and Wang, BeiIn topological data analysis and visualization, topological descriptors such as persistence diagrams, merge trees, contour trees, Reeb graphs, and Morse-Smale complexes play an essential role in capturing the shape of scalar field data. We present a state-of-the-art report on scalar field comparison using topological descriptors. We provide a taxonomy of existing approaches based on visualization tasks associated with three categories of data: single fields, time-varying fields, and ensembles. These tasks include symmetry detection, periodicity detection, key event/feature detection, feature tracking, clustering, and structure statistics. Our main contributions include the formulation of a set of desirable mathematical and computational properties of comparative measures, and the classification of visualization tasks and applications that are enabled by these measures.Item Visualization of Tensor Fields in Mechanics(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Hergl, Chiara; Blecha, Christian; Kretzschmar, Vanessa; Raith, Felix; Günther, Fabian; Stommel, Markus; Jankowai, Jochen; Hotz, Ingrid; Nagel, Thomas; Scheuermann, Gerik; Benes, Bedrich and Hauser, HelwigTensors are used to describe complex physical processes in many applications. Examples include the distribution of stresses in technical materials, acting forces during seismic events, or remodeling of biological tissues. While tensors encode such complex information mathematically precisely, the semantic interpretation of a tensor is challenging. Visualization can be beneficial here and is frequently used by domain experts. Typical strategies include the use of glyphs, color plots, lines, and isosurfaces. However, data complexity is nowadays accompanied by the sheer amount of data produced by large‐scale simulations and adds another level of obstruction between user and data. Given the limitations of traditional methods, and the extra cognitive effort of simple methods, more advanced tensor field visualization approaches have been the focus of this work. This survey aims to provide an overview of recent research results with a strong application‐oriented focus, targeting applications based on continuum mechanics, namely the fields of structural, bio‐, and geomechanics. As such, the survey is complementing and extending previously published surveys. Its utility is twofold: (i) It serves as basis for the visualization community to get an overview of recent visualization techniques. (ii) It emphasizes and explains the necessity for further research for visualizations in this context.