Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fedkiw, Ron"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Pixel-Based Framework for Data-Driven Clothing
    (The Eurographics Association and John Wiley & Sons Ltd., 2020) Jin, Ning; Zhu, Yilin; Geng, Zhenglin; Fedkiw, Ron; Bender, Jan and Popa, Tiberiu
    We propose a novel approach to learning cloth deformation as a function of body pose, recasting the graph-like triangle mesh data structure into image-based data in order to leverage popular and well-developed convolutional neural networks (CNNs) in a two-dimensional Euclidean domain. Then, a three-dimensional animation of clothing is equivalent to a sequence of twodimensional RGB images driven/choreographed by time dependent joint angles. In order to reduce nonlinearity demands on the neural network, we utilize procedural skinning of the body surface to capture much of the rotation/deformation so that the RGB images only contain textures of displacement offsets from skin to clothing. Notably, we illustrate that our approach does not require accurate unclothed body shapes or robust skinning techniques. Additionally, we discuss how standard image based techniques such as image partitioning for higher resolution can readily be incorporated into our framework.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback