Browsing by Author "Sarton, Jonathan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A GPU-based Out-of-core Architecture for Interactive Visualization of AMR Time Series Data(The Eurographics Association, 2023) Alexandre-Barff, Welcome; Deleau, Hervé; Sarton, Jonathan; Ledoux, Franck; Lucas, Laurent; Bujack, Roxana; Pugmire, David; Reina, GuidoThis paper presents a scalable approach for large-scale Adaptive Mesh Refinement (AMR) time series interactive visualization. We can define AMR data as a dynamic gridding format of cells hierarchically refined from a computational domain described in this study as a regular Cartesian grid. This adaptive feature is essential for tracking time-dependent evolutionary phenomena and makes the AMR format an essential representation for 3D numerical simulations. However, the visualization of numerical simulation data highlights one critical issue: the significant increases in generated data memory footprint reaching petabytes, thus greatly exceeding the memory capabilities of the most recent graphics hardware. Therefore, the question is how to access this massive data - AMR time series in particular - for interactive visualization on a simple workstation. To overcome this main problem, we present an out-of-core GPU-based architecture. Our proposal is a cache system based on an ad-hoc bricking identified by a Space-Filling Curve (SFC) indexing and managed by a GPU-based page table that loads required AMR data on-the-fly from disk to GPU memory.Item State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data(The Eurographics Association and John Wiley & Sons Ltd., 2023) Sarton, Jonathan; Zellmann, Stefan; Demirci, Serkan; Güdükbay, Ugur; Alexandre-Barff, Welcome; Lucas, Laurent; Dischler, Jean-Michel; Wesner, Stefan; Wald, Ingo; Bruckner, Stefan; Raidou, Renata G.; Turkay, CagatayVolume data these days is usually massive in terms of its topology, multiple fields, or temporal component. With the gap between compute and memory performance widening, the memory subsystem becomes the primary bottleneck for scientific volume visualization. Simple, structured, regular representations are often infeasible because the buses and interconnects involved need to accommodate the data required for interactive rendering. In this state-of-the-art report, we review works focusing on largescale volume rendering beyond those typical structured and regular grid representations.We focus primarily on hierarchical and adaptive mesh refinement representations, unstructured meshes, and compressed representations that gained recent popularity. We review works that approach this kind of data using strategies such as out-of-core rendering, massive parallelism, and other strategies to cope with the sheer size of the ever-increasing volume of data produced by today's supercomputers and acquisition devices. We emphasize the data management side of large-scale volume rendering systems and also include a review of tools that support the various volume data types discussed.