Browsing by Author "WU, Hsiang-Yun"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Optimizing Stepwise Animation in Dynamic Set Diagrams(The Eurographics Association and John Wiley & Sons Ltd., 2019) Mizuno, Kazuyo; WU, Hsiang-Yun; Takahashi, Shigeo; Igarashi, Takeo; Gleicher, Michael and Viola, Ivan and Leitte, HeikeA set diagram represents the membership relation among data elements. It is often visualized as secondary information on top of primary information, such as the spatial positions of elements on maps and charts. Visualizing the temporal evolution of such set diagrams as well as their primary features is quite important; however, conventional approaches have only focused on the temporal behavior of the primary features and do not provide an effective means to highlight notable transitions within the set relationships. This paper presents an approach for generating a stepwise animation between set diagrams by decomposing the entire transition into atomic changes associated with individual data elements. The key idea behind our approach is to optimize the ordering of the atomic changes such that the synthesized animation minimizes unwanted set occlusions by considering their depth ordering and reduces the gaze shift between two consecutive stepwise changes. Experimental results and a user study demonstrate that the proposed approach effectively facilitates the visual identification of the detailed transitions inherent in dynamic set diagrams.Item Slice and Dice: A Physicalization Workflow for Anatomical Edutainment(The Eurographics Association and John Wiley & Sons Ltd., 2020) Raidou, Renata Georgia; Gröller, Eduard; Wu, Hsiang-Yun; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueDuring the last decades, anatomy has become an interesting topic in education-even for laymen or schoolchildren. As medical imaging techniques become increasingly sophisticated, virtual anatomical education applications have emerged. Still, anatomical models are often preferred, as they facilitate 3D localization of anatomical structures. Recently, data physicalizations (i.e., physical visualizations) have proven to be effective and engaging-sometimes, even more than their virtual counterparts. So far, medical data physicalizations involve mainly 3D printing, which is still expensive and cumbersome. We investigate alternative forms of physicalizations, which use readily available technologies (home printers) and inexpensive materials (paper or semi-transparent films) to generate crafts for anatomical edutainment. To the best of our knowledge, this is the first computergenerated crafting approach within an anatomical edutainment context. Our approach follows a cost-effective, simple, and easy-to-employ workflow, resulting in assemblable data sculptures (i.e., semi-transparent sliceforms). It primarily supports volumetric data (such as CT or MRI), but mesh data can also be imported. An octree slices the imported volume and an optimization step simplifies the slice configuration, proposing the optimal order for easy assembly. A packing algorithm places the resulting slices with their labels, annotations, and assembly instructions on a paper or transparent film of user-selected size, to be printed, assembled into a sliceform, and explored. We conducted two user studies to assess our approach, demonstrating that it is an initial positive step towards the successful creation of interactive and engaging anatomical physicalizations.Item Vologram: An Educational Holographic Sculpture for Volumetric Medical Data Physicalization(The Eurographics Association, 2021) Pahr, Daniel; Wu, Hsiang-Yun; Raidou, Renata Georgia; Oeltze-Jafra, Steffen and Smit, Noeska N. and Sommer, Björn and Nieselt, Kay and Schultz, ThomasReal-world sculptures that display patient imaging data for anatomical education purposes have seen a recent resurgence through the field of data physicalization. In this paper, we describe an automated process for the computer-assisted generation of sculptures that can be employed for anatomical education among the general population. We propose a workflow that supports non-expert users to generate and physically display volumetric medical data in a visually appealing and engaging way. Our approach generates slide-based, interactive sculptures-called volograms-that resemble holograms of underlying medical data. The volograms are made out of affordable and readily available materials (e.g., transparent foils and cardboard) and can be produced through commonly available means. To evaluate the educational value of the proposed approach with our target audience, we assess the volograms, as opposed to classical, on-screen medical visualizations in a user study. The results of our study, while highlighting current weaknesses of our physicalization, also point to interesting future directions.