Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Laga, Hamid"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    GNF: Gaussian Neural Fields for Multidimensional Signal Representation and Reconstruction
    (The Eurographics Association and John Wiley & Sons Ltd., 2025) Bouzidi, Abelaziz; Laga, Hamid; Wannous, Hazem; Sohel, Ferdous; Christie, Marc; Pietroni, Nico; Wang, Yu-Shuen
    Neural fields have emerged as a powerful framework for representing continuous multidimensional signals such as images and videos, 3D and 4D objects and scenes, and radiance fields. While efficient, achieving high-quality representation requires the use of wide and deep neural networks. These, however, are slow to train and evaluate. Although several acceleration techniques have been proposed, they either trade memory for faster training and/or inference, rely on thousands of fitted primitives with considerable optimization time, or compromise the smooth, continuous nature of neural fields. In this paper, we introduce Gaussian Neural Fields (GNF), a novel compact neural decoder that maps learned feature grids into continuous non-linear signals, such as RGB images, Signed Distance Functions (SDFs), and radiance fields, using a single compact layer of Gaussian kernels defined in a high-dimensional feature space. Our key observation is that neurons in traditional MLPs perform simple computations, usually a dot product followed by an activation function, necessitating wide and deep MLPs or high-resolution feature grids to model complex functions. In this paper, we show that replacing MLP-based decoders with Gaussian kernels whose centers are learned features yields highly accurate representations of 2D (RGB), 3D (geometry), and 5D (radiance fields) signals with just a single layer of such kernels. This representation is highly parallelizable, operates on low-resolution grids, and trains in under 15 seconds for 3D geometry and under 11 minutes for view synthesis. GNF matches the accuracy of deep MLP-based decoders with far fewer parameters and significantly higher inference throughput. The source code is publicly available at https://grbfnet.github.io/.
  • Loading...
    Thumbnail Image
    Item
    TopoNet: Topology Learning for 3D Reconstruction of Objects of Arbitrary Genus
    (© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Ben Charrada, Tarek; Tabia, Hedi; Chetouani, Aladine; Laga, Hamid; Hauser, Helwig and Alliez, Pierre
    We propose a deep reinforcement learning‐based solution for the 3D reconstruction of objects of complex topologies from a single RGB image. We use a template‐based approach. However, unlike previous template‐based methods, which are limited to the reconstruction of 3D objects of fixed topology, our approach learns simultaneously the geometry and topology of the target 3D shape in the input image. To this end, we propose a neural network that learns to deform a template to fit the geometry of the target object. Our key contribution is a novel reinforcement learning framework that enables the network to also learn how to adjust, using pruning operations, the topology of the template to best fit the topology of the target object. We train the network in a supervised manner using a loss function that enforces smoothness and penalizes long edges in order to ensure high visual plausibility of the reconstructed 3D meshes. We evaluate the proposed approach on standard benchmarks such as ShapeNet, and in‐the‐wild using unseen real‐world images. We show that the proposed approach outperforms the state‐of‐the‐art in terms of the visual quality of the reconstructed 3D meshes, and also generalizes well to out‐of‐category images.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback