Browsing by Author "Einabadi, Farshad"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Learning Projective Shadow Textures for Neural Rendering of Human Cast Shadows from Silhouettes(The Eurographics Association, 2023) Einabadi, Farshad; Guillemaut, Jean-Yves; Hilton, Adrian; Ritschel, Tobias; Weidlich, AndreaThis contribution introduces a two-step, novel neural rendering framework to learn the transformation from a 2D human silhouette mask to the corresponding cast shadows on background scene geometries. In the first step, the proposed neural renderer learns a binary shadow texture (canonical shadow) from the 2D foreground subject, for each point light source, independent of the background scene geometry. Next, the generated binary shadows are texture-mapped to transparent virtual shadow map planes which are seamlessly used in a traditional rendering pipeline to project hard or soft shadows for arbitrary scenes and light sources of different sizes. The neural renderer is trained with shadow images rendered from a fast, scalable, synthetic data generation framework. We introduce the 3D Virtual Human Shadow (3DVHshadow) dataset as a public benchmark for training and evaluation of human shadow generation. Evaluation on the 3DVHshadow test set and real 2D silhouette images of people demonstrates the proposed framework achieves comparable performance to traditional geometry-based renderers without any requirement for knowledge or computationally intensive, explicit estimation of the 3D human shape. We also show the benefit of learning intermediate canonical shadow textures, compared to learning to generate shadows directly in camera image space. Further experiments are provided to evaluate the effect of having multiple light sources in the scene, model performance with regard to the relative camera-light 2D angular distance, potential aliasing artefacts related to output image resolution, and effect of light sources' dimensions on shadow softness.Item Learning Self-Shadowing for Clothed Human Bodies(The Eurographics Association, 2024) Einabadi, Farshad; Guillemaut, Jean-Yves; Hilton, Adrian; Haines, Eric; Garces, ElenaThis paper proposes to learn self-shadowing on full-body, clothed human postures from monocular colour image input, by supervising a deep neural model. The proposed approach implicitly learns the articulated body shape in order to generate self-shadow maps without seeking to reconstruct explicitly or estimate parametric 3D body geometry. Furthermore, it is generalisable to different people without per-subject pre-training, and has fast inference timings. The proposed neural model is trained on self-shadow maps rendered from 3D scans of real people for various light directions. Inference of shadow maps for a given illumination is performed from only 2D image input. Quantitative and qualitative experiments demonstrate comparable results to the state of the art whilst being monocular and achieving a considerably faster inference time. We provide ablations of our methodology and further show how the inferred self-shadow maps can benefit monocular full-body human relighting.