Browsing by Author "Sui, Haigang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Scale-adaptive Structure-preserving Texture Filtering(The Eurographics Association and John Wiley & Sons Ltd., 2019) Song, Chengfang; Xiao, Chunxia; Lei, Ling; Sui, Haigang; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonThis paper proposes a scale-adaptive filtering method to improve the performance of structure-preserving texture filtering for image smoothing. With classical texture filters, it usually is challenging to smooth texture at multiple scales while preserving salient structures in an image. We address this issue in the concept of adaptive bilateral filtering, where the scales of Gaussian range kernels are allowed to vary from pixel to pixel. Based on direction-wise statistics, our method distinguishes texture from structure effectively, identifies appropriate scope around a pixel to be smoothed and thus infers an optimal smoothing scale for it. Filtering an image with varying-scale kernels, the image is smoothed according to the distribution of texture adaptively. With commendable experimental results, we show that, needing less iterations, our proposed scheme boosts texture filtering performance in terms of preserving the geometric structures of multiple scales even after aggressive smoothing of the original image.Item Thin Cloud Removal for Single RGB Aerial Image(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Song, Chengfang; Xiao, Chunxia; Zhang, Yeting; Sui, Haigang; Benes, Bedrich and Hauser, HelwigAcquired above variable clouds, aerial images contain the components of ground reflection and cloud effect. Due to the non‐uniformity, clouds in aerial images are even harder to remove than haze in terrestrial images. This paper proposes a divide‐and‐conquer scheme to remove the thin translucent clouds in a single RGB aerial image. Based on colour attenuation prior, we design a kind of veiling metric that indicates the local concentration of clouds effectively. By this metric, an aerial image containing thickness‐varied clouds is segmented into multiple regions. Each region is veiled by clouds of nearly‐equal concentration, and hence subject to common assumptions, such as boundary constraint on transmission. The atmospheric light in each region is estimated by the modified local colour‐line model and composed into a spatially‐varying airlight map for the entire image. Then scene transmission is estimated and further refined by a weighted ‐norm based contextual regularization. Finally, we recover ground reflection via the atmospheric scattering model. We verify our cloud removal method on a number of aerial images containing thin clouds and compare our results with classical single‐image dehazing methods and the state‐of‐the‐art learning‐based declouding method, respectively.