Browsing by Author "Thomaszewski, Bernhard"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Computational Design of Kinesthetic Garments(The Eurographics Association and John Wiley & Sons Ltd., 2022) Vechev, Velko; Zarate, Juan; Thomaszewski, Bernhard; Hilliges, Otmar; Chaine, Raphaƫlle; Kim, Min H.Kinesthetic garments provide physical feedback on body posture and motion through tailored distributions of reinforced material. Their ability to selectively stiffen a garment's response to specific motions makes them appealing for rehabilitation, sports, robotics, and many other application fields. However, finding designs that distribute a given amount of reinforcement material to maximally stiffen the response to specified motions is a challenging problem. In this work, we propose an optimization-driven approach for automated design of reinforcement patterns for kinesthetic garments. Our main contribution is to cast this design task as an on-body topology optimization problem. Our method allows designers to explore a continuous range of designs corresponding to various amounts of reinforcement coverage. Our model captures both tight contact and lift-off separation between cloth and body. We demonstrate our method on a variety of reinforcement design problems for different body sites and motions. Optimal designs lead to a two- to threefold improvement in performance in terms of energy density. A set of manufactured designs were consistently rated as providing more resistance than baselines in a comparative user study.Item Differentiable Simulation for Outcome-Driven Orthognathic Surgery Planning(The Eurographics Association and John Wiley & Sons Ltd., 2022) Dorda, Daniel; Peter, Daniel; Borer, Dominik; Huber, Niko Benjamin; Sailer, Irena; Gross, Markus; Solenthaler, Barbara; Thomaszewski, Bernhard; Dominik L. Michels; Soeren PirkAlgorithms at the intersection of computer graphics and medicine have recently gained renewed attention. A particular interest are methods for virtual surgery planning (VSP), where treatment parameters must be carefully chosen to achieve a desired treatment outcome. FEM simulators can verify the treatment parameters by comparing a predicted outcome to the desired one. However, estimating the optimal parameters amounts to solving a challenging inverse problem. In current clinical practice it is solved manually by surgeons, who rely on their experience and intuition to iteratively refine the parameters, verifying them with simulated predictions. We prototype a differentiable FEM simulator and explore how it can enhance and simplify treatment planning, which is ultimately necessary to integrate simulation-based VSP tools into a clinical workflow. Specifically, we define a parametric treatment model based on surgeon input, and with analytically derived simulation gradients we optimise it against an objective defined on the visible facial 3D surface. By using sensitivity analysis, we can easily explore the solution-space with first-order approximations, which allow the surgeon to interactively visualise the effect of parameter variations on a given treatment plan. The objective function allows landmarks to be freely chosen, accommodating the multiple methodologies in clinical planning. We show that even with a very sparse set of guiding landmarks, our simulator robustly converges to a feasible post-treatment shape.Item A Second Order Cone Programming Approach for Simulating Biphasic Materials(The Eurographics Association and John Wiley & Sons Ltd., 2022) Tang, Pengbin; Coros, Stelian; Thomaszewski, Bernhard; Dominik L. Michels; Soeren PirkStrain limiting is a widely used approach for simulating biphasic materials such as woven textiles and biological tissue that exhibit a soft elastic regime followed by a hard deformation limit. However, existing methods are either based on slowly converging local iterations, or offer no guarantees on convergence. In this work, we propose a new approach to strain limiting based on second order cone programming (SOCP). Our work is based on the key insight that upper bounds on per-triangle deformations lead to convex quadratic inequality constraints. Though nonlinear, these constraints can be reformulated as inclusion conditions on convex sets, leading to a second order cone programming problem-a convex optimization problem that a) is guaranteed to have a unique solution and b) allows us to leverage efficient conic programming solvers. We first cast strain limiting with anisotropic bounds on stretching as a quadratically constrained quadratic program (QCQP), then show how this QCQP can be mapped to a second order cone programming problem. We further propose a constraint reflection scheme and empirically show that it exhibits superior energy-preservation properties compared to conventional end-of-step projection methods. Finally, we demonstrate our prototype implementation on a set of examples and illustrate how different deformation limits can be used to model a wide range of material behaviors.