Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Klepikov, Dmitrii"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Neural Two-Level Monte Carlo Real-Time Rendering
    (The Eurographics Association and John Wiley & Sons Ltd., 2025) Dereviannykh, Mikhail; Klepikov, Dmitrii; Hanika, Johannes; Dachsbacher, Carsten; Bousseau, Adrien; Day, Angela
    We introduce an efficient Two-Level Monte Carlo (subset of Multi-Level Monte Carlo, MLMC) estimator for real-time rendering of scenes with global illumination. Using MLMC we split the shading integral into two parts: the radiance cache integral and the residual error integral that compensates for the bias of the first one. For the first part, we developed the Neural Incident Radiance Cache (NIRC) leveraging the power of tiny neural networks [MRNK21] as a building block, which is trained on the fly. The cache is designed to provide a fast and reasonable approximation of the incident radiance: an evaluation takes 2-25× less compute time than a path tracing sample. This enables us to estimate the radiance cache integral with a high number of samples and by this achieve faster convergence. For the residual error integral, we compute the difference between the NIRC predictions and the unbiased path tracing simulation. Our method makes no assumptions about the geometry, materials, or lighting of a scene and has only few intuitive hyper-parameters. We provide a comprehensive comparative analysis in different experimental scenarios. Since the algorithm is trained in an on-line fashion, it demonstrates significant noise level reduction even for dynamic scenes and can easily be combined with other noise reduction techniques.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback