Browsing by Author "Archambault, D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Descriptive Framework for Temporal Data Visualizations Based on Generalized Space‐Time Cubes(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Bach, B.; Dragicevic, P.; Archambault, D.; Hurter, C.; Carpendale, S.; Chen, Min and Zhang, Hao (Richard)We present the , a descriptive model for visualizations of temporal data. Visualizations are described as operations on the cube, which transform the cube's 3D shape into readable 2D visualizations. Operations include extracting subparts of the cube, flattening it across space or time or transforming the cubes geometry and content. We introduce a taxonomy of elementary space‐time cube operations and explain how these operations can be combined and parameterized. The generalized space‐time cube has two properties: (1) it is purely conceptual without the need to be implemented, and (2) it applies to all datasets that can be represented in two dimensions plus time (e.g. geo‐spatial, videos, networks, multivariate data). The proper choice of space‐time cube operations depends on many factors, for example, density or sparsity of a cube. Hence, we propose a characterization of structures within space‐time cubes, which allows us to discuss strengths and limitations of operations. We finally review interactive systems that support multiple operations, allowing a user to customize his view on the data. With this framework, we hope to facilitate the description, criticism and comparison of temporal data visualizations, as well as encourage the exploration of new techniques and systems. This paper is an extension of Bach .'s (2014) work.We present the , a descriptive model for visualizations of temporal data. Visualizations are described as operations on the cube, which transform the cube's 3D shape into readable 2D visualizations. Operations include extracting subparts of the cube, flattening it across space or time or transforming the cubes geometry and content. We introduce a taxonomy of elementary space‐time cube operations and explain how these operations can be combined and parameterized. The generalized space‐time cube has two properties: (1) it is purely conceptual without the need to be implemented, and (2) it applies to all datasets that can be represented in two dimensions plus time (e.g. geo‐spatial, videos, networks, multivariate data). The proper choice of space‐time cube operations depends on many factors, for example, density or sparsity of a cube.Item Event‐based Dynamic Graph Drawing without the Agonizing Pain(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Arleo, A.; Miksch, S.; Archambault, D.; Hauser, Helwig and Alliez, PierreTemporal networks can naturally model real‐world complex phenomena such as contact networks, information dissemination and physical proximity. However, nodes and edges bear real‐time coordinates, making it difficult to organize them into discrete timeslices, without a loss of temporal information due to projection. Event‐based dynamic graph drawing rejects the notion of a timeslice and allows each node and edge to retain its own real‐valued time coordinate. While existing work has demonstrated clear advantages for this approach, they come at a running time cost. We investigate the problem of accelerating event‐based layout to make it more competitive with existing layout techniques. In this paper, we describe the design, implementation and experimental evaluation of , the first multi‐level event‐based graph layout algorithm. We consider three operators for coarsening and placement, inspired by Walshaw, GRIP and FM, which we couple with an event‐based graph drawing algorithm. We also propose two extensions to the core algorithm: and . We perform two experiments: first, we compare variants to existing state‐of‐the‐art dynamic graph layout approaches; second, we investigate the impact of each of the proposed algorithm extensions. proves to be competitive with existing approaches, and the proposed extensions achieve their design goals and contribute in opening new research directions.