Browsing by Author "Papka, Michael E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item ChemoGraph: Interactive Visual Exploration of the Chemical Space(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kale, Bharat; Clyde, Austin; Sun, Maoyuan; Ramanathan, Arvind; Stevens, Rick; Papka, Michael E.; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasExploratory analysis of the chemical space is an important task in the field of cheminformatics. For example, in drug discovery research, chemists investigate sets of thousands of chemical compounds in order to identify novel yet structurally similar synthetic compounds to replace natural products. Manually exploring the chemical space inhabited by all possible molecules and chemical compounds is impractical, and therefore presents a challenge. To fill this gap, we present ChemoGraph, a novel visual analytics technique for interactively exploring related chemicals. In ChemoGraph, we formalize a chemical space as a hypergraph and apply novel machine learning models to compute related chemical compounds. It uses a database to find related compounds from a known space and a machine learning model to generate new ones, which helps enlarge the known space. Moreover, ChemoGraph highlights interactive features that support users in viewing, comparing, and organizing computationally identified related chemicals. With a drug discovery usage scenario and initial expert feedback from a case study, we demonstrate the usefulness of ChemoGraph.Item Color Nameability Predicts Inference Accuracy in Spatial Visualizations(The Eurographics Association and John Wiley & Sons Ltd., 2021) Reda, Khairi; Salvi, Amey A.; Gray, Jack; Papka, Michael E.; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonColor encoding is foundational to visualizing quantitative data. Guidelines for colormap design have traditionally emphasized perceptual principles, such as order and uniformity. However, colors also evoke cognitive and linguistic associations whose role in data interpretation remains underexplored. We study how two linguistic factors, name salience and name variation, affect people's ability to draw inferences from spatial visualizations. In two experiments, we found that participants are better at interpreting visualizations when viewing colors with more salient names (e.g., prototypical 'blue', 'yellow', and 'red' over 'teal', 'beige', and 'maroon'). The effect was robust across four visualization types, but was more pronounced in continuous (e.g., smooth geographical maps) than in similar discrete representations (e.g., choropleths). Participants' accuracy also improved as the number of nameable colors increased, although the latter had a less robust effect. Our findings suggest that color nameability is an important design consideration for quantitative colormaps, and may even outweigh traditional perceptual metrics. In particular, we found that the linguistic associations of color are a better predictor of performance than the perceptual properties of those colors. We discuss the implications and outline research opportunities. The data and materials for this study are available at https://osf.io/asb7nItem Fast Mesh Validation in Combustion Simulations through In-Situ Visualization(The Eurographics Association, 2019) Shudler, Sergei; Ferrier, Nicola; Insley, Joseph; Papka, Michael E.; Patel, Saumil; Rizzi, Silvio; Childs, Hank and Frey, SteffenIn-situ visualization and analysis is a powerful concept that aims to give users the ability to process data while it is still resident in memory, thereby vastly reducing the amount of data left for post-hoc analysis. The problem of having too much data for posthoc analysis is exacerbated in large-scale high-performance computing applications such as Nek5000, a massively-parallel CFD (Computational Fluid Dynamics) code used primarily for thermal hydraulics problems. Specifically, one problem users of Nek5000 often face is validating the mesh, that is identifying the exact location of problematic mesh elements within the whole mesh. Employing the standard post-hoc approach to address this problem is both time consuming and requires vast storage space. In this paper, we demonstrate how in-situ visualization, produced with SENSEI, a generic in-situ platform, helps users quickly validate the mesh. We also provide a bridge between Nek5000 and SENSEI that enables users to use any existing and future analysis routines in SENSEI. The approach is evaluated on a number of realistic datasets.Item The State of the Art in Visualizing Dynamic Multivariate Networks(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kale, Bharat; Sun, Maoyuan; Papka, Michael E.; Bruckner, Stefan; Raidou, Renata G.; Turkay, CagatayMost real-world networks are both dynamic and multivariate in nature, meaning that the network is associated with various attributes and both the network structure and attributes evolve over time. Visualizing dynamic multivariate networks is of great significance to the visualization community because of their wide applications across multiple domains. However, it remains challenging because the techniques should focus on representing the network structure, attributes and their evolution concurrently. Many real-world network analysis tasks require the concurrent usage of the three aspects of the dynamic multivariate networks. In this paper, we analyze current techniques and present a taxonomy to classify the existing visualization techniques based on three aspects: temporal encoding, topology encoding, and attribute encoding. Finally, we survey application areas and evaluation methods; and discuss challenges for future research.