Browsing by Author "Qin, Hongxing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item PointSkelCNN: Deep Learning-Based 3D Human Skeleton Extraction from Point Clouds(The Eurographics Association and John Wiley & Sons Ltd., 2020) Qin, Hongxing; Zhang, Songshan; Liu, Qihuang; Chen, Li; Chen, Baoquan; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueA 3D human skeleton plays important roles in human shape reconstruction and human animation. Remarkable advances have been achieved recently in 3D human skeleton estimation from color and depth images via a powerful deep convolutional neural network. However, applying deep learning frameworks to 3D human skeleton extraction from point clouds remains challenging because of the sparsity of point clouds and the high nonlinearity of human skeleton regression. In this study, we develop a deep learning-based approach for 3D human skeleton extraction from point clouds. We convert 3D human skeleton extraction into offset vector regression and human body segmentation via deep learning-based point cloud contraction. Furthermore, a disambiguation strategy is adopted to improve the robustness of joint points regression. Experiments on the public human pose dataset UBC3V and the human point cloud skeleton dataset 3DHumanSkeleton compiled by the authors show that the proposed approach outperforms the state-of-the-art methods.Item Rigid Registration of Point Clouds Based on Partial Optimal Transport(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Qin, Hongxing; Zhang, Yucheng; Liu, Zhentao; Chen, Baoquan; Hauser, Helwig and Alliez, PierreFor rigid point cloud data registration, algorithms based on soft correspondences are more robust than the traditional ICP method and its variants. However, point clouds with severe outliers and missing data may lead to imprecise many‐to‐many correspondences and consequently inaccurate registration. In this study, we propose a point cloud registration algorithm based on partial optimal transport via a hard marginal constraint. The hard marginal constraint provides an explicit parameter to adjust the ratio of points that should be accurately matched, and helps avoid incorrect many‐to‐many correspondences. Experiments show that the proposed method achieves state‐of‐the‐art registration results when dealing with point clouds with significant amount of outliers and missing points (see ).