Browsing by Author "Papaioannou, Georgios"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Illumination-driven Light Probe Placement(The Eurographics Association, 2021) Vardis, Konstantinos; Vasilakis, Andreas Alexandros; Papaioannou, Georgios; Bittner, Jirà and Waldner, ManuelaWe introduce a simplification method for light probe configurations that preserves the indirect illumination distribution in scenes with diverse lighting conditions. An iterative graph simplification algorithm discards the probes that, according to a set of evaluation points, have the least impact on the global light field. Our approach is simple, generic and aims at improving the repetitive and often non-intuitive and tedious task of placing light probes on complex virtual environments.Item Illumination-Guided Furniture Layout Optimization(The Eurographics Association and John Wiley & Sons Ltd., 2020) Vitsas, Nick; Papaioannou, Georgios; Gkaravelis, Anastasios; Vasilakis, Andreas-Alexandros; Panozzo, Daniele and Assarsson, UlfLighting plays a very important role in interior design. However, in the specific problem of furniture layout recommendation, illumination has been either neglected or addressed with empirical or very simplified solutions. The effectiveness of a particular layout in its expected task performance can be greatly affected by daylighting and artificial illumination in a non-trivial manner. In this paper, we introduce a robust method for furniture layout optimization guided by illumination constraints. The method takes into account all dominant light sources, such as sun light, skylighting and fixtures, while also being able to handle movable light emitters. For this task, the method introduces multiple generic illumination constraints and physically-based light transport estimators, operating alongside typical geometric design guidelines, in a unified manner. We demonstrate how to produce furniture arrangements that comply with important safety, comfort and efficiency illumination criteria, such as glare suppression, under complex light-environment interactions, which are very hard to handle using empirical or simplified models.Item Light Optimization for Detail Highlighting(The Eurographics Association and John Wiley & Sons Ltd., 2018) Gkaravelis, Anastasios; Papaioannou, Georgios; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesIn this paper we propose an effective technique for the automatic arrangement of spot lights and other luminaires on or near user-provided arbitrary mounting surfaces in order to highlight the geometric details of complex objects. Since potential applications include the lighting design for exhibitions and similar installations, the method takes into account obstructing geometry and potential occlusion from visitors and other non-permanent blocking geometry. Our technique generates the most appropriate position and orientation for light sources based on a local contrast maximization near salient geometric features and a clustering mechanism, producing consistent and view-independent results, with minimal user intervention. We validate our method with realistic test cases including multiple and disjoint exhibits as well as high occlusion scenarios.Item Parallel Transformation of Bounding Volume Hierarchies into Oriented Bounding Box Trees(The Eurographics Association and John Wiley & Sons Ltd., 2023) Vitsas, Nick; Evangelou, Iordanis; Papaioannou, Georgios; Gkaravelis, Anastasios; Myszkowski, Karol; Niessner, MatthiasOriented bounding box (OBB) hierarchies can be used instead of hierarchies based on axis-aligned bounding boxes (AABB), providing tighter fitting to the underlying geometric structures and resulting in improved interference tests, such as ray-geometry intersections. In this paper, we present a method for the fast, parallel transformation of an existing bounding volume hierarchy (BVH), based on AABBs, into a hierarchy based on oriented bounding boxes. To this end, we parallelise a high-quality OBB extraction algorithm from the literature to operate as a standalone OBB estimator and further extend it to efficiently build an OBB hierarchy in a bottom up manner. This agglomerative approach allows for fast parallel execution and the formation of arbitrary, high-quality OBBs in bounding volume hierarchies. The method is fully implemented on the GPU and extensively evaluated with ray intersections.Item Rayground: An Online Educational Tool for Ray Tracing(The Eurographics Association, 2020) Vitsas, Nick; Gkaravelis, Anastasios; Vasilakis, Andreas-Alexandros; Vardis, Konstantinos; Papaioannou, Georgios; Romero, Mario and Sousa Santos, BeatriceIn this paper, we present Rayground; an online, interactive education tool for richer in-class teaching and gradual self-study, which provides a convenient introduction into practical ray tracing through a standard shader-based programming interface. Setting up a basic ray tracing framework via modern graphics APIs, such as DirectX 12 and Vulkan, results in complex and verbose code that can be intimidating even for very competent students. On the other hand, Rayground aims to demystify ray tracing fundamentals, by providing a well-defined WebGL-based programmable graphics pipeline of configurable distinct ray tracing stages coupled with a simple scene description format. An extensive discussion is further offered describing how both undergraduate and postgraduate computer graphics theoretical lectures and laboratory sessions can be enhanced by our work, to achieve a broad understanding of the underlying concepts. Rayground is open, cross-platform, and available to everyone.Item Sampling Clear Sky Models using Truncated Gaussian Mixtures(The Eurographics Association, 2021) Vitsas, Nick; Vardis, Konstantinos; Papaioannou, Georgios; Bousseau, Adrien and McGuire, MorganParametric clear sky models are often represented by simple analytic expressions that can efficiently generate plausible, natural radiance maps of the sky, taking into account expensive and hard to simulate atmospheric phenomena. In this work, we show how such models can be complemented by an equally simple, elegant and generic analytic continuous probability density function (PDF) that provides a very good approximation to the radiance-based distribution of the sky. We describe a fitting process that is used to properly parameterise a truncated Gaussian mixture model, which allows for exact, constant-time and minimal-memory sampling and evaluation of this PDF, without rejection sampling, an important property for practical applications in offline and real-time rendering. We present experiments in a standard importance sampling framework that showcase variance reduction approaching that of a more expensive inversion sampling method using Summed Area Tables.Item Shape Classification of Building Information Models using Neural Networks(The Eurographics Association, 2021) Evangelou, Iordanis; Vitsas, Nick; Papaioannou, Georgios; Georgioudakis, Manolis; Chatzisymeon, Apostolos; Biasotti, Silvia and Dyke, Roberto M. and Lai, Yukun and Rosin, Paul L. and Veltkamp, Remco C.The Building Information Modelling (BIM) procedure introduces specifications and data exchange formats widely used by the construction industry to describe functional and geometric elements of building structures in the design, planning, cost estimation and construction phases of large civil engineering projects. In this paper we explain how to apply a modern, low-parameter, neural-network-based classification solution to the automatic geometric BIM element labeling, which is becoming an increasingly important task in software solutions for the construction industry. The network is designed so that it extracts features regarding general shape, scale and aspect ratio of each BIM element and be extremely fast during training and prediction. We evaluate our network architecture on a real BIM dataset and showcase accuracy that is difficult to achieve with a generic 3D shape classification network.Item A Survey of Multifragment Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2020) Vasilakis, Andreas Alexandros; Vardis, Konstantinos; Papaioannou, Georgios; Mantiuk, Rafal and Sundstedt, VeronicaIn the past few years, advances in graphics hardware have fuelled an explosion of research and development in the field of interactive and real-time rendering in screen space. Following this trend, a rapidly increasing number of applications rely on multifragment rendering solutions to develop visually convincing graphics applications with dynamic content. The main advantage of these approaches is that they encompass additional rasterised geometry, by retaining more information from the fragment sampling domain, thus augmenting the visibility determination stage. With this survey, we provide an overview of and insight into the extensive, yet active research and respective literature on multifragment rendering. We formally present the multifragment rendering pipeline, clearly identifying the construction strategies, the core image operation categories and their mapping to the respective applications. We describe features and trade-offs for each class of techniques, pointing out GPU optimisations and limitations and provide practical recommendations for choosing an appropriate method for each application. Finally, we offer fruitful context for discussion by outlining some existing problems and challenges as well as by presenting opportunities for impactful future research directions.