Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Li, Hongyu"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Towards Diverse Anime Face Generation: Active Label Completion and Style Feature Network
    (The Eurographics Association, 2019) Li, Hongyu; Han, Tianqi; Cignoni, Paolo and Miguel, Eder
    It is interesting to use an anime face as personal virtual image to replace the traditional sequence code. To generate diverse anime faces, this paper proposes a style-gender based anime GAN (SGA-GAN), where the gender is directly conditioned to ensure the gender differentiation, and style features serve as a condition to guarantee the style diversity. To extract style features, we train a style feature network (SFN) as a multi-task classifier to simultaneously fulfill gender classification, style classification, and image quality estimation. To make full use of available data, partly labeled or unlabeled, during the SFN training, we propose a label completion method to actively complete the missing gender or style labels. The active label completion is essentially a weakly-supervised learning process through ensembling three distinct classifiers to improve the generalization capability. Experiments verify that the active label completion can improve the model accuracy and the style feature as a condition can make better the diversity of generated anime faces.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback