Browsing by Author "Cozot, Rémi"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Consistent Multi- and Single-View HDR-Image Reconstruction from Single Exposures(The Eurographics Association, 2022) Mohan, Aditya; Zhang, Jing; Cozot, Rémi; Loscos, Celine; Sauvage, Basile; Hasic-Telalovic, JasminkaWe propose a CNN-based approach for reconstructing HDR images from just a single exposure. It predicts the saturated areas of LDR images and then blends the linearized input with the predicted outputs. Two loss functions are used: the Mean Absolute Error and the Multi-Scale Structural Similarity Index. The choice of these loss functions allows us to outperform previous algorithms in the reconstructed dynamic range. Once the network trained, we input multi-view images to it to output multi-view coherent images.Item Directing the Photography: Combining Cinematic Rules, Indirect Light Controls and Lighting-by-Example(The Eurographics Association and John Wiley & Sons Ltd., 2018) Galvane, Quentin; Lino, Christophe; Christie, Marc; Cozot, Rémi; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesThe placement of lights in a 3D scene is a technical and artistic task that requires time and trained skills. Most 3D modelling tools only provide a direct control of light sources, through the manipulation of parameters such as size, location, flux (the perceived power of light) or opening angle (the light frustum). Approaches have been relying on automated or semi-automated techniques to relieve users from such low-level manipulations at the expense of an important computational cost. In this paper, guided by discussions with experts in scene and object lighting, we propose an indirect control of area light sources. We first formalize the classical 3-point lighting design principle (key-light, fill-lights and back/rim-lights) in a parametric model. Given a key-light placed in the scene, we then provide a computational approach to (i) automatically compute the position and size of fill-lights and back/rim-lights by analyzing the geometry of 3D character, and (ii) automatically compute the flux and size of key, fill and back/rim lights, given a sample reference image in a computationally efficient way. Results demonstrate the benefits of the approach on the quick lighting of 3D characters, and further demonstrate the feasibility of interactive control of multiple lights through image features.Item Example‐Based Colour Transfer for 3D Point Clouds(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Goudé, Ific; Cozot, Rémi; Le Meur, Olivier; Bouatouch, Kadi; Benes, Bedrich and Hauser, HelwigExample‐based colour transfer between images, which has raised a lot of interest in the past decades, consists of transferring the colour of an image to another one. Many methods based on colour distributions have been proposed, and more recently, the efficiency of neural networks has been demonstrated again for colour transfer problems. In this paper, we propose a new pipeline with methods adapted from the image domain to automatically transfer the colour from a target point cloud to an input point cloud. These colour transfer methods are based on colour distributions and account for the geometry of the point clouds to produce a coherent result. The proposed methods rely on simple statistical analysis, are effective, and succeed in transferring the colour style from one point cloud to another. The qualitative results of the colour transfers are evaluated and compared with existing methods.Item From Capture to Immersive Viewing of 3D HDR Point Clouds(The Eurographics Association, 2022) Loscos, Celine; Souchet, Philippe; Barrios, Théo; Valenzise, Giuseppe; Cozot, Rémi; Hahmann, Stefanie; Patow, Gustavo A.The collaborators of the ReVeRY project address the design of a specific grid of cameras, a cost-efficient system that acquires at once several viewpoints, possibly under several exposures and the converting of multiview, multiexposed, video stream into a high quality 3D HDR point cloud. In the last two decades, industries and researchers proposed significant advances in media content acquisition systems in three main directions: increase of resolution and image quality with the new ultra-high-definition (UHD) standard; stereo capture for 3D content; and high-dynamic range (HDR) imaging. Compression, representation, and interoperability of these new media are active research fields in order to reduce data size and be perceptually accurate. The originality of the project is to address both HDR and depth through the entire pipeline. Creativity is enhanced by several tools, which answer challenges at the different stages of the pipeline: camera setup, data processing, capture visualisation, virtual camera controller, compression, perceptually guided immersive visualisation. It is the experience acquired by the researchers of the project that is exposed in this tutorial.