Browsing by Author "Chen, Siming"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Contextualized Analysis of Movement Events(The Eurographics Association, 2019) Chen, Siming; Andrienko, Gennady; Andrienko, Natalia; Doulkeridis, Christos; Koumparos, Athanasios; Landesberger, Tatiana von and Turkay, CagatayFor understanding the circumstances, causes, and consequences of events that may happen during movement (e.g., harsh brake, sharp turn), it is necessary to analyze event context. The context includes dynamic attributes of the moving objects before and after the event and external context elements such as other moving objects, weather, terrain, etc. To explore events in context, we propose an analytical workflow including event contextualization, context pattern detection, and exploration of the spatio-temporal distribution of the detected patterns. The approach involves clustering of events based on the similarity of their contexts and interactive visual techniques for exploration of the distribution of the clusters in time, geographic space, and multidimensional attribute space. In close collaboration with domain experts, we apply our method to real-world vehicle trajectories with the purpose of identifying and investigating potentially dangerous driving behaviors.Item DanmuVis: Visualizing Danmu Content Dynamics and Associated Viewer Behaviors in Online Videos(The Eurographics Association and John Wiley & Sons Ltd., 2022) Chen, Shuai; Li, Sihang; Li, Yanda; Zhu, Junlin; Long, Juanjuan; Chen, Siming; Zhang, Jiawan; Yuan, Xiaoru; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasDanmu (Danmaku) is a unique social media service in online videos, especially popular in Japan and China, for viewers to write comments while watching videos. The danmu comments are overlaid on the video screen and synchronized to the associated video time, indicating viewers' thoughts of the video clip. This paper introduces an interactive visualization system to analyze danmu comments and associated viewer behaviors in a collection of videos and enable detailed exploration of one video on demand. The watching behaviors of viewers are identified by comparing video time and post time of viewers' danmu. The system supports analyzing danmu content and viewers' behaviors against both video time and post time to gain insights into viewers' online participation and perceived experience. Our evaluations, including usage scenarios and user interviews, demonstrate the effectiveness and usability of our system.Item A Deeper Understanding of Visualization-Text Interplay in Geographic Data-driven Stories(The Eurographics Association and John Wiley & Sons Ltd., 2021) Latif, Shahid; Chen, Siming; Beck, Fabian; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonData-driven stories comprise of visualizations and a textual narrative. The two representations coexist and complement each other. Although existing research has explored the design strategies and structure of such stories, it remains an open research question how the two representations play together on a detailed level and how they are linked with each other. In this paper, we aim at understanding the fine-grained interplay of text and visualizations in geographic data-driven stories. We focus on geographic content as it often includes complex spatiotemporal data presented as versatile visualizations and rich textual descriptions. We conduct a qualitative empirical study on 22 stories collected from a variety of news media outlets; 10 of the stories report the COVID-19 pandemic, the others cover diverse topics. We investigate the role of every sentence and visualization within the narrative to reveal how they reference each other and interact. Moreover, we explore the positioning and sequence of various parts of the narrative to find patterns that further consolidate the stories. Drawing from the findings, we discuss study implications with respect to best practices and possibilities to automate the report generation.Item Exploring Multi-dimensional Data via Subset Embedding(The Eurographics Association and John Wiley & Sons Ltd., 2021) Xie, Peng; Tao, Wenyuan; Li, Jie; Huang, Wentao; Chen, Siming; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonMulti-dimensional data exploration is a classic research topic in visualization. Most existing approaches are designed for identifying record patterns in dimensional space or subspace. In this paper, we propose a visual analytics approach to exploring subset patterns. The core of the approach is a subset embedding network (SEN) that represents a group of subsets as uniformlyformatted embeddings. We implement the SEN as multiple subnets with separate loss functions. The design enables to handle arbitrary subsets and capture the similarity of subsets on single features, thus achieving accurate pattern exploration, which in most cases is searching for subsets having similar values on few features. Moreover, each subnet is a fully-connected neural network with one hidden layer. The simple structure brings high training efficiency. We integrate the SEN into a visualization system that achieves a 3-step workflow. Specifically, analysts (1) partition the given dataset into subsets, (2) select portions in a projected latent space created using the SEN, and (3) determine the existence of patterns within selected subsets. Generally, the system combines visualizations, interactions, automatic methods, and quantitative measures to balance the exploration flexibility and operation efficiency, and improve the interpretability and faithfulness of the identified patterns. Case studies and quantitative experiments on multiple open datasets demonstrate the general applicability and effectiveness of our approach.